Code

Rename LPE: mirror reflect --> mirror symmetry
[inkscape.git] / src / display / pixblock-transform.cpp
index 7aa616eb3f30f0bd8e56ce4221ca4ed69e3d1bf3..74ded2ae0bf24731cc6fe5ae92d525360d7bf9c2 100644 (file)
 
 #include <glib.h>
 #include <cmath>
+#if defined (SOLARIS) && (SOLARIS == 8)
+#include "round.h"
+using Inkscape::round;
+#endif 
 using std::floor;
 
+#include "display/nr-filter-utils.h"
+
+#include "libnr/nr-blit.h"
 #include "libnr/nr-pixblock.h"
 #include "libnr/nr-matrix.h"
 
@@ -45,6 +52,15 @@ void transform_nearest(NRPixBlock *to, NRPixBlock *from, Matrix &trans)
         return;
     }
 
+    bool free_from_on_exit = false;
+    if (from->mode != to->mode){
+        NRPixBlock *o_from = from;
+        from = new NRPixBlock;
+        nr_pixblock_setup_fast(from, to->mode, o_from->area.x0, o_from->area.y0, o_from->area.x1, o_from->area.y1, false);
+        nr_blit_pixblock_pixblock(from, o_from);
+        free_from_on_exit = true;
+    }
+
     // Precalculate sizes of source and destination pixblocks
     int from_width = from->area.x1 - from->area.x0;
     int from_height = from->area.y1 - from->area.y0;
@@ -83,6 +99,181 @@ void transform_nearest(NRPixBlock *to, NRPixBlock *from, Matrix &trans)
             NR_PIXBLOCK_PX(to)[to_y * to->rs + to_x * 4 + 3] = result.a;
         }
     }
+    if (free_from_on_exit) {
+        nr_pixblock_release(from);
+        delete from;
+    }
+}
+
+/** Calculates cubically interpolated value of the four given pixel values.
+ * The pixel values should be from four vertically adjacent pixels.
+ * If we are calculating a pixel, whose y-coordinate in source image is
+ * i, these pixel values a, b, c and d should come from lines
+ * floor(i) - 1, floor(i), floor(i) + 1, floor(i) + 2, respectively.
+ * Parameter len should be set to i.
+ * Returns the interpolated value in fixed point format with 8 bit
+ * decimal part. (24.8 assuming 32-bit int)
+ */
+__attribute__ ((const))
+inline static int sampley(unsigned const char a, unsigned const char b,
+                   unsigned const char c, unsigned const char d,
+                   const double len)
+{
+    double lenf = len - floor(len);
+    int sum = 0;
+    sum += (int)((((-1.0 / 3.0) * lenf + 4.0 / 5.0) * lenf - 7.0 / 15.0)
+                 * lenf * 256 * a);
+    sum += (int)((((lenf - 9.0 / 5.0) * lenf - 1.0 / 5.0) * lenf + 1.0)
+                 * 256 * b);
+    sum += (int)(((((1 - lenf) - 9.0 / 5.0) * (1 - lenf) - 1.0 / 5.0)
+                  * (1 - lenf) + 1.0) * 256 * c);
+    sum += (int)((((-1.0 / 3.0) * (1 - lenf) + 4.0 / 5.0) * (1 - lenf)
+                  - 7.0 / 15.0) * (1 - lenf) * 256 * d);
+    return sum;
+}
+
+/** Calculates cubically interpolated value of the four given pixel values.
+ * The pixel values should be interpolated values from sampley, from four
+ * horizontally adjacent vertical lines. The parameters a, b, c and d
+ * should be in fixed point format with 8-bit decimal part.
+ * If we are calculating a pixel, whose x-coordinate in source image is
+ * i, these vertical  lines from where a, b, c and d are calculated, should be
+ * floor(i) - 1, floor(i), floor(i) + 1, floor(i) + 2, respectively.
+ * Parameter len should be set to i.
+ * Returns the interpolated value in 8-bit format, ready to be written
+ * to output buffer.
+ */
+inline static int samplex(const int a, const int b, const int c, const int d, const double len) {
+    double lenf = len - floor(len);
+    int sum = 0;
+    sum += (int)(a * (((-1.0 / 3.0) * lenf + 4.0 / 5.0) * lenf - 7.0 / 15.0) * lenf);
+    sum += (int)(b * (((lenf - 9.0 / 5.0) * lenf - 1.0 / 5.0) * lenf + 1.0));
+    sum += (int)(c * ((((1 - lenf) - 9.0 / 5.0) * (1 - lenf) - 1.0 / 5.0) * (1 - lenf) + 1.0));
+    sum += (int)(d * (((-1.0 / 3.0) * (1 - lenf) + 4.0 / 5.0) * (1 - lenf) - 7.0 / 15.0) * (1 - lenf));
+    //if (sum < 0) sum = 0;
+    //if (sum > 255 * 256) sum = 255 * 256;
+    return sum / 256;
+}
+
+void transform_bicubic(NRPixBlock *to, NRPixBlock *from, Matrix &trans)
+{
+    if (NR_PIXBLOCK_BPP(from) != 4 || NR_PIXBLOCK_BPP(to) != 4) {
+        g_warning("A non-32-bpp image passed to transform_bicubic: scaling aborted.");
+        return;
+    }
+
+    bool free_from_on_exit = false;
+    if (from->mode != to->mode){
+        NRPixBlock *o_from = from;
+        from = new NRPixBlock;
+        nr_pixblock_setup_fast(from, to->mode, o_from->area.x0, o_from->area.y0, o_from->area.x1, o_from->area.y1, false);
+        nr_blit_pixblock_pixblock(from, o_from);
+        free_from_on_exit = true;
+    }
+    
+    // Precalculate sizes of source and destination pixblocks
+    int from_width = from->area.x1 - from->area.x0;
+    int from_height = from->area.y1 - from->area.y0;
+    int to_width = to->area.x1 - to->area.x0;
+    int to_height = to->area.y1 - to->area.y0;
+
+    Matrix itrans = trans.inverse();
+
+    // Loop through every pixel of destination image, a line at a time
+    for (int to_y = 0 ; to_y < to_height ; to_y++) {
+        for (int to_x = 0 ; to_x < to_width ; to_x++) {
+            double from_x = itrans[0] * (to_x + to->area.x0)
+                + itrans[2] * (to_y + to->area.y0)
+                + itrans[4] - from->area.x0;
+            double from_y = itrans[1] * (to_x + to->area.x0)
+                + itrans[3] * (to_y + to->area.y0)
+                + itrans[5] - from->area.y0;
+
+            if (from_x < 0 || from_x >= from_width ||
+                from_y < 0 || from_y >= from_height) {
+                continue;
+            }
+
+            RGBA line[4];
+
+            int from_line[4];
+            for (int i = 0 ; i < 4 ; i++) {
+                if ((int)floor(from_y) + i - 1 >= 0) {
+                    if ((int)floor(from_y) + i - 1 < from_height) {
+                        from_line[i] = ((int)floor(from_y) + i - 1) * from->rs;
+                    } else {
+                        from_line[i] = (from_height - 1) * from->rs;
+                    }
+                } else {
+                    from_line[i] = 0;
+                }                
+            }
+
+            for (int i = 0 ; i < 4 ; i++) {
+                int k = (int)floor(from_x) + i - 1;
+                if (k < 0) k = 0;
+                if (k >= from_width) k = from_width - 1;
+                k *= 4;
+                _check_index(from, from_line[0] + k, __LINE__);
+                _check_index(from, from_line[1] + k, __LINE__);
+                _check_index(from, from_line[2] + k, __LINE__);
+                _check_index(from, from_line[3] + k, __LINE__);
+                line[i].r = sampley(NR_PIXBLOCK_PX(from)[from_line[0] + k],
+                                    NR_PIXBLOCK_PX(from)[from_line[1] + k],
+                                    NR_PIXBLOCK_PX(from)[from_line[2] + k],
+                                    NR_PIXBLOCK_PX(from)[from_line[3] + k],
+                                    from_y);
+                line[i].g = sampley(NR_PIXBLOCK_PX(from)[from_line[0] + k + 1],
+                                    NR_PIXBLOCK_PX(from)[from_line[1] + k + 1],
+                                    NR_PIXBLOCK_PX(from)[from_line[2] + k + 1],
+                                    NR_PIXBLOCK_PX(from)[from_line[3] + k + 1],
+                                    from_y);
+                line[i].b = sampley(NR_PIXBLOCK_PX(from)[from_line[0] + k + 2],
+                                    NR_PIXBLOCK_PX(from)[from_line[1] + k + 2],
+                                    NR_PIXBLOCK_PX(from)[from_line[2] + k + 2],
+                                    NR_PIXBLOCK_PX(from)[from_line[3] + k + 2],
+                                    from_y);
+                line[i].a = sampley(NR_PIXBLOCK_PX(from)[from_line[0] + k + 3],
+                                    NR_PIXBLOCK_PX(from)[from_line[1] + k + 3],
+                                    NR_PIXBLOCK_PX(from)[from_line[2] + k + 3],
+                                    NR_PIXBLOCK_PX(from)[from_line[3] + k + 3],
+                                    from_y);
+            }
+            RGBA result;
+            result.r = samplex(line[0].r, line[1].r, line[2].r, line[3].r,
+                               from_x);
+            result.g = samplex(line[0].g, line[1].g, line[2].g, line[3].g,
+                               from_x);
+            result.b = samplex(line[0].b, line[1].b, line[2].b, line[3].b,
+                               from_x);
+            result.a = samplex(line[0].a, line[1].a, line[2].a, line[3].a,
+                               from_x);
+
+            _check_index(to, to_y * to->rs + to_x * 4, __LINE__);
+            if (to->mode == NR_PIXBLOCK_MODE_R8G8B8A8P) {
+                /* Make sure, none of the RGB channels exceeds 100% intensity
+                 * in premultiplied output */
+                result.a = clamp(result.a);
+                NR_PIXBLOCK_PX(to)[to_y * to->rs + to_x * 4] = 
+                    clamp_alpha(result.r, result.a);
+                NR_PIXBLOCK_PX(to)[to_y * to->rs + to_x * 4 + 1] = 
+                    clamp_alpha(result.g, result.a);
+                NR_PIXBLOCK_PX(to)[to_y * to->rs + to_x * 4 + 2] = 
+                    clamp_alpha(result.b, result.a);
+                NR_PIXBLOCK_PX(to)[to_y * to->rs + to_x * 4 + 3] = result.a;
+            } else {
+                /* Clamp the output to unsigned char range */
+                NR_PIXBLOCK_PX(to)[to_y * to->rs + to_x * 4] = clamp(result.r);
+                NR_PIXBLOCK_PX(to)[to_y * to->rs + to_x * 4 + 1] = clamp(result.g);
+                NR_PIXBLOCK_PX(to)[to_y * to->rs + to_x * 4 + 2] = clamp(result.b);
+                NR_PIXBLOCK_PX(to)[to_y * to->rs + to_x * 4 + 3] = clamp(result.a);
+            }
+        }
+    }
+    if (free_from_on_exit) {
+        nr_pixblock_release(from);
+        delete from;
+    }
 }
 
 } /* namespace NR */