Code

support for <rect> tag (Bug 657289)
[inkscape.git] / share / extensions / dxf_outlines.py
index f5f9ce19f0c58ec578476defdb77486e88f4e549..9c0ec35573f4e084339f30bc0942642fa3058b1c 100755 (executable)
@@ -1,10 +1,16 @@
 #!/usr/bin/env python 
 '''
 Copyright (C) 2005,2007,2008 Aaron Spike, aaron@ekips.org
-Copyright (C) 2008 Alvin Penner, penner@vaxxine.com
+Copyright (C) 2008,2010 Alvin Penner, penner@vaxxine.com
 
 - template dxf_outlines.dxf added Feb 2008 by Alvin Penner
-- ROBO-Master output option added Aug 2008 by Alvin Penner
+- ROBO-Master output option added Aug 2008
+- ROBO-Master multispline output added Sept 2008
+- LWPOLYLINE output modification added Dec 2008
+- toggle between LINE/LWPOLYLINE added Jan 2010
+- support for transform elements added July 2010
+- support for layers added July 2010
+- support for rectangle added Dec 2010
 
 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
@@ -20,14 +26,16 @@ You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 '''
-import inkex, simplepath, cubicsuperpath, dxf_templates, math
+import inkex, simplestyle, simpletransform, cubicsuperpath, coloreffect, dxf_templates, math
+import gettext
+_ = gettext.gettext
 
 try:
     from numpy import *
     from numpy.linalg import solve
 except:
     inkex.errormsg(_("Failed to import the numpy or numpy.linalg modules. These modules are required by this extension. Please install them and try again."))
-    sys.exit()
+    inkex.sys.exit()
 
 def pointdistance((x1,y1),(x2,y2)):
     return math.sqrt(((x2 - x1) ** 2) + ((y2 - y1) ** 2))
@@ -35,78 +43,181 @@ def pointdistance((x1,y1),(x2,y2)):
 def get_fit(u, csp, col):
     return (1-u)**3*csp[0][col] + 3*(1-u)**2*u*csp[1][col] + 3*(1-u)*u**2*csp[2][col] + u**3*csp[3][col]
 
+def get_matrix(u, i, j):
+    if j == i + 2:
+        return (u[i]-u[i-1])*(u[i]-u[i-1])/(u[i+2]-u[i-1])/(u[i+1]-u[i-1])
+    elif j == i + 1:
+        return ((u[i]-u[i-1])*(u[i+2]-u[i])/(u[i+2]-u[i-1]) + (u[i+1]-u[i])*(u[i]-u[i-2])/(u[i+1]-u[i-2]))/(u[i+1]-u[i-1])
+    elif j == i:
+        return (u[i+1]-u[i])*(u[i+1]-u[i])/(u[i+1]-u[i-2])/(u[i+1]-u[i-1])
+    else:
+        return 0
+
 class MyEffect(inkex.Effect):
     def __init__(self):
         inkex.Effect.__init__(self)
         self.OptionParser.add_option("-R", "--ROBO", action="store", type="string", dest="ROBO")
+        self.OptionParser.add_option("-P", "--POLY", action="store", type="string", dest="POLY")
+        self.OptionParser.add_option("--tab", action="store", type="string", dest="tab")
+        self.OptionParser.add_option("--inputhelp", action="store", type="string", dest="inputhelp")
         self.dxf = []
-        self.handle = 255                       # initiallize handle for DXF ENTITY
+        self.handle = 255                       # handle for DXF ENTITY
+        self.layers = ['0']
+        self.layer = '0'                        # mandatory layer
+        self.csp_old = [[0.0,0.0]]*4            # previous spline
+        self.d = array([0], float)              # knot vector
+        self.poly = [[0.0,0.0]]                 # LWPOLYLINE data
     def output(self):
         print ''.join(self.dxf)
     def dxf_add(self, str):
         self.dxf.append(str)
     def dxf_line(self,csp):
-        self.dxf_add("  0\nLINE\n  5\n%x\n100\nAcDbEntity\n  8\n0\n100\nAcDbLine\n" % self.handle)
+        self.handle += 1
+        self.dxf_add("  0\nLINE\n  5\n%x\n100\nAcDbEntity\n  8\n%s\n 62\n%d\n100\nAcDbLine\n" % (self.handle, self.layer, self.color))
         self.dxf_add(" 10\n%f\n 20\n%f\n 30\n0.0\n 11\n%f\n 21\n%f\n 31\n0.0\n" % (csp[0][0],csp[0][1],csp[1][0],csp[1][1]))
+    def LWPOLY_line(self,csp):
+        if (abs(csp[0][0] - self.poly[-1][0]) > .0001
+            or abs(csp[0][1] - self.poly[-1][1]) > .0001):
+            self.LWPOLY_output()                            # terminate current polyline
+            self.poly = [csp[0]]                            # initiallize new polyline
+            self.color_LWPOLY = self.color
+            self.layer_LWPOLY = self.layer
+        self.poly.append(csp[1])
+    def LWPOLY_output(self):
+        if len(self.poly) == 1:
+            return
+        self.handle += 1
+        self.dxf_add("  0\nLWPOLYLINE\n  5\n%x\n100\nAcDbEntity\n  8\n%s\n 62\n%d\n100\nAcDbPolyline\n 90\n%d\n 70\n0\n" % (self.handle, self.layer_LWPOLY, self.color_LWPOLY, len(self.poly)))
+        for i in range(len(self.poly)):
+            self.dxf_add(" 10\n%f\n 20\n%f\n 30\n0.0\n" % (self.poly[i][0],self.poly[i][1]))
     def dxf_spline(self,csp):
         knots = 8
         ctrls = 4
-        self.dxf_add("  0\nSPLINE\n  5\n%x\n100\nAcDbEntity\n  8\n0\n100\nAcDbSpline\n" % self.handle)
+        self.handle += 1
+        self.dxf_add("  0\nSPLINE\n  5\n%x\n100\nAcDbEntity\n  8\n%s\n 62\n%d\n100\nAcDbSpline\n" % (self.handle, self.layer, self.color))
         self.dxf_add(" 70\n8\n 71\n3\n 72\n%d\n 73\n%d\n 74\n0\n" % (knots, ctrls))
         for i in range(2):
-            for j in range(4): 
+            for j in range(4):
                 self.dxf_add(" 40\n%d\n" % i)
         for i in csp:
             self.dxf_add(" 10\n%f\n 20\n%f\n 30\n0.0\n" % (i[0],i[1]))
     def ROBO_spline(self,csp):
         # this spline has zero curvature at the endpoints, as in ROBO-Master
-        knots = 10
-        ctrls = 6
-        fits = 4
-        xfit = zeros((6), dtype=float64)
-        xfit[0] = csp[0][0]
-        xfit[1] = get_fit(.333, csp, 0)
-        xfit[2] = get_fit(.667, csp, 0)
-        xfit[3] = csp[3][0]
-        yfit = zeros((6), dtype=float64)
-        yfit[0] = csp[0][1]
-        yfit[1] = get_fit(.333, csp, 1)
-        yfit[2] = get_fit(.667, csp, 1)
-        yfit[3] = csp[3][1]
-        d1 = pointdistance((xfit[0],yfit[0]),(xfit[1],yfit[1]))
-        d2 = pointdistance((xfit[1],yfit[1]),(xfit[2],yfit[2]))
-        d3 = pointdistance((xfit[2],yfit[2]),(xfit[3],yfit[3]))
-        u1 = d1/(d1 + d2 + d3)
-        u2 = (d1 + d2)/(d1 + d2 + d3)
-        solmatrix = zeros((6,6), dtype=float64)
-        solmatrix[0,0] = 1
-        solmatrix[1,1] = (1 - u1/u2)**2
-        solmatrix[1,2] = (2*u2 - u1*u2 - u1)*u1/u2/u2
-        solmatrix[1,3] = u1*u1/u2
-        solmatrix[2,2] = (1 - u2)**2/(1 - u1)
-        solmatrix[2,3] = (2*u2 - u1*u2 - u1)*(1 - u2)/(1 - u1)/(1 - u1)
-        solmatrix[2,4] = ((u2 - u1)/(1 - u1))**2
-        solmatrix[3,5] = 1
-        solmatrix[4,0] = u2
-        solmatrix[4,1] = -u1 - u2
-        solmatrix[4,2] = u1
-        solmatrix[5,3] = 1 - u2
-        solmatrix[5,4] = u1 + u2 - 2
-        solmatrix[5,5] = 1 - u1
-        xctrl = solve(solmatrix, xfit)
-        yctrl = solve(solmatrix, yfit)
-        self.dxf_add("  0\nSPLINE\n  5\n%x\n100\nAcDbEntity\n  8\n0\n100\nAcDbSpline\n" % self.handle)
+        if (abs(csp[0][0] - self.csp_old[3][0]) > .0001
+            or abs(csp[0][1] - self.csp_old[3][1]) > .0001
+            or abs((csp[1][1]-csp[0][1])*(self.csp_old[3][0]-self.csp_old[2][0]) - (csp[1][0]-csp[0][0])*(self.csp_old[3][1]-self.csp_old[2][1])) > .001):
+            self.ROBO_output()                              # terminate current spline
+            self.xfit = array([csp[0][0]], float)           # initiallize new spline
+            self.yfit = array([csp[0][1]], float)
+            self.d = array([0], float)
+            self.color_ROBO = self.color
+            self.layer_ROBO = self.layer
+        self.xfit = concatenate((self.xfit, zeros((3))))    # append to current spline
+        self.yfit = concatenate((self.yfit, zeros((3))))
+        self.d = concatenate((self.d, zeros((3))))
+        for i in range(1, 4):
+            j = len(self.d) + i - 4
+            self.xfit[j] = get_fit(i/3.0, csp, 0)
+            self.yfit[j] = get_fit(i/3.0, csp, 1)
+            self.d[j] = self.d[j-1] + pointdistance((self.xfit[j-1],self.yfit[j-1]),(self.xfit[j],self.yfit[j]))
+        self.csp_old = csp
+    def ROBO_output(self):
+        if len(self.d) == 1:
+            return
+        fits = len(self.d)
+        ctrls = fits + 2
+        knots = ctrls + 4
+        self.xfit = concatenate((self.xfit, zeros((2))))    # pad with 2 endpoint constraints
+        self.yfit = concatenate((self.yfit, zeros((2))))    # pad with 2 endpoint constraints
+        self.d = concatenate((self.d, zeros((6))))          # pad with 3 duplicates at each end
+        self.d[fits+2] = self.d[fits+1] = self.d[fits] = self.d[fits-1]
+        solmatrix = zeros((ctrls,ctrls), dtype=float)
+        for i in range(fits):
+            solmatrix[i,i]   = get_matrix(self.d, i, i)
+            solmatrix[i,i+1] = get_matrix(self.d, i, i+1)
+            solmatrix[i,i+2] = get_matrix(self.d, i, i+2)
+        solmatrix[fits, 0]   = self.d[2]/self.d[fits-1]     # curvature at start = 0
+        solmatrix[fits, 1]   = -(self.d[1] + self.d[2])/self.d[fits-1]
+        solmatrix[fits, 2]   = self.d[1]/self.d[fits-1]
+        solmatrix[fits+1, fits-1] = (self.d[fits-1] - self.d[fits-2])/self.d[fits-1]   # curvature at end = 0
+        solmatrix[fits+1, fits]   = (self.d[fits-3] + self.d[fits-2] - 2*self.d[fits-1])/self.d[fits-1]
+        solmatrix[fits+1, fits+1] = (self.d[fits-1] - self.d[fits-3])/self.d[fits-1]
+        xctrl = solve(solmatrix, self.xfit)
+        yctrl = solve(solmatrix, self.yfit)
+        self.handle += 1
+        self.dxf_add("  0\nSPLINE\n  5\n%x\n100\nAcDbEntity\n  8\n%s\n 62\n%d\n100\nAcDbSpline\n" % (self.handle, self.layer_ROBO, self.color_ROBO))
         self.dxf_add(" 70\n0\n 71\n3\n 72\n%d\n 73\n%d\n 74\n%d\n" % (knots, ctrls, fits))
-        for i in range(4):
-            self.dxf_add(" 40\n0\n")
-        self.dxf_add(" 40\n%f\n" % u1)
-        self.dxf_add(" 40\n%f\n" % u2)
-        for i in range(4):
-            self.dxf_add(" 40\n1\n")
-        for i in range(6):
+        for i in range(knots):
+            self.dxf_add(" 40\n%f\n" % self.d[i-3])
+        for i in range(ctrls):
             self.dxf_add(" 10\n%f\n 20\n%f\n 30\n0.0\n" % (xctrl[i],yctrl[i]))
-        for i in range(4):
-            self.dxf_add(" 11\n%f\n 21\n%f\n 31\n0.0\n" % (xfit[i],yfit[i]))
+        for i in range(fits):
+            self.dxf_add(" 11\n%f\n 21\n%f\n 31\n0.0\n" % (self.xfit[i],self.yfit[i]))
+
+    def process_path(self, node, mat):
+        rgb = (0,0,0)
+        style = node.get('style')
+        if style:
+            style = simplestyle.parseStyle(style)
+            if style.has_key('stroke'):
+                if style['stroke'] and style['stroke'] != 'none':
+                    rgb = simplestyle.parseColor(style['stroke'])
+        hsl = coloreffect.ColorEffect.rgb_to_hsl(coloreffect.ColorEffect(),rgb[0]/255.0,rgb[1]/255.0,rgb[2]/255.0)
+        self.color = 7                                  # default is black
+        if hsl[2]:
+            self.color = 1 + (int(6*hsl[0] + 0.5) % 6)  # use 6 hues
+        if node.tag == inkex.addNS('path','svg'):
+            d = node.get('d')
+            if not d:
+                return
+            p = cubicsuperpath.parsePath(d)
+        elif node.tag == inkex.addNS('rect','svg'):
+            x = float(node.get('x'))
+            y = float(node.get('y'))
+            width = float(node.get('width'))
+            height = float(node.get('height'))
+            p = [[[x, y],[x, y],[x, y]]]
+            p.append([[x + width, y],[x + width, y],[x + width, y]])
+            p.append([[x + width, y + height],[x + width, y + height],[x + width, y + height]])
+            p.append([[x, y + height],[x, y + height],[x, y + height]])
+            p.append([[x, y],[x, y],[x, y]])
+            p = [p]
+        else:
+            return
+        trans = node.get('transform')
+        if trans:
+            mat = simpletransform.composeTransform(mat, simpletransform.parseTransform(trans))
+        simpletransform.applyTransformToPath(mat, p)
+        for sub in p:
+            for i in range(len(sub)-1):
+                s = sub[i]
+                e = sub[i+1]
+                if s[1] == s[2] and e[0] == e[1]:
+                    if (self.options.POLY == 'true'):
+                        self.LWPOLY_line([s[1],e[1]])
+                    else:
+                        self.dxf_line([s[1],e[1]])
+                elif (self.options.ROBO == 'true'):
+                    self.ROBO_spline([s[1],s[2],e[0],e[1]])
+                else:
+                    self.dxf_spline([s[1],s[2],e[0],e[1]])
+
+    def process_group(self, group):
+        if group.get(inkex.addNS('groupmode', 'inkscape')) == 'layer':
+            layer = group.get(inkex.addNS('label', 'inkscape'))
+            layer = layer.replace(' ', '_')
+            if layer in self.layers:
+                self.layer = layer
+        trans = group.get('transform')
+        if trans:
+            self.groupmat.append(simpletransform.composeTransform(self.groupmat[-1], simpletransform.parseTransform(trans)))
+        for node in group:
+            if node.tag == inkex.addNS('g','svg'):
+                self.process_group(node)
+            else:
+                self.process_path(node, self.groupmat[-1])
+        if trans:
+            self.groupmat.pop()
 
     def effect(self):
         #References:   Minimum Requirements for Creating a DXF File of a 3D Model By Paul Bourke
@@ -114,29 +225,26 @@ class MyEffect(inkex.Effect):
         #              The NURBS Book By Les Piegl and Wayne Tiller (Springer, 1995)
         self.dxf_add("999\nDXF created by Inkscape\n")
         self.dxf_add(dxf_templates.r14_header)
+        for node in self.document.getroot().xpath('//svg:g', namespaces=inkex.NSS):
+            if node.get(inkex.addNS('groupmode', 'inkscape')) == 'layer':
+                layer = node.get(inkex.addNS('label', 'inkscape'))
+                layer = layer.replace(' ', '_')
+                if layer and not layer in self.layers:
+                    self.layers.append(layer)
+        self.dxf_add("  2\nLAYER\n  5\n2\n100\nAcDbSymbolTable\n 70\n%s\n" % len(self.layers))
+        for i in range(len(self.layers)):
+            self.dxf_add("  0\nLAYER\n  5\n%x\n100\nAcDbSymbolTableRecord\n100\nAcDbLayerTableRecord\n  2\n%s\n 70\n0\n  6\nCONTINUOUS\n" % (i + 80, self.layers[i]))
+        self.dxf_add(dxf_templates.r14_style)
 
         scale = 25.4/90.0
         h = inkex.unittouu(self.document.getroot().xpath('@height', namespaces=inkex.NSS)[0])
-        path = '//svg:path'
-        for node in self.document.getroot().xpath(path, namespaces=inkex.NSS):
-            d = node.get('d')
-            sim = simplepath.parsePath(d)
-            simplepath.scalePath(sim,scale,-scale)
-            simplepath.translatePath(sim,0,h*scale)            
-            p = cubicsuperpath.CubicSuperPath(sim)
-            for sub in p:
-                for i in range(len(sub)-1):
-                    # generate unique handle for DXF ENTITY
-                    self.handle += 1
-                    s = sub[i]
-                    e = sub[i+1]
-                    if s[1] == s[2] and e[0] == e[1]:
-                        self.dxf_line([s[1],e[1]])
-                    elif (self.options.ROBO == 'true'):
-                        self.ROBO_spline([s[1],s[2],e[0],e[1]])
-                    else:
-                        self.dxf_spline([s[1],s[2],e[0],e[1]])
-
+        self.groupmat = [[[scale, 0.0, 0.0], [0.0, -scale, h*scale]]]
+        doc = self.document.getroot()
+        self.process_group(doc)
+        if self.options.ROBO == 'true':
+            self.ROBO_output()
+        if self.options.POLY == 'true':
+            self.LWPOLY_output()
         self.dxf_add(dxf_templates.r14_footer)
 
 if __name__ == '__main__':
@@ -144,4 +252,4 @@ if __name__ == '__main__':
     e.affect()
 
 
-# vim: expandtab shiftwidth=4 tabstop=8 softtabstop=4 encoding=utf-8 textwidth=99
+# vim: expandtab shiftwidth=4 tabstop=8 softtabstop=4 fileencoding=utf-8 textwidth=99