Code

9225fb08b0d3dda925d14e9ffbe79e05c0f80d95
[rrdtool.git] / src / rrd_update.c
1 /*****************************************************************************
2  * RRDtool 1.2.26  Copyright by Tobi Oetiker, 1997-2007
3  *****************************************************************************
4  * rrd_update.c  RRD Update Function
5  *****************************************************************************
6  * $Id$
7  *****************************************************************************/
9 #include "rrd_tool.h"
10 #include <sys/types.h>
11 #include <fcntl.h>
13 #if defined(_WIN32) && !defined(__CYGWIN__) && !defined(__CYGWIN32__)
14  #include <sys/locking.h>
15  #include <sys/stat.h>
16  #include <io.h>
17 #endif
19 #include "rrd_hw.h"
20 #include "rrd_rpncalc.h"
22 #include "rrd_is_thread_safe.h"
23 #include "unused.h"
25 #if defined(_WIN32) && !defined(__CYGWIN__) && !defined(__CYGWIN32__)
26 /*
27  * WIN32 does not have gettimeofday     and struct timeval. This is a quick and dirty
28  * replacement.
29  */
30 #include <sys/timeb.h>
32 #ifndef __MINGW32__
33 struct timeval {
34         time_t tv_sec; /* seconds */
35         long tv_usec;  /* microseconds */
36 };
37 #endif
39 struct __timezone {
40         int  tz_minuteswest; /* minutes W of Greenwich */
41         int  tz_dsttime;     /* type of dst correction */
42 };
44 static int gettimeofday(struct timeval *t, struct __timezone *tz) {
46         struct _timeb current_time;
48         _ftime(&current_time);
50         t->tv_sec  = current_time.time;
51         t->tv_usec = current_time.millitm * 1000;
53         return 0;
54 }
56 #endif
57 /*
58  * normilize time as returned by gettimeofday. usec part must
59  * be always >= 0
60  */
61 static void normalize_time(struct timeval *t)
62 {
63         if(t->tv_usec < 0) {
64                 t->tv_sec--;
65                 t->tv_usec += 1000000L;
66         }
67 }
69 /* Local prototypes */
70 int LockRRD(FILE *rrd_file);
71 #ifdef HAVE_MMAP
72 info_t *write_RRA_row (rrd_t *rrd, unsigned long rra_idx, 
73                                         unsigned long *rra_current,
74                                         unsigned short CDP_scratch_idx,
75 #ifndef DEBUG
76 FILE UNUSED(*rrd_file),
77 #else
78 FILE *rrd_file,
79 #endif
80                                         info_t *pcdp_summary, time_t *rra_time, void *rrd_mmaped_file);
81 #else
82 info_t *write_RRA_row (rrd_t *rrd, unsigned long rra_idx, 
83                                         unsigned long *rra_current,
84                                         unsigned short CDP_scratch_idx, FILE *rrd_file,
85                                         info_t *pcdp_summary, time_t *rra_time);
86 #endif
87 int rrd_update_r(const char *filename, const char *tmplt, int argc, const char **argv);
88 int _rrd_update(const char *filename, const char *tmplt, int argc, const char **argv, 
89                                         info_t*);
91 #define IFDNAN(X,Y) (isnan(X) ? (Y) : (X));
94 info_t *rrd_update_v(int argc, char **argv)
95 {
96     char             *tmplt = NULL;          
97         info_t *result = NULL;
98         infoval rc;
99       rc.u_int = -1;
100     optind = 0; opterr = 0;  /* initialize getopt */
102     while (1) {
103                 static struct option long_options[] =
104                         {
105                                 {"template",      required_argument, 0, 't'},
106                                 {0,0,0,0}
107                         };
108                 int option_index = 0;
109                 int opt;
110                 opt = getopt_long(argc, argv, "t:", 
111                                                   long_options, &option_index);
112                 
113                 if (opt == EOF)
114                         break;
115                 
116                 switch(opt) {
117                 case 't':
118                         tmplt = optarg;
119                         break;
120                 
121                 case '?':
122                         rrd_set_error("unknown option '%s'",argv[optind-1]);
123                         goto end_tag;
124                 }
125     }
127     /* need at least 2 arguments: filename, data. */
128     if (argc-optind < 2) {
129                 rrd_set_error("Not enough arguments");
130                 goto end_tag;
131     }
132     rc.u_int = 0;
133     result = info_push(NULL,sprintf_alloc("return_value"),RD_I_INT,rc);
134         rc.u_int = _rrd_update(argv[optind], tmplt,
135                       argc - optind - 1, (const char **)(argv + optind + 1), result);
136     result->value.u_int = rc.u_int;
137 end_tag:
138     return result;
141 int
142 rrd_update(int argc, char **argv)
144     char             *tmplt = NULL;          
145     int rc;
146     optind = 0; opterr = 0;  /* initialize getopt */
148     while (1) {
149                 static struct option long_options[] =
150                         {
151                                 {"template",      required_argument, 0, 't'},
152                                 {0,0,0,0}
153                         };
154                 int option_index = 0;
155                 int opt;
156                 opt = getopt_long(argc, argv, "t:", 
157                                                   long_options, &option_index);
158                 
159                 if (opt == EOF)
160                         break;
161                 
162                 switch(opt) {
163                 case 't':
164                         tmplt = optarg;
165                         break;
166                 
167                 case '?':
168                         rrd_set_error("unknown option '%s'",argv[optind-1]);
169                         return(-1);
170                 }
171     }
173     /* need at least 2 arguments: filename, data. */
174     if (argc-optind < 2) {
175                 rrd_set_error("Not enough arguments");
177                 return -1;
178     }
179  
180         rc = rrd_update_r(argv[optind], tmplt,
181                       argc - optind - 1, (const char **)(argv + optind + 1));
182     return rc;
185 int
186 rrd_update_r(const char *filename, const char *tmplt, int argc, const char **argv)
188    return _rrd_update(filename, tmplt, argc, argv, NULL);
191 int
192 _rrd_update(const char *filename, const char *tmplt, int argc, const char **argv, 
193    info_t *pcdp_summary)
196     int              arg_i = 2;
197     short            j;
198     unsigned long    i,ii,iii=1;
200     unsigned long    rra_begin;          /* byte pointer to the rra
201                                           * area in the rrd file.  this
202                                           * pointer never changes value */
203     unsigned long    rra_start;          /* byte pointer to the rra
204                                           * area in the rrd file.  this
205                                           * pointer changes as each rrd is
206                                           * processed. */
207     unsigned long    rra_current;        /* byte pointer to the current write
208                                           * spot in the rrd file. */
209     unsigned long    rra_pos_tmp;        /* temporary byte pointer. */
210     double           interval,
211                      pre_int,post_int;   /* interval between this and
212                                           * the last run */
213     unsigned long    proc_pdp_st;        /* which pdp_st was the last
214                                           * to be processed */
215     unsigned long    occu_pdp_st;        /* when was the pdp_st
216                                           * before the last update
217                                           * time */
218     unsigned long    proc_pdp_age;       /* how old was the data in
219                                           * the pdp prep area when it
220                                           * was last updated */
221     unsigned long    occu_pdp_age;       /* how long ago was the last
222                                           * pdp_step time */
223     rrd_value_t      *pdp_new;           /* prepare the incoming data
224                                           * to be added the the
225                                           * existing entry */
226     rrd_value_t      *pdp_temp;          /* prepare the pdp values 
227                                           * to be added the the
228                                           * cdp values */
230     long             *tmpl_idx;          /* index representing the settings
231                                             transported by the tmplt index */
232     unsigned long    tmpl_cnt = 2;       /* time and data */
234     FILE             *rrd_file;
235     rrd_t            rrd;
236     time_t           current_time = 0;
237     time_t           rra_time = 0;       /* time of update for a RRA */
238     unsigned long    current_time_usec=0;/* microseconds part of current time */
239     struct timeval   tmp_time;           /* used for time conversion */
241     char             **updvals;
242     int              schedule_smooth = 0;
243         rrd_value_t      *seasonal_coef = NULL, *last_seasonal_coef = NULL;
244                                          /* a vector of future Holt-Winters seasonal coefs */
245     unsigned long    elapsed_pdp_st;
246                                          /* number of elapsed PDP steps since last update */
247     unsigned long    *rra_step_cnt = NULL;
248                                          /* number of rows to be updated in an RRA for a data
249                                           * value. */
250     unsigned long    start_pdp_offset;
251                                          /* number of PDP steps since the last update that
252                                           * are assigned to the first CDP to be generated
253                                           * since the last update. */
254     unsigned short   scratch_idx;
255                                          /* index into the CDP scratch array */
256     enum cf_en       current_cf;
257                                          /* numeric id of the current consolidation function */
258     rpnstack_t       rpnstack; /* used for COMPUTE DS */
259     int              version;  /* rrd version */
260     char             *endptr; /* used in the conversion */
262 #ifdef HAVE_MMAP
263     void             *rrd_mmaped_file;
264     unsigned long    rrd_filesize;
265 #endif
268     rpnstack_init(&rpnstack);
270     /* need at least 1 arguments: data. */
271     if (argc < 1) {
272         rrd_set_error("Not enough arguments");
273         return -1;
274     }
275     
276     
278     if(rrd_open(filename,&rrd_file,&rrd, RRD_READWRITE)==-1){
279         return -1;
280     }
282     /* initialize time */
283     version = atoi(rrd.stat_head->version);
284     gettimeofday(&tmp_time, 0);
285     normalize_time(&tmp_time);
286     current_time = tmp_time.tv_sec;
287     if(version >= 3) {
288         current_time_usec = tmp_time.tv_usec;
289     }
290     else {
291         current_time_usec = 0;
292     }
294     rra_current = rra_start = rra_begin = ftell(rrd_file);
295     /* This is defined in the ANSI C standard, section 7.9.5.3:
297         When a file is opened with udpate mode ('+' as the second
298         or third character in the ... list of mode argument
299         variables), both input and ouptut may be performed on the
300         associated stream.  However, ...  input may not be directly
301         followed by output without an intervening call to a file
302         positioning function, unless the input oepration encounters
303         end-of-file. */
304 #ifdef HAVE_MMAP
305     fseek(rrd_file, 0, SEEK_END);
306     rrd_filesize = ftell(rrd_file);
307     fseek(rrd_file, rra_current, SEEK_SET);
308 #else
309     fseek(rrd_file, 0, SEEK_CUR);
310 #endif
312     
313     /* get exclusive lock to whole file.
314      * lock gets removed when we close the file.
315      */
316     if (LockRRD(rrd_file) != 0) {
317       rrd_set_error("could not lock RRD");
318       rrd_free(&rrd);
319       fclose(rrd_file);
320       return(-1);   
321     } 
323     if((updvals = malloc( sizeof(char*) * (rrd.stat_head->ds_cnt+1)))==NULL){
324         rrd_set_error("allocating updvals pointer array");
325         rrd_free(&rrd);
326         fclose(rrd_file);
327         return(-1);
328     }
330     if ((pdp_temp = malloc(sizeof(rrd_value_t)
331                            *rrd.stat_head->ds_cnt))==NULL){
332         rrd_set_error("allocating pdp_temp ...");
333         free(updvals);
334         rrd_free(&rrd);
335         fclose(rrd_file);
336         return(-1);
337     }
339     if ((tmpl_idx = malloc(sizeof(unsigned long)
340                            *(rrd.stat_head->ds_cnt+1)))==NULL){
341         rrd_set_error("allocating tmpl_idx ...");
342         free(pdp_temp);
343         free(updvals);
344         rrd_free(&rrd);
345         fclose(rrd_file);
346         return(-1);
347     }
348     /* initialize tmplt redirector */
349     /* default config example (assume DS 1 is a CDEF DS)
350        tmpl_idx[0] -> 0; (time)
351        tmpl_idx[1] -> 1; (DS 0)
352        tmpl_idx[2] -> 3; (DS 2)
353        tmpl_idx[3] -> 4; (DS 3) */
354     tmpl_idx[0] = 0; /* time */
355     for (i = 1, ii = 1 ; i <= rrd.stat_head->ds_cnt ; i++) 
356         {
357            if (dst_conv(rrd.ds_def[i-1].dst) != DST_CDEF)
358               tmpl_idx[ii++]=i;
359         }
360     tmpl_cnt= ii;
362     if (tmplt) {
363         /* we should work on a writeable copy here */
364         char *dsname;
365         unsigned int tmpl_len;
366         char *tmplt_copy = strdup(tmplt);
367         dsname = tmplt_copy;
368         tmpl_cnt = 1; /* the first entry is the time */
369         tmpl_len = strlen(tmplt_copy);
370         for(i=0;i<=tmpl_len ;i++) {
371             if (tmplt_copy[i] == ':' || tmplt_copy[i] == '\0') {
372                 tmplt_copy[i] = '\0';
373                 if (tmpl_cnt>rrd.stat_head->ds_cnt){
374                     rrd_set_error("tmplt contains more DS definitions than RRD");
375                     free(updvals); free(pdp_temp);
376                     free(tmpl_idx); rrd_free(&rrd);
377                     fclose(rrd_file); return(-1);
378                 }
379                 if ((tmpl_idx[tmpl_cnt++] = ds_match(&rrd,dsname)) == -1){
380                     rrd_set_error("unknown DS name '%s'",dsname);
381                     free(updvals); free(pdp_temp);
382                     free(tmplt_copy);
383                     free(tmpl_idx); rrd_free(&rrd);
384                     fclose(rrd_file); return(-1);
385                 } else {
386                   /* the first element is always the time */
387                   tmpl_idx[tmpl_cnt-1]++; 
388                   /* go to the next entry on the tmplt_copy */
389                   dsname = &tmplt_copy[i+1];
390                   /* fix the damage we did before */
391                   if (i<tmpl_len) {
392                      tmplt_copy[i]=':';
393                   } 
395                 }
396             }       
397         }
398         free(tmplt_copy);
399     }
400     if ((pdp_new = malloc(sizeof(rrd_value_t)
401                           *rrd.stat_head->ds_cnt))==NULL){
402         rrd_set_error("allocating pdp_new ...");
403         free(updvals);
404         free(pdp_temp);
405         free(tmpl_idx);
406         rrd_free(&rrd);
407         fclose(rrd_file);
408         return(-1);
409     }
411 #ifdef HAVE_MMAP
412     rrd_mmaped_file = mmap(0, 
413                         rrd_filesize, 
414                         PROT_READ | PROT_WRITE, 
415                         MAP_SHARED, 
416                         fileno(rrd_file), 
417                         0);
418     if (rrd_mmaped_file == MAP_FAILED) {
419         rrd_set_error("error mmapping file %s", filename);
420         free(updvals);
421         free(pdp_temp);
422         free(tmpl_idx);
423         rrd_free(&rrd);
424         fclose(rrd_file);
425         return(-1);
426     }
427 #ifdef USE_MADVISE
428     /* when we use mmaping we tell the kernel the mmap equivalent
429        of POSIX_FADV_RANDOM */
430     madvise(rrd_mmaped_file,rrd_filesize,MADV_RANDOM);
431 #endif
432 #endif
433     /* loop through the arguments. */
434     for(arg_i=0; arg_i<argc;arg_i++) {
435         char *stepper = strdup(argv[arg_i]);
436         char *step_start = stepper;
437         char *p;
438         char *parsetime_error = NULL;
439         enum {atstyle, normal} timesyntax;
440         struct rrd_time_value ds_tv;
441         if (stepper == NULL){
442                 rrd_set_error("failed duplication argv entry");
443                 free(step_start);
444                 free(updvals);
445                 free(pdp_temp);  
446                 free(tmpl_idx);
447                 rrd_free(&rrd);
448 #ifdef HAVE_MMAP
449                 munmap(rrd_mmaped_file, rrd_filesize);
450 #endif
451                 fclose(rrd_file);
452                 return(-1);
453          }
454         /* initialize all ds input to unknown except the first one
455            which has always got to be set */
456         for(ii=1;ii<=rrd.stat_head->ds_cnt;ii++) updvals[ii] = "U";
457         updvals[0]=stepper;
458         /* separate all ds elements; first must be examined separately
459            due to alternate time syntax */
460         if ((p=strchr(stepper,'@'))!=NULL) {
461             timesyntax = atstyle;
462             *p = '\0';
463             stepper = p+1;
464         } else if ((p=strchr(stepper,':'))!=NULL) {
465             timesyntax = normal;
466             *p = '\0';
467             stepper = p+1;
468         } else {
469             rrd_set_error("expected timestamp not found in data source from %s",
470                           argv[arg_i]);
471             free(step_start);
472             break;
473         }
474         ii=1;
475         updvals[tmpl_idx[ii]] = stepper;
476         while (*stepper) {
477             if (*stepper == ':') {
478                 *stepper = '\0';
479                 ii++;
480                 if (ii<tmpl_cnt){                   
481                     updvals[tmpl_idx[ii]] = stepper+1;
482                 }
483             }
484             stepper++;
485         }
487         if (ii != tmpl_cnt-1) {
488             rrd_set_error("expected %lu data source readings (got %lu) from %s",
489                           tmpl_cnt-1, ii, argv[arg_i]);
490             free(step_start);
491             break;
492         }
493         
494         /* get the time from the reading ... handle N */
495         if (timesyntax == atstyle) {
496             if ((parsetime_error = parsetime(updvals[0], &ds_tv))) {
497                 rrd_set_error("ds time: %s: %s", updvals[0], parsetime_error );
498                 free(step_start);
499                 break;
500             }
501             if (ds_tv.type == RELATIVE_TO_END_TIME ||
502                 ds_tv.type == RELATIVE_TO_START_TIME) {
503                 rrd_set_error("specifying time relative to the 'start' "
504                               "or 'end' makes no sense here: %s",
505                               updvals[0]);
506                 free(step_start);
507                 break;
508             }
510             current_time = mktime(&ds_tv.tm) + ds_tv.offset;
511             current_time_usec = 0; /* FIXME: how to handle usecs here ? */
512             
513         } else if (strcmp(updvals[0],"N")==0){
514             gettimeofday(&tmp_time, 0);
515             normalize_time(&tmp_time);
516             current_time = tmp_time.tv_sec;
517             current_time_usec = tmp_time.tv_usec;
518         } else {
519             double tmp;
520             tmp = strtod(updvals[0], 0);
521             current_time = floor(tmp);
522             current_time_usec = (long)((tmp-(double)current_time) * 1000000.0);
523         }
524         /* dont do any correction for old version RRDs */
525         if(version < 3) 
526             current_time_usec = 0;
527         
528         if(current_time < rrd.live_head->last_up || 
529           (current_time == rrd.live_head->last_up && 
530            (long)current_time_usec <= (long)rrd.live_head->last_up_usec)) {
531             rrd_set_error("illegal attempt to update using time %ld when "
532                           "last update time is %ld (minimum one second step)",
533                           current_time, rrd.live_head->last_up);
534             free(step_start);
535             break;
536         }
537         
538         
539         /* seek to the beginning of the rra's */
540         if (rra_current != rra_begin) {
541 #ifndef HAVE_MMAP
542             if(fseek(rrd_file, rra_begin, SEEK_SET) != 0) {
543                 rrd_set_error("seek error in rrd");
544                 free(step_start);
545                 break;
546             }
547 #endif
548             rra_current = rra_begin;
549         }
550         rra_start = rra_begin;
552         /* when was the current pdp started */
553         proc_pdp_age = rrd.live_head->last_up % rrd.stat_head->pdp_step;
554         proc_pdp_st = rrd.live_head->last_up - proc_pdp_age;
556         /* when did the last pdp_st occur */
557         occu_pdp_age = current_time % rrd.stat_head->pdp_step;
558         occu_pdp_st = current_time - occu_pdp_age;
560         /* interval = current_time - rrd.live_head->last_up; */
561         interval    = (double)(current_time - rrd.live_head->last_up) 
562                     + (double)((long)current_time_usec - (long)rrd.live_head->last_up_usec)/1000000.0;
564         if (occu_pdp_st > proc_pdp_st){
565             /* OK we passed the pdp_st moment*/
566             pre_int =  (long)occu_pdp_st - rrd.live_head->last_up; /* how much of the input data
567                                                               * occurred before the latest
568                                                               * pdp_st moment*/
569             pre_int -= ((double)rrd.live_head->last_up_usec)/1000000.0; /* adjust usecs */
570             post_int = occu_pdp_age;                         /* how much after it */
571             post_int += ((double)current_time_usec)/1000000.0;  /* adjust usecs */
572         } else {
573             pre_int = interval;
574             post_int = 0;
575         }
577 #ifdef DEBUG
578         printf(
579                "proc_pdp_age %lu\t"
580                "proc_pdp_st %lu\t" 
581                "occu_pfp_age %lu\t" 
582                "occu_pdp_st %lu\t"
583                "int %lf\t"
584                "pre_int %lf\t"
585                "post_int %lf\n", proc_pdp_age, proc_pdp_st, 
586                 occu_pdp_age, occu_pdp_st,
587                interval, pre_int, post_int);
588 #endif
589     
590         /* process the data sources and update the pdp_prep 
591          * area accordingly */
592         for(i=0;i<rrd.stat_head->ds_cnt;i++){
593             enum dst_en dst_idx;
594             dst_idx= dst_conv(rrd.ds_def[i].dst);
596             /* make sure we do not build diffs with old last_ds values */
597             if(rrd.ds_def[i].par[DS_mrhb_cnt].u_cnt < interval) {
598                 strncpy(rrd.pdp_prep[i].last_ds,"U",LAST_DS_LEN-1);
599                 rrd.pdp_prep[i].last_ds[LAST_DS_LEN-1]='\0';
600             }
602             /* NOTE: DST_CDEF should never enter this if block, because
603              * updvals[i+1][0] is initialized to 'U'; unless the caller
604              * accidently specified a value for the DST_CDEF. To handle 
605               * this case, an extra check is required. */
607             if((updvals[i+1][0] != 'U') &&
608                    (dst_idx != DST_CDEF) &&
609                rrd.ds_def[i].par[DS_mrhb_cnt].u_cnt >= interval) {
610                double rate = DNAN;
611                /* the data source type defines how to process the data */
612                 /* pdp_new contains rate * time ... eg the bytes
613                  * transferred during the interval. Doing it this way saves
614                  * a lot of math operations */
615                 
617                 switch(dst_idx){
618                 case DST_COUNTER:
619                 case DST_DERIVE:
620             for(ii=0;updvals[i+1][ii] != '\0';ii++){
621                  if((updvals[i+1][ii] < '0' || updvals[i+1][ii] > '9') && (ii != 0 && updvals[i+1][ii] != '-')){
622                       rrd_set_error("not a simple integer: '%s'",updvals[i+1]);
623                       break;
624                  }
625             }
626             if (rrd_test_error()){
627                    break;
628             }
629                     if(rrd.pdp_prep[i].last_ds[0] != 'U'){
630                        pdp_new[i]= rrd_diff(updvals[i+1],rrd.pdp_prep[i].last_ds);
631                        if(dst_idx == DST_COUNTER) {
632                           /* simple overflow catcher suggested by Andres Kroonmaa */
633                           /* this will fail terribly for non 32 or 64 bit counters ... */
634                           /* are there any others in SNMP land ? */
635                           if (pdp_new[i] < (double)0.0 ) 
636                             pdp_new[i] += (double)4294967296.0 ;  /* 2^32 */
637                           if (pdp_new[i] < (double)0.0 ) 
638                             pdp_new[i] += (double)18446744069414584320.0; /* 2^64-2^32 */;
639                        }
640                        rate = pdp_new[i] / interval;
641                     }
642                    else {
643                      pdp_new[i]= DNAN;          
644                    }
645                    break;
646                 case DST_ABSOLUTE:
647                     errno = 0;
648                     pdp_new[i] = strtod(updvals[i+1],&endptr);
649                     if (errno > 0){
650                         rrd_set_error("converting  '%s' to float: %s",updvals[i+1],rrd_strerror(errno));
651                         break;
652                     };
653                     if (endptr[0] != '\0'){
654                         rrd_set_error("conversion of '%s' to float not complete: tail '%s'",updvals[i+1],endptr);
655                         break;
656                     }
657                     rate = pdp_new[i] / interval;                 
658                     break;
659                 case DST_GAUGE:
660                     errno = 0;
661                     pdp_new[i] = strtod(updvals[i+1],&endptr) * interval;
662                     if (errno > 0){
663                         rrd_set_error("converting  '%s' to float: %s",updvals[i+1],rrd_strerror(errno));
664                         break;
665                     };
666                     if (endptr[0] != '\0'){
667                         rrd_set_error("conversion of '%s' to float not complete: tail '%s'",updvals[i+1],endptr);
668                         break;
669                     }
670                     rate = pdp_new[i] / interval;                  
671                     break;
672                 default:
673                     rrd_set_error("rrd contains unknown DS type : '%s'",
674                                   rrd.ds_def[i].dst);
675                     break;
676                 }
677                 /* break out of this for loop if the error string is set */
678                 if (rrd_test_error()){
679                     break;
680                 }
681                /* make sure pdp_temp is neither too large or too small
682                 * if any of these occur it becomes unknown ...
683                 * sorry folks ... */
684                if ( ! isnan(rate) && 
685                     (( ! isnan(rrd.ds_def[i].par[DS_max_val].u_val) &&
686                          rate > rrd.ds_def[i].par[DS_max_val].u_val ) ||     
687                     ( ! isnan(rrd.ds_def[i].par[DS_min_val].u_val) &&
688                         rate < rrd.ds_def[i].par[DS_min_val].u_val ))){
689                   pdp_new[i] = DNAN;
690                }               
691             } else {
692                 /* no news is news all the same */
693                 pdp_new[i] = DNAN;
694             }
696             
697             /* make a copy of the command line argument for the next run */
698 #ifdef DEBUG
699             fprintf(stderr,
700                     "prep ds[%lu]\t"
701                     "last_arg '%s'\t"
702                     "this_arg '%s'\t"
703                     "pdp_new %10.2f\n",
704                     i,
705                     rrd.pdp_prep[i].last_ds,
706                     updvals[i+1], pdp_new[i]);
707 #endif
708             strncpy(rrd.pdp_prep[i].last_ds, updvals[i+1],LAST_DS_LEN-1);
709             rrd.pdp_prep[i].last_ds[LAST_DS_LEN-1]='\0';
710         }
711         /* break out of the argument parsing loop if the error_string is set */
712         if (rrd_test_error()){
713             free(step_start);
714             break;
715         }
716         /* has a pdp_st moment occurred since the last run ? */
718         if (proc_pdp_st == occu_pdp_st){
719             /* no we have not passed a pdp_st moment. therefore update is simple */
721             for(i=0;i<rrd.stat_head->ds_cnt;i++){
722                 if(isnan(pdp_new[i])) {            
723                     /* this is not realy accurate if we use subsecond data arival time
724                        should have thought of it when going subsecond resolution ...
725                        sorry next format change we will have it! */
726                     rrd.pdp_prep[i].scratch[PDP_unkn_sec_cnt].u_cnt += floor(interval);          
727                 } else {
728                      if (isnan( rrd.pdp_prep[i].scratch[PDP_val].u_val )){
729                         rrd.pdp_prep[i].scratch[PDP_val].u_val= pdp_new[i];
730                      } else {
731                         rrd.pdp_prep[i].scratch[PDP_val].u_val+= pdp_new[i];
732                      }
733                 }
734 #ifdef DEBUG
735                 fprintf(stderr,
736                         "NO PDP  ds[%lu]\t"
737                         "value %10.2f\t"
738                         "unkn_sec %5lu\n",
739                         i,
740                         rrd.pdp_prep[i].scratch[PDP_val].u_val,
741                         rrd.pdp_prep[i].scratch[PDP_unkn_sec_cnt].u_cnt);
742 #endif
743             }   
744         } else {
745             /* an pdp_st has occurred. */
747             /* in pdp_prep[].scratch[PDP_val].u_val we have collected rate*seconds which 
748              * occurred up to the last run.        
749             pdp_new[] contains rate*seconds from the latest run.
750             pdp_temp[] will contain the rate for cdp */
752             for(i=0;i<rrd.stat_head->ds_cnt;i++){
753                 /* update pdp_prep to the current pdp_st. */
754                 double pre_unknown = 0.0;               
755                 if(isnan(pdp_new[i]))
756                     /* a final bit of unkonwn to be added bevore calculation
757                      * we use a tempaorary variable for this so that we 
758                      * don't have to turn integer lines before using the value */                
759                     pre_unknown = pre_int;
760                 else {
761                      if (isnan( rrd.pdp_prep[i].scratch[PDP_val].u_val )){
762                         rrd.pdp_prep[i].scratch[PDP_val].u_val=         pdp_new[i]/interval*pre_int;
763                      } else {
764                         rrd.pdp_prep[i].scratch[PDP_val].u_val+= pdp_new[i]/interval*pre_int;
765                      }
766                  }
767                 
769                 /* if too much of the pdp_prep is unknown we dump it */
770                 if ( 
771                     /* removed because this does not agree with the definition
772                        a heart beat can be unknown */
773                     /* (rrd.pdp_prep[i].scratch[PDP_unkn_sec_cnt].u_cnt 
774                      > rrd.ds_def[i].par[DS_mrhb_cnt].u_cnt) || */
775                     /* if the interval is larger thatn mrhb we get NAN */
776                     (interval > rrd.ds_def[i].par[DS_mrhb_cnt].u_cnt) ||
777                     (occu_pdp_st-proc_pdp_st <= 
778                      rrd.pdp_prep[i].scratch[PDP_unkn_sec_cnt].u_cnt)) {
779                     pdp_temp[i] = DNAN;
780                 } else {
781                     pdp_temp[i] = rrd.pdp_prep[i].scratch[PDP_val].u_val
782                         / ((double)(occu_pdp_st - proc_pdp_st
783                                     - rrd.pdp_prep[i].scratch[PDP_unkn_sec_cnt].u_cnt)
784                             -pre_unknown);
785                 }
787                 /* process CDEF data sources; remember each CDEF DS can
788                  * only reference other DS with a lower index number */
789             if (dst_conv(rrd.ds_def[i].dst) == DST_CDEF) {
790                    rpnp_t *rpnp;
791                    rpnp = rpn_expand((rpn_cdefds_t *) &(rrd.ds_def[i].par[DS_cdef]));
792                    /* substitue data values for OP_VARIABLE nodes */
793                    for (ii = 0; rpnp[ii].op != OP_END; ii++)
794                    {
795                           if (rpnp[ii].op == OP_VARIABLE) {
796                                  rpnp[ii].op = OP_NUMBER;
797                                  rpnp[ii].val =  pdp_temp[rpnp[ii].ptr];
798                           }
799                    }
800                    /* run the rpn calculator */
801                    if (rpn_calc(rpnp,&rpnstack,0,pdp_temp,i) == -1) {
802                           free(rpnp);
803                           break; /* exits the data sources pdp_temp loop */
804                    }
805                 }
806         
807                 /* make pdp_prep ready for the next run */
808                 if(isnan(pdp_new[i])){
809                     /* this is not realy accurate if we use subsecond data arival time
810                        should have thought of it when going subsecond resolution ...
811                        sorry next format change we will have it! */
812                     rrd.pdp_prep[i].scratch[PDP_unkn_sec_cnt].u_cnt = floor(post_int);
813                     rrd.pdp_prep[i].scratch[PDP_val].u_val = DNAN;
814                 } else {
815                     rrd.pdp_prep[i].scratch[PDP_unkn_sec_cnt].u_cnt = 0;
816                     rrd.pdp_prep[i].scratch[PDP_val].u_val = 
817                         pdp_new[i]/interval*post_int;
818                 }
820 #ifdef DEBUG
821                 fprintf(stderr,
822                         "PDP UPD ds[%lu]\t"
823                         "pdp_temp %10.2f\t"
824                         "new_prep %10.2f\t"
825                         "new_unkn_sec %5lu\n",
826                         i, pdp_temp[i],
827                         rrd.pdp_prep[i].scratch[PDP_val].u_val,
828                         rrd.pdp_prep[i].scratch[PDP_unkn_sec_cnt].u_cnt);
829 #endif
830             }
832                 /* if there were errors during the last loop, bail out here */
833             if (rrd_test_error()){
834                free(step_start);
835                break;
836             }
838                 /* compute the number of elapsed pdp_st moments */
839                 elapsed_pdp_st = (occu_pdp_st - proc_pdp_st) / rrd.stat_head -> pdp_step;
840 #ifdef DEBUG
841                 fprintf(stderr,"elapsed PDP steps: %lu\n", elapsed_pdp_st);
842 #endif
843                 if (rra_step_cnt == NULL)
844                 {
845                    rra_step_cnt = (unsigned long *) 
846                           malloc((rrd.stat_head->rra_cnt)* sizeof(unsigned long));
847                 }
849             for(i = 0, rra_start = rra_begin;
850                 i < rrd.stat_head->rra_cnt;
851             rra_start += rrd.rra_def[i].row_cnt * rrd.stat_head -> ds_cnt * sizeof(rrd_value_t),
852                 i++)
853                 {
854                 current_cf = cf_conv(rrd.rra_def[i].cf_nam);
855                 start_pdp_offset = rrd.rra_def[i].pdp_cnt -
856                    (proc_pdp_st / rrd.stat_head -> pdp_step) % rrd.rra_def[i].pdp_cnt;
857         if (start_pdp_offset <= elapsed_pdp_st) {
858            rra_step_cnt[i] = (elapsed_pdp_st - start_pdp_offset) / 
859                       rrd.rra_def[i].pdp_cnt + 1;
860             } else {
861                    rra_step_cnt[i] = 0;
862                 }
864                 if (current_cf == CF_SEASONAL || current_cf == CF_DEVSEASONAL) 
865                 {
866                    /* If this is a bulk update, we need to skip ahead in the seasonal
867                         * arrays so that they will be correct for the next observed value;
868                         * note that for the bulk update itself, no update will occur to
869                         * DEVSEASONAL or SEASONAL; futhermore, HWPREDICT and DEVPREDICT will
870                         * be set to DNAN. */
871            if (rra_step_cnt[i] > 2) 
872                    {
873                           /* skip update by resetting rra_step_cnt[i],
874                            * note that this is not data source specific; this is due
875                            * to the bulk update, not a DNAN value for the specific data
876                            * source. */
877                           rra_step_cnt[i] = 0;
878               lookup_seasonal(&rrd,i,rra_start,rrd_file,elapsed_pdp_st, 
879                              &last_seasonal_coef);
880                       lookup_seasonal(&rrd,i,rra_start,rrd_file,elapsed_pdp_st + 1,
881                              &seasonal_coef);
882                    }
883                 
884                   /* periodically run a smoother for seasonal effects */
885                   /* Need to use first cdp parameter buffer to track
886                    * burnin (burnin requires a specific smoothing schedule).
887                    * The CDP_init_seasonal parameter is really an RRA level,
888                    * not a data source within RRA level parameter, but the rra_def
889                    * is read only for rrd_update (not flushed to disk). */
890                   iii = i*(rrd.stat_head -> ds_cnt);
891                   if (rrd.cdp_prep[iii].scratch[CDP_init_seasonal].u_cnt 
892                           <= BURNIN_CYCLES)
893                   {
894                      if (rrd.rra_ptr[i].cur_row + elapsed_pdp_st 
895                                  > rrd.rra_def[i].row_cnt - 1) {
896                            /* mark off one of the burnin cycles */
897                            ++(rrd.cdp_prep[iii].scratch[CDP_init_seasonal].u_cnt);
898                        schedule_smooth = 1;
899                          }  
900                   } else {
901                          /* someone has no doubt invented a trick to deal with this
902                           * wrap around, but at least this code is clear. */
903                          if (rrd.rra_def[i].par[RRA_seasonal_smooth_idx].u_cnt >
904                              rrd.rra_ptr[i].cur_row)
905                          {
906                                  /* here elapsed_pdp_st = rra_step_cnt[i] because of 1-1
907                                   * mapping between PDP and CDP */
908                                  if (rrd.rra_ptr[i].cur_row + elapsed_pdp_st
909                                         >= rrd.rra_def[i].par[RRA_seasonal_smooth_idx].u_cnt)
910                                  {
911 #ifdef DEBUG
912                                         fprintf(stderr,
913                                         "schedule_smooth 1: cur_row %lu, elapsed_pdp_st %lu, smooth idx %lu\n",
914                     rrd.rra_ptr[i].cur_row, elapsed_pdp_st, 
915                                         rrd.rra_def[i].par[RRA_seasonal_smooth_idx].u_cnt);
916 #endif
917                                         schedule_smooth = 1;
918                                  }
919              } else {
920                                  /* can't rely on negative numbers because we are working with
921                                   * unsigned values */
922                                  /* Don't need modulus here. If we've wrapped more than once, only
923                                   * one smooth is executed at the end. */
924                                  if (rrd.rra_ptr[i].cur_row + elapsed_pdp_st >= rrd.rra_def[i].row_cnt
925                                         && rrd.rra_ptr[i].cur_row + elapsed_pdp_st - rrd.rra_def[i].row_cnt
926                                         >= rrd.rra_def[i].par[RRA_seasonal_smooth_idx].u_cnt)
927                                  {
928 #ifdef DEBUG
929                                         fprintf(stderr,
930                                         "schedule_smooth 2: cur_row %lu, elapsed_pdp_st %lu, smooth idx %lu\n",
931                     rrd.rra_ptr[i].cur_row, elapsed_pdp_st, 
932                                         rrd.rra_def[i].par[RRA_seasonal_smooth_idx].u_cnt);
933 #endif
934                                         schedule_smooth = 1;
935                                  }
936                          }
937                   }
939               rra_current = ftell(rrd_file); 
940                 } /* if cf is DEVSEASONAL or SEASONAL */
942         if (rrd_test_error()) break;
944                     /* update CDP_PREP areas */
945                     /* loop over data soures within each RRA */
946                     for(ii = 0;
947                         ii < rrd.stat_head->ds_cnt;
948                         ii++)
949                         {
950                         
951                         /* iii indexes the CDP prep area for this data source within the RRA */
952                         iii=i*rrd.stat_head->ds_cnt+ii;
954                         if (rrd.rra_def[i].pdp_cnt > 1) {
955                           
956                            if (rra_step_cnt[i] > 0) {
957                            /* If we are in this block, as least 1 CDP value will be written to
958                                 * disk, this is the CDP_primary_val entry. If more than 1 value needs
959                                 * to be written, then the "fill in" value is the CDP_secondary_val
960                                 * entry. */
961                                   if (isnan(pdp_temp[ii]))
962                   {
963                                          rrd.cdp_prep[iii].scratch[CDP_unkn_pdp_cnt].u_cnt += start_pdp_offset;
964                                          rrd.cdp_prep[iii].scratch[CDP_secondary_val].u_val = DNAN;
965                                   } else {
966                                          /* CDP_secondary value is the RRA "fill in" value for intermediary
967                                           * CDP data entries. No matter the CF, the value is the same because
968                                           * the average, max, min, and last of a list of identical values is
969                                           * the same, namely, the value itself. */
970                                          rrd.cdp_prep[iii].scratch[CDP_secondary_val].u_val = pdp_temp[ii];
971                                   }
972                      
973                                   if (rrd.cdp_prep[iii].scratch[CDP_unkn_pdp_cnt].u_cnt
974                                       > rrd.rra_def[i].pdp_cnt*
975                                       rrd.rra_def[i].par[RRA_cdp_xff_val].u_val)
976                                   {
977                                          rrd.cdp_prep[iii].scratch[CDP_primary_val].u_val = DNAN;
978                                          /* initialize carry over */
979                                          if (current_cf == CF_AVERAGE) {
980                                                    if (isnan(pdp_temp[ii])) { 
981                                                           rrd.cdp_prep[iii].scratch[CDP_val].u_val = DNAN;
982                                                    } else {
983                                                           rrd.cdp_prep[iii].scratch[CDP_val].u_val = pdp_temp[ii] *
984                                                                  ((elapsed_pdp_st - start_pdp_offset) % rrd.rra_def[i].pdp_cnt);
985                                                    }
986                                          } else {
987                                                 rrd.cdp_prep[iii].scratch[CDP_val].u_val = pdp_temp[ii];
988                                          }
989                                   } else {
990                                          rrd_value_t cum_val, cur_val; 
991                                      switch (current_cf) {
992                                                 case CF_AVERAGE:
993                                                   cum_val = IFDNAN(rrd.cdp_prep[iii].scratch[CDP_val].u_val, 0.0);
994                                                   cur_val = IFDNAN(pdp_temp[ii],0.0);
995                           rrd.cdp_prep[iii].scratch[CDP_primary_val].u_val =
996                                                (cum_val + cur_val * start_pdp_offset) /
997                                            (rrd.rra_def[i].pdp_cnt
998                                                -rrd.cdp_prep[iii].scratch[CDP_unkn_pdp_cnt].u_cnt);
999                                                    /* initialize carry over value */
1000                                                    if (isnan(pdp_temp[ii])) { 
1001                                                           rrd.cdp_prep[iii].scratch[CDP_val].u_val = DNAN;
1002                                                    } else {
1003                                                           rrd.cdp_prep[iii].scratch[CDP_val].u_val = pdp_temp[ii] *
1004                                                                  ((elapsed_pdp_st - start_pdp_offset) % rrd.rra_def[i].pdp_cnt);
1005                                                    }
1006                                                    break;
1007                                                 case CF_MAXIMUM:
1008                                                   cum_val = IFDNAN(rrd.cdp_prep[iii].scratch[CDP_val].u_val, -DINF);
1009                                                   cur_val = IFDNAN(pdp_temp[ii],-DINF);
1010 #ifdef DEBUG
1011                                                   if (isnan(rrd.cdp_prep[iii].scratch[CDP_val].u_val) &&
1012                                                           isnan(pdp_temp[ii])) {
1013                                                      fprintf(stderr,
1014                                                                 "RRA %lu, DS %lu, both CDP_val and pdp_temp are DNAN!",
1015                                                                 i,ii);
1016                                                          exit(-1);
1017                                                   }
1018 #endif
1019                                                   if (cur_val > cum_val)
1020                                                          rrd.cdp_prep[iii].scratch[CDP_primary_val].u_val = cur_val;
1021                                                   else
1022                                                          rrd.cdp_prep[iii].scratch[CDP_primary_val].u_val = cum_val;
1023                                                   /* initialize carry over value */
1024                                                   rrd.cdp_prep[iii].scratch[CDP_val].u_val = pdp_temp[ii];
1025                                                   break;
1026                                                 case CF_MINIMUM:
1027                                                   cum_val = IFDNAN(rrd.cdp_prep[iii].scratch[CDP_val].u_val, DINF);
1028                                                   cur_val = IFDNAN(pdp_temp[ii],DINF);
1029 #ifdef DEBUG
1030                                                   if (isnan(rrd.cdp_prep[iii].scratch[CDP_val].u_val) &&
1031                                                           isnan(pdp_temp[ii])) {
1032                                                      fprintf(stderr,
1033                                                                 "RRA %lu, DS %lu, both CDP_val and pdp_temp are DNAN!",
1034                                                                 i,ii);
1035                                                          exit(-1);
1036                                                   }
1037 #endif
1038                                                   if (cur_val < cum_val)
1039                                                          rrd.cdp_prep[iii].scratch[CDP_primary_val].u_val = cur_val;
1040                                                   else
1041                                                          rrd.cdp_prep[iii].scratch[CDP_primary_val].u_val = cum_val;
1042                                                   /* initialize carry over value */
1043                                                   rrd.cdp_prep[iii].scratch[CDP_val].u_val = pdp_temp[ii];
1044                                                   break;
1045                                                 case CF_LAST:
1046                                                 default:
1047                                                    rrd.cdp_prep[iii].scratch[CDP_primary_val].u_val = pdp_temp[ii];
1048                                                    /* initialize carry over value */
1049                                                    rrd.cdp_prep[iii].scratch[CDP_val].u_val = pdp_temp[ii];
1050                                                 break;
1051                                          }
1052                                   } /* endif meets xff value requirement for a valid value */
1053                                   /* initialize carry over CDP_unkn_pdp_cnt, this must after CDP_primary_val
1054                                    * is set because CDP_unkn_pdp_cnt is required to compute that value. */
1055                                   if (isnan(pdp_temp[ii]))
1056                                          rrd.cdp_prep[iii].scratch[CDP_unkn_pdp_cnt].u_cnt = 
1057                                                 (elapsed_pdp_st - start_pdp_offset) % rrd.rra_def[i].pdp_cnt;
1058                                   else
1059                                          rrd.cdp_prep[iii].scratch[CDP_unkn_pdp_cnt].u_cnt = 0;
1060                } else  /* rra_step_cnt[i]  == 0 */
1061                            {
1062 #ifdef DEBUG
1063                                   if (isnan(rrd.cdp_prep[iii].scratch[CDP_val].u_val)) {
1064                                   fprintf(stderr,"schedule CDP_val update, RRA %lu DS %lu, DNAN\n",
1065                                          i,ii);
1066                                   } else {
1067                                   fprintf(stderr,"schedule CDP_val update, RRA %lu DS %lu, %10.2f\n",
1068                                          i,ii,rrd.cdp_prep[iii].scratch[CDP_val].u_val);
1069                                   }
1070 #endif
1071                                   if (isnan(pdp_temp[ii])) {
1072                                  rrd.cdp_prep[iii].scratch[CDP_unkn_pdp_cnt].u_cnt += elapsed_pdp_st;
1073                                   } else if (isnan(rrd.cdp_prep[iii].scratch[CDP_val].u_val))
1074                                   {
1075                                          if (current_cf == CF_AVERAGE) {
1076                                             rrd.cdp_prep[iii].scratch[CDP_val].u_val = pdp_temp[ii] *
1077                                                    elapsed_pdp_st;
1078                                          } else {
1079                                             rrd.cdp_prep[iii].scratch[CDP_val].u_val = pdp_temp[ii];
1080                                          }
1081 #ifdef DEBUG
1082                                          fprintf(stderr,"Initialize CDP_val for RRA %lu DS %lu: %10.2f\n",
1083                                             i,ii,rrd.cdp_prep[iii].scratch[CDP_val].u_val);
1084 #endif
1085                                   } else {
1086                                          switch (current_cf) {
1087                                          case CF_AVERAGE:
1088                                             rrd.cdp_prep[iii].scratch[CDP_val].u_val += pdp_temp[ii] *
1089                                                    elapsed_pdp_st;
1090                                                 break;
1091                                          case CF_MINIMUM:
1092                                                 if (pdp_temp[ii] < rrd.cdp_prep[iii].scratch[CDP_val].u_val)
1093                                                    rrd.cdp_prep[iii].scratch[CDP_val].u_val = pdp_temp[ii];
1094                                                 break; 
1095                                          case CF_MAXIMUM:
1096                                                 if (pdp_temp[ii] > rrd.cdp_prep[iii].scratch[CDP_val].u_val)
1097                                                    rrd.cdp_prep[iii].scratch[CDP_val].u_val = pdp_temp[ii];
1098                                                 break; 
1099                                          case CF_LAST:
1100                                          default:
1101                                                 rrd.cdp_prep[iii].scratch[CDP_val].u_val = pdp_temp[ii];
1102                                                 break;
1103                                          }
1104                                   }
1105                            }
1106                         } else { /* rrd.rra_def[i].pdp_cnt == 1 */
1107                            if (elapsed_pdp_st > 2)
1108                            {
1109                                    switch (current_cf) {
1110                                    case CF_AVERAGE:
1111                                    default:
1112                                   rrd.cdp_prep[iii].scratch[CDP_primary_val].u_val=pdp_temp[ii];
1113                                   rrd.cdp_prep[iii].scratch[CDP_secondary_val].u_val=pdp_temp[ii];
1114                                           break;
1115                    case CF_SEASONAL:
1116                                    case CF_DEVSEASONAL:
1117                                           /* need to update cached seasonal values, so they are consistent
1118                                            * with the bulk update */
1119                       /* WARNING: code relies on the fact that CDP_hw_last_seasonal and
1120                                            * CDP_last_deviation are the same. */
1121                       rrd.cdp_prep[iii].scratch[CDP_hw_last_seasonal].u_val =
1122                                                  last_seasonal_coef[ii];
1123                                           rrd.cdp_prep[iii].scratch[CDP_hw_seasonal].u_val =
1124                                                  seasonal_coef[ii];
1125                                           break;
1126                    case CF_HWPREDICT:
1127                                           /* need to update the null_count and last_null_count.
1128                                            * even do this for non-DNAN pdp_temp because the
1129                                            * algorithm is not learning from batch updates. */
1130                                           rrd.cdp_prep[iii].scratch[CDP_null_count].u_cnt += 
1131                                                  elapsed_pdp_st;
1132                                           rrd.cdp_prep[iii].scratch[CDP_last_null_count].u_cnt += 
1133                                                  elapsed_pdp_st - 1;
1134                                           /* fall through */
1135                                    case CF_DEVPREDICT:
1136                                   rrd.cdp_prep[iii].scratch[CDP_primary_val].u_val = DNAN;
1137                                   rrd.cdp_prep[iii].scratch[CDP_secondary_val].u_val = DNAN;
1138                                           break;
1139                    case CF_FAILURES:
1140                                           /* do not count missed bulk values as failures */
1141                                   rrd.cdp_prep[iii].scratch[CDP_primary_val].u_val = 0;
1142                                   rrd.cdp_prep[iii].scratch[CDP_secondary_val].u_val = 0;
1143                                           /* need to reset violations buffer.
1144                                            * could do this more carefully, but for now, just
1145                                            * assume a bulk update wipes away all violations. */
1146                       erase_violations(&rrd, iii, i);
1147                                           break;
1148                                    }
1149                            } 
1150                         } /* endif rrd.rra_def[i].pdp_cnt == 1 */
1152                         if (rrd_test_error()) break;
1154                         } /* endif data sources loop */
1155         } /* end RRA Loop */
1157                 /* this loop is only entered if elapsed_pdp_st < 3 */
1158                 for (j = elapsed_pdp_st, scratch_idx = CDP_primary_val; 
1159                          j > 0 && j < 3; j--, scratch_idx = CDP_secondary_val)
1160                 {
1161                for(i = 0, rra_start = rra_begin;
1162                    i < rrd.stat_head->rra_cnt;
1163                rra_start += rrd.rra_def[i].row_cnt * rrd.stat_head -> ds_cnt * sizeof(rrd_value_t),
1164                    i++)
1165                    {
1166                           if (rrd.rra_def[i].pdp_cnt > 1) continue;
1168                   current_cf = cf_conv(rrd.rra_def[i].cf_nam);
1169                           if (current_cf == CF_SEASONAL || current_cf == CF_DEVSEASONAL)
1170                           {
1171                          lookup_seasonal(&rrd,i,rra_start,rrd_file,
1172                                     elapsed_pdp_st + (scratch_idx == CDP_primary_val ? 1 : 2),
1173                                 &seasonal_coef);
1174                  rra_current = ftell(rrd_file);
1175                           }
1176                           if (rrd_test_error()) break;
1177                       /* loop over data soures within each RRA */
1178                       for(ii = 0;
1179                           ii < rrd.stat_head->ds_cnt;
1180                           ii++)
1181                           {
1182                              update_aberrant_CF(&rrd,pdp_temp[ii],current_cf,
1183                                         i*(rrd.stat_head->ds_cnt) + ii,i,ii,
1184                                     scratch_idx, seasonal_coef);
1185                           }
1186            } /* end RRA Loop */
1187                    if (rrd_test_error()) break;
1188             } /* end elapsed_pdp_st loop */
1190                 if (rrd_test_error()) break;
1192                 /* Ready to write to disk */
1193                 /* Move sequentially through the file, writing one RRA at a time.
1194                  * Note this architecture divorces the computation of CDP with
1195                  * flushing updated RRA entries to disk. */
1196             for(i = 0, rra_start = rra_begin;
1197                 i < rrd.stat_head->rra_cnt;
1198             rra_start += rrd.rra_def[i].row_cnt * rrd.stat_head -> ds_cnt * sizeof(rrd_value_t),
1199                 i++) {
1200                 /* is th5Aere anything to write for this RRA? If not, continue. */
1201         if (rra_step_cnt[i] == 0) continue;
1203                 /* write the first row */
1204 #ifdef DEBUG
1205         fprintf(stderr,"  -- RRA Preseek %ld\n",ftell(rrd_file));
1206 #endif
1207             rrd.rra_ptr[i].cur_row++;
1208             if (rrd.rra_ptr[i].cur_row >= rrd.rra_def[i].row_cnt)
1209                    rrd.rra_ptr[i].cur_row = 0; /* wrap around */
1210                 /* positition on the first row */
1211                 rra_pos_tmp = rra_start +
1212                    (rrd.stat_head->ds_cnt)*(rrd.rra_ptr[i].cur_row)*sizeof(rrd_value_t);
1213                 if(rra_pos_tmp != rra_current) {
1214 #ifndef HAVE_MMAP
1215                    if(fseek(rrd_file, rra_pos_tmp, SEEK_SET) != 0){
1216                       rrd_set_error("seek error in rrd");
1217                       break;
1218                    }
1219 #endif
1220                    rra_current = rra_pos_tmp;
1221                 }
1223 #ifdef DEBUG
1224             fprintf(stderr,"  -- RRA Postseek %ld\n",ftell(rrd_file));
1225 #endif
1226                 scratch_idx = CDP_primary_val;
1227                 if (pcdp_summary != NULL)
1228                 {
1229                    rra_time = (current_time - current_time 
1230                    % (rrd.rra_def[i].pdp_cnt*rrd.stat_head->pdp_step))
1231                    - ((rra_step_cnt[i]-1)*rrd.rra_def[i].pdp_cnt*rrd.stat_head->pdp_step);
1232                 }
1233 #ifdef HAVE_MMAP
1234                 pcdp_summary = write_RRA_row(&rrd, i, &rra_current, scratch_idx, rrd_file, 
1235                    pcdp_summary, &rra_time, rrd_mmaped_file);
1236 #else
1237                 pcdp_summary = write_RRA_row(&rrd, i, &rra_current, scratch_idx, rrd_file, 
1238                    pcdp_summary, &rra_time);
1239 #endif
1240                 if (rrd_test_error()) break;
1242                 /* write other rows of the bulk update, if any */
1243                 scratch_idx = CDP_secondary_val;
1244                for ( ; rra_step_cnt[i] > 1; rra_step_cnt[i]--)
1245                 {
1246                   if (++rrd.rra_ptr[i].cur_row == rrd.rra_def[i].row_cnt)
1247                    {
1248 #ifdef DEBUG
1249               fprintf(stderr,"Wraparound for RRA %s, %lu updates left\n",
1250                           rrd.rra_def[i].cf_nam, rra_step_cnt[i] - 1);
1251 #endif
1252                           /* wrap */
1253                           rrd.rra_ptr[i].cur_row = 0;
1254                           /* seek back to beginning of current rra */
1255                       if (fseek(rrd_file, rra_start, SEEK_SET) != 0)
1256                           {
1257                          rrd_set_error("seek error in rrd");
1258                          break;
1259                           }
1260 #ifdef DEBUG
1261                   fprintf(stderr,"  -- Wraparound Postseek %ld\n",ftell(rrd_file));
1262 #endif
1263                           rra_current = rra_start;
1264                    }
1265                    if (pcdp_summary != NULL)
1266                    {
1267                       rra_time = (current_time - current_time 
1268                       % (rrd.rra_def[i].pdp_cnt*rrd.stat_head->pdp_step))
1269                       - ((rra_step_cnt[i]-2)*rrd.rra_def[i].pdp_cnt*rrd.stat_head->pdp_step);
1270                    }
1271 #ifdef HAVE_MMAP
1272                    pcdp_summary = write_RRA_row(&rrd, i, &rra_current, scratch_idx, rrd_file,
1273                       pcdp_summary, &rra_time, rrd_mmaped_file);
1274 #else
1275                    pcdp_summary = write_RRA_row(&rrd, i, &rra_current, scratch_idx, rrd_file,
1276                       pcdp_summary, &rra_time);
1277 #endif
1278                 }
1279                 
1280                 if (rrd_test_error())
1281                   break;
1282                 } /* RRA LOOP */
1284             /* break out of the argument parsing loop if error_string is set */
1285             if (rrd_test_error()){
1286                    free(step_start);
1287                    break;
1288             } 
1289             
1290         } /* endif a pdp_st has occurred */ 
1291         rrd.live_head->last_up = current_time;
1292         rrd.live_head->last_up_usec = current_time_usec; 
1293         free(step_start);
1294     } /* function argument loop */
1296     if (seasonal_coef != NULL) free(seasonal_coef);
1297     if (last_seasonal_coef != NULL) free(last_seasonal_coef);
1298         if (rra_step_cnt != NULL) free(rra_step_cnt);
1299     rpnstack_free(&rpnstack);
1301 #ifdef HAVE_MMAP
1302     if (munmap(rrd_mmaped_file, rrd_filesize) == -1) {
1303             rrd_set_error("error writing(unmapping) file: %s", filename);
1304     }
1305 #endif    
1306     /* if we got here and if there is an error and if the file has not been
1307      * written to, then close things up and return. */
1308     if (rrd_test_error()) {
1309         free(updvals);
1310         free(tmpl_idx);
1311         rrd_free(&rrd);
1312         free(pdp_temp);
1313         free(pdp_new);
1314         fclose(rrd_file);
1315         return(-1);
1316     }
1318     /* aargh ... that was tough ... so many loops ... anyway, its done.
1319      * we just need to write back the live header portion now*/
1321     if (fseek(rrd_file, (sizeof(stat_head_t)
1322                          + sizeof(ds_def_t)*rrd.stat_head->ds_cnt 
1323                          + sizeof(rra_def_t)*rrd.stat_head->rra_cnt),
1324               SEEK_SET) != 0) {
1325         rrd_set_error("seek rrd for live header writeback");
1326         free(updvals);
1327         free(tmpl_idx);
1328         rrd_free(&rrd);
1329         free(pdp_temp);
1330         free(pdp_new);
1331         fclose(rrd_file);
1332         return(-1);
1333     }
1335     if(version >= 3) {
1336             if(fwrite( rrd.live_head,
1337                        sizeof(live_head_t), 1, rrd_file) != 1){
1338                 rrd_set_error("fwrite live_head to rrd");
1339                 free(updvals);
1340                 rrd_free(&rrd);
1341                 free(tmpl_idx);
1342                 free(pdp_temp);
1343                 free(pdp_new);
1344                 fclose(rrd_file);
1345                 return(-1);
1346             }
1347     }
1348     else {
1349             if(fwrite( &rrd.live_head->last_up,
1350                        sizeof(time_t), 1, rrd_file) != 1){
1351                 rrd_set_error("fwrite live_head to rrd");
1352                 free(updvals);
1353                 rrd_free(&rrd);
1354                 free(tmpl_idx);
1355                 free(pdp_temp);
1356                 free(pdp_new);
1357                 fclose(rrd_file);
1358                 return(-1);
1359             }
1360     }
1361             
1363     if(fwrite( rrd.pdp_prep,
1364                sizeof(pdp_prep_t),
1365                rrd.stat_head->ds_cnt, rrd_file) != rrd.stat_head->ds_cnt){
1366         rrd_set_error("ftwrite pdp_prep to rrd");
1367         free(updvals);
1368         rrd_free(&rrd);
1369         free(tmpl_idx);
1370         free(pdp_temp);
1371         free(pdp_new);
1372         fclose(rrd_file);
1373         return(-1);
1374     }
1376     if(fwrite( rrd.cdp_prep,
1377                sizeof(cdp_prep_t),
1378                rrd.stat_head->rra_cnt *rrd.stat_head->ds_cnt, rrd_file) 
1379        != rrd.stat_head->rra_cnt *rrd.stat_head->ds_cnt){
1381         rrd_set_error("ftwrite cdp_prep to rrd");
1382         free(updvals);
1383         free(tmpl_idx);
1384         rrd_free(&rrd);
1385         free(pdp_temp);
1386         free(pdp_new);
1387         fclose(rrd_file);
1388         return(-1);
1389     }
1391     if(fwrite( rrd.rra_ptr,
1392                sizeof(rra_ptr_t), 
1393                rrd.stat_head->rra_cnt,rrd_file) != rrd.stat_head->rra_cnt){
1394         rrd_set_error("fwrite rra_ptr to rrd");
1395         free(updvals);
1396         free(tmpl_idx);
1397         rrd_free(&rrd);
1398         free(pdp_temp);
1399         free(pdp_new);
1400         fclose(rrd_file);
1401         return(-1);
1402     }
1403     
1404     /* OK now close the files and free the memory */
1405     if(fclose(rrd_file) != 0){
1406         rrd_set_error("closing rrd");
1407         free(updvals);
1408         free(tmpl_idx);
1409         rrd_free(&rrd);
1410         free(pdp_temp);
1411         free(pdp_new);
1412         return(-1);
1413     }
1415     /* calling the smoothing code here guarantees at most
1416          * one smoothing operation per rrd_update call. Unfortunately,
1417          * it is possible with bulk updates, or a long-delayed update
1418          * for smoothing to occur off-schedule. This really isn't
1419          * critical except during the burning cycles. */
1420         if (schedule_smooth)
1421         {
1422           rrd_file = fopen(filename,"rb+");
1423           
1425           rra_start = rra_begin;
1426           for (i = 0; i < rrd.stat_head -> rra_cnt; ++i)
1427           {
1428             if (cf_conv(rrd.rra_def[i].cf_nam) == CF_DEVSEASONAL ||
1429                 cf_conv(rrd.rra_def[i].cf_nam) == CF_SEASONAL)
1430             {
1431 #ifdef DEBUG
1432               fprintf(stderr,"Running smoother for rra %ld\n",i);
1433 #endif
1434               apply_smoother(&rrd,i,rra_start,rrd_file);
1435               if (rrd_test_error())
1436                 break;
1437             }
1438             rra_start += rrd.rra_def[i].row_cnt
1439               *rrd.stat_head->ds_cnt*sizeof(rrd_value_t);
1440           }
1441           fclose(rrd_file);
1442         }
1443     rrd_free(&rrd);
1444     free(updvals);
1445     free(tmpl_idx);
1446     free(pdp_new);
1447     free(pdp_temp);
1448     return(0);
1451 /*
1452  * get exclusive lock to whole file.
1453  * lock gets removed when we close the file
1454  *
1455  * returns 0 on success
1456  */
1457 int
1458 LockRRD(FILE *rrdfile)
1460     int rrd_fd;         /* File descriptor for RRD */
1461     int rcstat;
1463     rrd_fd = fileno(rrdfile);
1465         {
1466 #if defined(_WIN32) && !defined(__CYGWIN__) && !defined(__CYGWIN32__)
1467     struct _stat st;
1469     if ( _fstat( rrd_fd, &st ) == 0 ) {
1470             rcstat = _locking ( rrd_fd, _LK_NBLCK, st.st_size );
1471     } else {
1472             rcstat = -1;
1473     }
1474 #else
1475     struct flock        lock;
1476     lock.l_type = F_WRLCK;    /* exclusive write lock */
1477     lock.l_len = 0;           /* whole file */
1478     lock.l_start = 0;         /* start of file */
1479     lock.l_whence = SEEK_SET;   /* end of file */
1481     rcstat = fcntl(rrd_fd, F_SETLK, &lock);
1482 #endif
1483         }
1485     return(rcstat);
1489 #ifdef HAVE_MMAP
1490 info_t
1491 *write_RRA_row (rrd_t *rrd, unsigned long rra_idx, unsigned long *rra_current,
1492                unsigned short CDP_scratch_idx, 
1493 #ifndef DEBUG
1494 FILE UNUSED(*rrd_file),
1495 #else
1496 FILE *rrd_file,
1497 #endif
1498                    info_t *pcdp_summary, time_t *rra_time, void *rrd_mmaped_file)
1499 #else
1500 info_t
1501 *write_RRA_row (rrd_t *rrd, unsigned long rra_idx, unsigned long *rra_current,
1502                unsigned short CDP_scratch_idx, FILE *rrd_file,
1503                    info_t *pcdp_summary, time_t *rra_time)
1504 #endif
1506    unsigned long ds_idx, cdp_idx;
1507    infoval iv;
1508   
1509    for (ds_idx = 0; ds_idx < rrd -> stat_head -> ds_cnt; ds_idx++)
1510    {
1511       /* compute the cdp index */
1512       cdp_idx =rra_idx * (rrd -> stat_head->ds_cnt) + ds_idx;
1513 #ifdef DEBUG
1514           fprintf(stderr,"  -- RRA WRITE VALUE %e, at %ld CF:%s\n",
1515              rrd -> cdp_prep[cdp_idx].scratch[CDP_scratch_idx].u_val,ftell(rrd_file),
1516              rrd -> rra_def[rra_idx].cf_nam);
1517 #endif 
1518       if (pcdp_summary != NULL)
1519           {
1520              iv.u_val = rrd -> cdp_prep[cdp_idx].scratch[CDP_scratch_idx].u_val;
1521              /* append info to the return hash */
1522                  pcdp_summary = info_push(pcdp_summary,
1523                  sprintf_alloc("[%d]RRA[%s][%lu]DS[%s]",
1524                  *rra_time, rrd->rra_def[rra_idx].cf_nam, 
1525                  rrd->rra_def[rra_idx].pdp_cnt, rrd->ds_def[ds_idx].ds_nam),
1526          RD_I_VAL, iv);
1527           }
1528 #ifdef HAVE_MMAP
1529           memcpy((char *)rrd_mmaped_file + *rra_current,
1530                           &(rrd -> cdp_prep[cdp_idx].scratch[CDP_scratch_idx].u_val),
1531                           sizeof(rrd_value_t));
1532 #else
1533           if(fwrite(&(rrd -> cdp_prep[cdp_idx].scratch[CDP_scratch_idx].u_val),
1534                  sizeof(rrd_value_t),1,rrd_file) != 1)
1535           { 
1536              rrd_set_error("writing rrd");
1537              return 0;
1538           }
1539 #endif
1540           *rra_current += sizeof(rrd_value_t);
1541         }
1542         return (pcdp_summary);