Code

2geomify ODF output
[inkscape.git] / src / extension / internal / odf.cpp
1 /**
2  * OpenDocument <drawing> input and output
3  *
4  * This is an an entry in the extensions mechanism to begin to enable
5  * the inputting and outputting of OpenDocument Format (ODF) files from
6  * within Inkscape.  Although the initial implementations will be very lossy
7  * do to the differences in the models of SVG and ODF, they will hopefully
8  * improve greatly with time.  People should consider this to be a framework
9  * that can be continously upgraded for ever improving fidelity.  Potential
10  * developers should especially look in preprocess() and writeTree() to see how
11  * the SVG tree is scanned, read, translated, and then written to ODF.
12  *
13  * http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/idl-definitions.html
14  *
15  * Authors:
16  *   Bob Jamison
17  *
18  * Copyright (C) 2006, 2007 Bob Jamison
19  *
20  *  This library is free software; you can redistribute it and/or
21  *  modify it under the terms of the GNU Lesser General Public
22  *  License as published by the Free Software Foundation; either
23  *  version 2.1 of the License, or (at your option) any later version.
24  *
25  *  This library is distributed in the hope that it will be useful,
26  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
27  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
28  *  Lesser General Public License for more details.
29  *
30  *  You should have received a copy of the GNU Lesser General Public
31  *  License along with this library; if not, write to the Free Software
32  *  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
33  */
37 #ifdef HAVE_CONFIG_H
38 # include <config.h>
39 #endif
41 #include "odf.h"
43 //# System includes
44 #include <stdio.h>
45 #include <time.h>
46 #include <vector>
49 //# Inkscape includes
50 #include "clear-n_.h"
51 #include "inkscape.h"
52 #include <style.h>
53 #include "display/curve.h"
54 #include <2geom/pathvector.h>
55 #include <2geom/transforms.h>
56 #include <helper/geom.h>
57 #include "extension/system.h"
59 #include "xml/repr.h"
60 #include "xml/attribute-record.h"
61 #include "sp-image.h"
62 #include "sp-gradient.h"
63 #include "sp-stop.h"
64 #include "gradient-chemistry.h"
65 #include "sp-linear-gradient.h"
66 #include "sp-radial-gradient.h"
67 #include "sp-path.h"
68 #include "sp-text.h"
69 #include "sp-flowtext.h"
70 #include "svg/svg.h"
71 #include "text-editing.h"
74 //# DOM-specific includes
75 #include "dom/dom.h"
76 #include "dom/util/ziptool.h"
77 #include "dom/io/domstream.h"
78 #include "dom/io/bufferstream.h"
79 #include "dom/io/stringstream.h"
86 namespace Inkscape
87 {
88 namespace Extension
89 {
90 namespace Internal
91 {
95 //# Shorthand notation
96 typedef org::w3c::dom::DOMString DOMString;
97 typedef org::w3c::dom::XMLCh XMLCh;
98 typedef org::w3c::dom::io::OutputStreamWriter OutputStreamWriter;
99 typedef org::w3c::dom::io::BufferOutputStream BufferOutputStream;
100 typedef org::w3c::dom::io::StringOutputStream StringOutputStream;
102 //########################################################################
103 //# C L A S S    SingularValueDecomposition
104 //########################################################################
105 #include <math.h>
107 class SVDMatrix
109 public:
111     SVDMatrix()
112         {
113         init();
114         }
116     SVDMatrix(unsigned int rowSize, unsigned int colSize)
117         {
118         init();
119         rows = rowSize;
120         cols = colSize;
121         size = rows * cols;
122         d    = new double[size];
123         for (unsigned int i=0 ; i<size ; i++)
124             d[i] = 0.0;
125         }
127     SVDMatrix(double *vals, unsigned int rowSize, unsigned int colSize)
128         {
129         init();
130         rows = rowSize;
131         cols = colSize;
132         size = rows * cols;
133         d    = new double[size];
134         for (unsigned int i=0 ; i<size ; i++)
135             d[i] = vals[i];
136         }
139     SVDMatrix(const SVDMatrix &other)
140         {
141         init();
142         assign(other);
143         }
145     SVDMatrix &operator=(const SVDMatrix &other)
146         {
147         assign(other);
148         return *this;
149         }
151     virtual ~SVDMatrix()
152         {
153         delete[] d;
154         }
156      double& operator() (unsigned int row, unsigned int col)
157          {
158          if (row >= rows || col >= cols)
159              return badval;
160          return d[cols*row + col];
161          }
163      double operator() (unsigned int row, unsigned int col) const
164          {
165          if (row >= rows || col >= cols)
166              return badval;
167          return d[cols*row + col];
168          }
170      unsigned int getRows()
171          {
172          return rows;
173          }
175      unsigned int getCols()
176          {
177          return cols;
178          }
180      SVDMatrix multiply(const SVDMatrix &other)
181          {
182          if (cols != other.rows)
183              {
184              SVDMatrix dummy;
185              return dummy;
186              }
187          SVDMatrix result(rows, other.cols);
188          for (unsigned int i=0 ; i<rows ; i++)
189              {
190              for (unsigned int j=0 ; j<other.cols ; j++)
191              {
192                  double sum = 0.0;
193                  for (unsigned int k=0 ; k<cols ; k++)
194                      {
195                      //sum += a[i][k] * b[k][j];
196                      sum += d[i*cols +k] * other(k, j);
197                      }
198                  result(i, j) = sum;
199                  }
201              }
202          return result;
203          }
205      SVDMatrix transpose()
206          {
207          SVDMatrix result(cols, rows);
208          for (unsigned int i=0 ; i<rows ; i++)
209              for (unsigned int j=0 ; j<cols ; j++)
210                  result(j, i) = d[i*cols + j];
211          return result;
212          }
214 private:
217     virtual void init()
218         {
219         badval = 0.0;
220         d      = NULL;
221         rows   = 0;
222         cols   = 0;
223         size   = 0;
224         }
226      void assign(const SVDMatrix &other)
227         {
228         if (d)
229             {
230             delete[] d;
231             d = 0;
232             }
233         rows = other.rows;
234         cols = other.cols;
235         size = other.size;
236         d = new double[size];
237         for (unsigned int i=0 ; i<size ; i++)
238             d[i] = other.d[i];
239         }
241     double badval;
243     double *d;
244     unsigned int rows;
245     unsigned int cols;
246     unsigned int size;
247 };
251 /**
252  *
253  * ====================================================
254  *
255  * NOTE:
256  * This class is ported almost verbatim from the public domain
257  * JAMA Matrix package.  It is modified to handle only 3x3 matrices
258  * and our NR::Matrix affine transform class.  We give full
259  * attribution to them, along with many thanks.  JAMA can be found at:
260  *     http://math.nist.gov/javanumerics/jama
261  *
262  * ====================================================
263  *
264  * Singular Value Decomposition.
265  * <P>
266  * For an m-by-n matrix A with m >= n, the singular value decomposition is
267  * an m-by-n orthogonal matrix U, an n-by-n diagonal matrix S, and
268  * an n-by-n orthogonal matrix V so that A = U*S*V'.
269  * <P>
270  * The singular values, sigma[k] = S[k][k], are ordered so that
271  * sigma[0] >= sigma[1] >= ... >= sigma[n-1].
272  * <P>
273  * The singular value decompostion always exists, so the constructor will
274  * never fail.  The matrix condition number and the effective numerical
275  * rank can be computed from this decomposition.
276  */
277 class SingularValueDecomposition
279 public:
281    /** Construct the singular value decomposition
282    @param A    Rectangular matrix
283    @return     Structure to access U, S and V.
284    */
286     SingularValueDecomposition (const SVDMatrix &mat)
287         {
288         A      = mat;
289         s      = NULL;
290         s_size = 0;
291         calculate();
292         }
294     virtual ~SingularValueDecomposition()
295         {
296         delete[] s;
297         }
299     /**
300      * Return the left singular vectors
301      * @return     U
302      */
303     SVDMatrix &getU();
305     /**
306      * Return the right singular vectors
307      * @return     V
308      */
309     SVDMatrix &getV();
311     /**
312      *  Return the s[index] value
313      */    double getS(unsigned int index);
315     /**
316      * Two norm
317      * @return max(S)
318      */
319     double norm2();
321     /**
322      * Two norm condition number
323      *  @return max(S)/min(S)
324      */
325     double cond();
327     /**
328      *  Effective numerical matrix rank
329      *  @return     Number of nonnegligible singular values.
330      */
331     int rank();
333 private:
335       void calculate();
337       SVDMatrix A;
338       SVDMatrix U;
339       double *s;
340       unsigned int s_size;
341       SVDMatrix V;
343 };
346 static double svd_hypot(double a, double b)
348     double r;
350     if (fabs(a) > fabs(b))
351         {
352         r = b/a;
353         r = fabs(a) * sqrt(1+r*r);
354         }
355     else if (b != 0)
356         {
357         r = a/b;
358         r = fabs(b) * sqrt(1+r*r);
359         }
360     else
361         {
362         r = 0.0;
363         }
364     return r;
369 void SingularValueDecomposition::calculate()
371       // Initialize.
372       int m = A.getRows();
373       int n = A.getCols();
375       int nu = (m > n) ? m : n;
376       s_size = (m+1 < n) ? m+1 : n;
377       s = new double[s_size];
378       U = SVDMatrix(m, nu);
379       V = SVDMatrix(n, n);
380       double *e = new double[n];
381       double *work = new double[m];
382       bool wantu = true;
383       bool wantv = true;
385       // Reduce A to bidiagonal form, storing the diagonal elements
386       // in s and the super-diagonal elements in e.
388       int nct = (m-1<n) ? m-1 : n;
389       int nrtx = (n-2<m) ? n-2 : m;
390       int nrt = (nrtx>0) ? nrtx : 0;
391       for (int k = 0; k < 2; k++) {
392          if (k < nct) {
394             // Compute the transformation for the k-th column and
395             // place the k-th diagonal in s[k].
396             // Compute 2-norm of k-th column without under/overflow.
397             s[k] = 0;
398             for (int i = k; i < m; i++) {
399                s[k] = svd_hypot(s[k],A(i, k));
400             }
401             if (s[k] != 0.0) {
402                if (A(k, k) < 0.0) {
403                   s[k] = -s[k];
404                }
405                for (int i = k; i < m; i++) {
406                   A(i, k) /= s[k];
407                }
408                A(k, k) += 1.0;
409             }
410             s[k] = -s[k];
411          }
412          for (int j = k+1; j < n; j++) {
413             if ((k < nct) & (s[k] != 0.0))  {
415             // Apply the transformation.
417                double t = 0;
418                for (int i = k; i < m; i++) {
419                   t += A(i, k) * A(i, j);
420                }
421                t = -t/A(k, k);
422                for (int i = k; i < m; i++) {
423                   A(i, j) += t*A(i, k);
424                }
425             }
427             // Place the k-th row of A into e for the
428             // subsequent calculation of the row transformation.
430             e[j] = A(k, j);
431          }
432          if (wantu & (k < nct)) {
434             // Place the transformation in U for subsequent back
435             // multiplication.
437             for (int i = k; i < m; i++) {
438                U(i, k) = A(i, k);
439             }
440          }
441          if (k < nrt) {
443             // Compute the k-th row transformation and place the
444             // k-th super-diagonal in e[k].
445             // Compute 2-norm without under/overflow.
446             e[k] = 0;
447             for (int i = k+1; i < n; i++) {
448                e[k] = svd_hypot(e[k],e[i]);
449             }
450             if (e[k] != 0.0) {
451                if (e[k+1] < 0.0) {
452                   e[k] = -e[k];
453                }
454                for (int i = k+1; i < n; i++) {
455                   e[i] /= e[k];
456                }
457                e[k+1] += 1.0;
458             }
459             e[k] = -e[k];
460             if ((k+1 < m) & (e[k] != 0.0)) {
462             // Apply the transformation.
464                for (int i = k+1; i < m; i++) {
465                   work[i] = 0.0;
466                }
467                for (int j = k+1; j < n; j++) {
468                   for (int i = k+1; i < m; i++) {
469                      work[i] += e[j]*A(i, j);
470                   }
471                }
472                for (int j = k+1; j < n; j++) {
473                   double t = -e[j]/e[k+1];
474                   for (int i = k+1; i < m; i++) {
475                      A(i, j) += t*work[i];
476                   }
477                }
478             }
479             if (wantv) {
481             // Place the transformation in V for subsequent
482             // back multiplication.
484                for (int i = k+1; i < n; i++) {
485                   V(i, k) = e[i];
486                }
487             }
488          }
489       }
491       // Set up the final bidiagonal matrix or order p.
493       int p = (n < m+1) ? n : m+1;
494       if (nct < n) {
495          s[nct] = A(nct, nct);
496       }
497       if (m < p) {
498          s[p-1] = 0.0;
499       }
500       if (nrt+1 < p) {
501          e[nrt] = A(nrt, p-1);
502       }
503       e[p-1] = 0.0;
505       // If required, generate U.
507       if (wantu) {
508          for (int j = nct; j < nu; j++) {
509             for (int i = 0; i < m; i++) {
510                U(i, j) = 0.0;
511             }
512             U(j, j) = 1.0;
513          }
514          for (int k = nct-1; k >= 0; k--) {
515             if (s[k] != 0.0) {
516                for (int j = k+1; j < nu; j++) {
517                   double t = 0;
518                   for (int i = k; i < m; i++) {
519                      t += U(i, k)*U(i, j);
520                   }
521                   t = -t/U(k, k);
522                   for (int i = k; i < m; i++) {
523                      U(i, j) += t*U(i, k);
524                   }
525                }
526                for (int i = k; i < m; i++ ) {
527                   U(i, k) = -U(i, k);
528                }
529                U(k, k) = 1.0 + U(k, k);
530                for (int i = 0; i < k-1; i++) {
531                   U(i, k) = 0.0;
532                }
533             } else {
534                for (int i = 0; i < m; i++) {
535                   U(i, k) = 0.0;
536                }
537                U(k, k) = 1.0;
538             }
539          }
540       }
542       // If required, generate V.
544       if (wantv) {
545          for (int k = n-1; k >= 0; k--) {
546             if ((k < nrt) & (e[k] != 0.0)) {
547                for (int j = k+1; j < nu; j++) {
548                   double t = 0;
549                   for (int i = k+1; i < n; i++) {
550                      t += V(i, k)*V(i, j);
551                   }
552                   t = -t/V(k+1, k);
553                   for (int i = k+1; i < n; i++) {
554                      V(i, j) += t*V(i, k);
555                   }
556                }
557             }
558             for (int i = 0; i < n; i++) {
559                V(i, k) = 0.0;
560             }
561             V(k, k) = 1.0;
562          }
563       }
565       // Main iteration loop for the singular values.
567       int pp = p-1;
568       int iter = 0;
569       //double eps = pow(2.0,-52.0);
570       //double tiny = pow(2.0,-966.0);
571       //let's just calculate these now
572       //a double can be e Â± 308.25, so this is safe
573       double eps = 2.22e-16;
574       double tiny = 1.6e-291;
575       while (p > 0) {
576          int k,kase;
578          // Here is where a test for too many iterations would go.
580          // This section of the program inspects for
581          // negligible elements in the s and e arrays.  On
582          // completion the variables kase and k are set as follows.
584          // kase = 1     if s(p) and e[k-1] are negligible and k<p
585          // kase = 2     if s(k) is negligible and k<p
586          // kase = 3     if e[k-1] is negligible, k<p, and
587          //              s(k), ..., s(p) are not negligible (qr step).
588          // kase = 4     if e(p-1) is negligible (convergence).
590          for (k = p-2; k >= -1; k--) {
591             if (k == -1) {
592                break;
593             }
594             if (fabs(e[k]) <=
595                   tiny + eps*(fabs(s[k]) + fabs(s[k+1]))) {
596                e[k] = 0.0;
597                break;
598             }
599          }
600          if (k == p-2) {
601             kase = 4;
602          } else {
603             int ks;
604             for (ks = p-1; ks >= k; ks--) {
605                if (ks == k) {
606                   break;
607                }
608                double t = (ks != p ? fabs(e[ks]) : 0.) +
609                           (ks != k+1 ? fabs(e[ks-1]) : 0.);
610                if (fabs(s[ks]) <= tiny + eps*t)  {
611                   s[ks] = 0.0;
612                   break;
613                }
614             }
615             if (ks == k) {
616                kase = 3;
617             } else if (ks == p-1) {
618                kase = 1;
619             } else {
620                kase = 2;
621                k = ks;
622             }
623          }
624          k++;
626          // Perform the task indicated by kase.
628          switch (kase) {
630             // Deflate negligible s(p).
632             case 1: {
633                double f = e[p-2];
634                e[p-2] = 0.0;
635                for (int j = p-2; j >= k; j--) {
636                   double t = svd_hypot(s[j],f);
637                   double cs = s[j]/t;
638                   double sn = f/t;
639                   s[j] = t;
640                   if (j != k) {
641                      f = -sn*e[j-1];
642                      e[j-1] = cs*e[j-1];
643                   }
644                   if (wantv) {
645                      for (int i = 0; i < n; i++) {
646                         t = cs*V(i, j) + sn*V(i, p-1);
647                         V(i, p-1) = -sn*V(i, j) + cs*V(i, p-1);
648                         V(i, j) = t;
649                      }
650                   }
651                }
652             }
653             break;
655             // Split at negligible s(k).
657             case 2: {
658                double f = e[k-1];
659                e[k-1] = 0.0;
660                for (int j = k; j < p; j++) {
661                   double t = svd_hypot(s[j],f);
662                   double cs = s[j]/t;
663                   double sn = f/t;
664                   s[j] = t;
665                   f = -sn*e[j];
666                   e[j] = cs*e[j];
667                   if (wantu) {
668                      for (int i = 0; i < m; i++) {
669                         t = cs*U(i, j) + sn*U(i, k-1);
670                         U(i, k-1) = -sn*U(i, j) + cs*U(i, k-1);
671                         U(i, j) = t;
672                      }
673                   }
674                }
675             }
676             break;
678             // Perform one qr step.
680             case 3: {
682                // Calculate the shift.
684                double scale = fabs(s[p-1]);
685                double d = fabs(s[p-2]);
686                if (d>scale) scale=d;
687                d = fabs(e[p-2]);
688                if (d>scale) scale=d;
689                d = fabs(s[k]);
690                if (d>scale) scale=d;
691                d = fabs(e[k]);
692                if (d>scale) scale=d;
693                double sp = s[p-1]/scale;
694                double spm1 = s[p-2]/scale;
695                double epm1 = e[p-2]/scale;
696                double sk = s[k]/scale;
697                double ek = e[k]/scale;
698                double b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/2.0;
699                double c = (sp*epm1)*(sp*epm1);
700                double shift = 0.0;
701                if ((b != 0.0) | (c != 0.0)) {
702                   shift = sqrt(b*b + c);
703                   if (b < 0.0) {
704                      shift = -shift;
705                   }
706                   shift = c/(b + shift);
707                }
708                double f = (sk + sp)*(sk - sp) + shift;
709                double g = sk*ek;
711                // Chase zeros.
713                for (int j = k; j < p-1; j++) {
714                   double t = svd_hypot(f,g);
715                   double cs = f/t;
716                   double sn = g/t;
717                   if (j != k) {
718                      e[j-1] = t;
719                   }
720                   f = cs*s[j] + sn*e[j];
721                   e[j] = cs*e[j] - sn*s[j];
722                   g = sn*s[j+1];
723                   s[j+1] = cs*s[j+1];
724                   if (wantv) {
725                      for (int i = 0; i < n; i++) {
726                         t = cs*V(i, j) + sn*V(i, j+1);
727                         V(i, j+1) = -sn*V(i, j) + cs*V(i, j+1);
728                         V(i, j) = t;
729                      }
730                   }
731                   t = svd_hypot(f,g);
732                   cs = f/t;
733                   sn = g/t;
734                   s[j] = t;
735                   f = cs*e[j] + sn*s[j+1];
736                   s[j+1] = -sn*e[j] + cs*s[j+1];
737                   g = sn*e[j+1];
738                   e[j+1] = cs*e[j+1];
739                   if (wantu && (j < m-1)) {
740                      for (int i = 0; i < m; i++) {
741                         t = cs*U(i, j) + sn*U(i, j+1);
742                         U(i, j+1) = -sn*U(i, j) + cs*U(i, j+1);
743                         U(i, j) = t;
744                      }
745                   }
746                }
747                e[p-2] = f;
748                iter = iter + 1;
749             }
750             break;
752             // Convergence.
754             case 4: {
756                // Make the singular values positive.
758                if (s[k] <= 0.0) {
759                   s[k] = (s[k] < 0.0 ? -s[k] : 0.0);
760                   if (wantv) {
761                      for (int i = 0; i <= pp; i++) {
762                         V(i, k) = -V(i, k);
763                      }
764                   }
765                }
767                // Order the singular values.
769                while (k < pp) {
770                   if (s[k] >= s[k+1]) {
771                      break;
772                   }
773                   double t = s[k];
774                   s[k] = s[k+1];
775                   s[k+1] = t;
776                   if (wantv && (k < n-1)) {
777                      for (int i = 0; i < n; i++) {
778                         t = V(i, k+1); V(i, k+1) = V(i, k); V(i, k) = t;
779                      }
780                   }
781                   if (wantu && (k < m-1)) {
782                      for (int i = 0; i < m; i++) {
783                         t = U(i, k+1); U(i, k+1) = U(i, k); U(i, k) = t;
784                      }
785                   }
786                   k++;
787                }
788                iter = 0;
789                p--;
790             }
791             break;
792          }
793       }
795     delete e;
796     delete work;
802 /**
803  * Return the left singular vectors
804  * @return     U
805  */
806 SVDMatrix &SingularValueDecomposition::getU()
808     return U;
811 /**
812  * Return the right singular vectors
813  * @return     V
814  */
816 SVDMatrix &SingularValueDecomposition::getV()
818     return V;
821 /**
822  *  Return the s[0] value
823  */
824 double SingularValueDecomposition::getS(unsigned int index)
826     if (index >= s_size)
827         return 0.0;
828     return s[index];
831 /**
832  * Two norm
833  * @return     max(S)
834  */
835 double SingularValueDecomposition::norm2()
837     return s[0];
840 /**
841  * Two norm condition number
842  *  @return     max(S)/min(S)
843  */
845 double SingularValueDecomposition::cond()
847     return s[0]/s[2];
850 /**
851  *  Effective numerical matrix rank
852  *  @return     Number of nonnegligible singular values.
853  */
854 int SingularValueDecomposition::rank()
856     double eps = pow(2.0,-52.0);
857     double tol = 3.0*s[0]*eps;
858     int r = 0;
859     for (int i = 0; i < 3; i++)
860         {
861         if (s[i] > tol)
862             r++;
863         }
864     return r;
867 //########################################################################
868 //# E N D    C L A S S    SingularValueDecomposition
869 //########################################################################
875 #define pi 3.14159
876 //#define pxToCm  0.0275
877 #define pxToCm  0.03
878 #define piToRad 0.0174532925
879 #define docHeightCm 22.86
882 //########################################################################
883 //# O U T P U T
884 //########################################################################
886 /**
887  * Get the value of a node/attribute pair
888  */
889 static Glib::ustring getAttribute( Inkscape::XML::Node *node, char const *attrName)
891     Glib::ustring val;
892     char const *valstr = node->attribute(attrName);
893     if (valstr)
894         val = valstr;
895     return val;
900 /**
901  * Get the extension suffix from the end of a file name
902  */
903 static Glib::ustring getExtension(const Glib::ustring &fname)
905     Glib::ustring ext;
907     std::string::size_type pos = fname.rfind('.');
908     if (pos == fname.npos)
909         {
910         ext = "";
911         }
912     else
913         {
914         ext = fname.substr(pos);
915         }
916     return ext;
920 static Glib::ustring formatTransform(NR::Matrix &tf)
922     Glib::ustring str;
923     if (!tf.test_identity())
924         {
925         StringOutputStream outs;
926         OutputStreamWriter out(outs);
927         out.printf("matrix(%.3f %.3f %.3f %.3f %.3f %.3f)",
928                 tf[0], tf[1], tf[2], tf[3], tf[4], tf[5]);
929         str = outs.getString();
930         }
931     return str;
938 /**
939  * Get the general transform from SVG pixels to
940  * ODF cm
941  */
942 static NR::Matrix getODFTransform(const SPItem *item)
944     //### Get SVG-to-ODF transform
945     NR::Matrix tf = from_2geom(sp_item_i2d_affine(item));
946     //Flip Y into document coordinates
947     double doc_height    = sp_document_height(SP_ACTIVE_DOCUMENT);
948     NR::Matrix doc2dt_tf = NR::Matrix(NR::scale(1.0, -1.0));
949     doc2dt_tf            = doc2dt_tf * NR::Matrix(NR::translate(0, doc_height));
950     tf                   = tf * doc2dt_tf;
951     tf                   = tf * NR::Matrix(NR::scale(pxToCm));
952     return tf;
958 /**
959  * Get the bounding box of an item, as mapped onto
960  * an ODF document, in cm.
961  */
962 static NR::Maybe<NR::Rect> getODFBoundingBox(const SPItem *item)
964     NR::Maybe<NR::Rect> bbox = sp_item_bbox_desktop((SPItem *)item);
965     if (bbox) {
966         double doc_height    = sp_document_height(SP_ACTIVE_DOCUMENT);
967         NR::Matrix doc2dt_tf = NR::Matrix(NR::scale(1.0, -1.0));
968         doc2dt_tf            = doc2dt_tf * NR::Matrix(NR::translate(0, doc_height));
969         bbox                 = *bbox * doc2dt_tf;
970         bbox                 = *bbox * NR::Matrix(NR::scale(pxToCm));
971     }
972     return bbox;
977 /**
978  * Get the transform for an item, correcting for
979  * handedness reversal
980  */
981 static NR::Matrix getODFItemTransform(const SPItem *item)
983     NR::Matrix itemTransform = NR::Matrix(NR::scale(1, -1));
984     itemTransform = itemTransform * item->transform;
985     itemTransform = itemTransform * NR::Matrix(NR::scale(1, -1));
986     return itemTransform;
991 /**
992  * Get some fun facts from the transform
993  */
994 static void analyzeTransform(NR::Matrix &tf,
995                              double &rotate, double &/*xskew*/, double &/*yskew*/,
996                              double &xscale, double &yscale)
998     SVDMatrix mat(2, 2);
999     mat(0, 0) = tf[0];
1000     mat(0, 1) = tf[1];
1001     mat(1, 0) = tf[2];
1002     mat(1, 1) = tf[3];
1004     SingularValueDecomposition svd(mat);
1006     SVDMatrix U = svd.getU();
1007     SVDMatrix V = svd.getV();
1008     SVDMatrix Vt = V.transpose();
1009     SVDMatrix UVt = U.multiply(Vt);
1010     double s0 = svd.getS(0);
1011     double s1 = svd.getS(1);
1012     xscale = s0;
1013     yscale = s1;
1014     //g_message("## s0:%.3f s1:%.3f", s0, s1);
1015     //g_message("## u:%.3f %.3f %.3f %.3f", U(0,0), U(0,1), U(1,0), U(1,1));
1016     //g_message("## v:%.3f %.3f %.3f %.3f", V(0,0), V(0,1), V(1,0), V(1,1));
1017     //g_message("## vt:%.3f %.3f %.3f %.3f", Vt(0,0), Vt(0,1), Vt(1,0), Vt(1,1));
1018     //g_message("## uvt:%.3f %.3f %.3f %.3f", UVt(0,0), UVt(0,1), UVt(1,0), UVt(1,1));
1019     rotate = UVt(0,0);
1024 static void gatherText(Inkscape::XML::Node *node, Glib::ustring &buf)
1026     if (node->type() == Inkscape::XML::TEXT_NODE)
1027         {
1028         char *s = (char *)node->content();
1029         if (s)
1030             buf.append(s);
1031         }
1033     for (Inkscape::XML::Node *child = node->firstChild() ;
1034                 child != NULL; child = child->next())
1035         {
1036         gatherText(child, buf);
1037         }
1041 /**
1042  * FIRST PASS.
1043  * Method descends into the repr tree, converting image, style, and gradient info
1044  * into forms compatible in ODF.
1045  */
1046 void
1047 OdfOutput::preprocess(ZipFile &zf, Inkscape::XML::Node *node)
1050     Glib::ustring nodeName = node->name();
1051     Glib::ustring id       = getAttribute(node, "id");
1053     //### First, check for metadata
1054     if (nodeName == "metadata" || nodeName == "svg:metadata")
1055         {
1056         Inkscape::XML::Node *mchild = node->firstChild() ;
1057         if (!mchild || strcmp(mchild->name(), "rdf:RDF"))
1058             return;
1059         Inkscape::XML::Node *rchild = mchild->firstChild() ;
1060         if (!rchild || strcmp(rchild->name(), "cc:Work"))
1061             return;
1062         for (Inkscape::XML::Node *cchild = rchild->firstChild() ;
1063             cchild ; cchild = cchild->next())
1064             {
1065             Glib::ustring ccName = cchild->name();
1066             Glib::ustring ccVal;
1067             gatherText(cchild, ccVal);
1068             //g_message("ccName: %s  ccVal:%s", ccName.c_str(), ccVal.c_str());
1069             metadata[ccName] = ccVal;
1070             }
1071         return;
1072         }
1074     //Now consider items.
1075     SPObject *reprobj = SP_ACTIVE_DOCUMENT->getObjectByRepr(node);
1076     if (!reprobj)
1077         return;
1078     if (!SP_IS_ITEM(reprobj))
1079         {
1080         return;
1081         }
1082     SPItem *item  = SP_ITEM(reprobj);
1083     //### Get SVG-to-ODF transform
1084     NR::Matrix tf = getODFTransform(item);
1086     if (nodeName == "image" || nodeName == "svg:image")
1087         {
1088         //g_message("image");
1089         Glib::ustring href = getAttribute(node, "xlink:href");
1090         if (href.size() > 0)
1091             {
1092             Glib::ustring oldName = href;
1093             Glib::ustring ext = getExtension(oldName);
1094             if (ext == ".jpeg")
1095                 ext = ".jpg";
1096             if (imageTable.find(oldName) == imageTable.end())
1097                 {
1098                 char buf[64];
1099                 snprintf(buf, sizeof(buf), "Pictures/image%u%s",
1100                          static_cast<unsigned int>(imageTable.size()), ext.c_str());
1101                 Glib::ustring newName = buf;
1102                 imageTable[oldName] = newName;
1103                 Glib::ustring comment = "old name was: ";
1104                 comment.append(oldName);
1105                 URI oldUri(oldName);
1106                 //g_message("oldpath:%s", oldUri.getNativePath().c_str());
1107                 //# if relative to the documentURI, get proper path
1108                 URI resUri = documentUri.resolve(oldUri);
1109                 DOMString pathName = resUri.getNativePath();
1110                 //g_message("native path:%s", pathName.c_str());
1111                 ZipEntry *ze = zf.addFile(pathName, comment);
1112                 if (ze)
1113                     {
1114                     ze->setFileName(newName);
1115                     }
1116                 else
1117                     {
1118                     g_warning("Could not load image file '%s'", pathName.c_str());
1119                     }
1120                 }
1121             }
1122         }
1124     for (Inkscape::XML::Node *child = node->firstChild() ;
1125             child ; child = child->next())
1126         preprocess(zf, child);
1131 /**
1132  * Writes the manifest.  Currently it only changes according to the
1133  * file names of images packed into the zip file.
1134  */
1135 bool OdfOutput::writeManifest(ZipFile &zf)
1137     BufferOutputStream bouts;
1138     OutputStreamWriter outs(bouts);
1140     time_t tim;
1141     time(&tim);
1143     outs.printf("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n");
1144     outs.printf("<!DOCTYPE manifest:manifest PUBLIC \"-//OpenOffice.org//DTD Manifest 1.0//EN\" \"Manifest.dtd\">\n");
1145     outs.printf("\n");
1146     outs.printf("\n");
1147     outs.printf("<!--\n");
1148     outs.printf("*************************************************************************\n");
1149     outs.printf("  file:  manifest.xml\n");
1150     outs.printf("  Generated by Inkscape: %s", ctime(&tim)); //ctime has its own <cr>
1151     outs.printf("  http://www.inkscape.org\n");
1152     outs.printf("*************************************************************************\n");
1153     outs.printf("-->\n");
1154     outs.printf("\n");
1155     outs.printf("\n");
1156     outs.printf("<manifest:manifest xmlns:manifest=\"urn:oasis:names:tc:opendocument:xmlns:manifest:1.0\">\n");
1157     outs.printf("    <manifest:file-entry manifest:media-type=\"application/vnd.oasis.opendocument.graphics\" manifest:full-path=\"/\"/>\n");
1158     outs.printf("    <manifest:file-entry manifest:media-type=\"text/xml\" manifest:full-path=\"content.xml\"/>\n");
1159     outs.printf("    <manifest:file-entry manifest:media-type=\"text/xml\" manifest:full-path=\"styles.xml\"/>\n");
1160     outs.printf("    <manifest:file-entry manifest:media-type=\"text/xml\" manifest:full-path=\"meta.xml\"/>\n");
1161     outs.printf("    <!--List our images here-->\n");
1162     std::map<Glib::ustring, Glib::ustring>::iterator iter;
1163     for (iter = imageTable.begin() ; iter!=imageTable.end() ; iter++)
1164         {
1165         Glib::ustring oldName = iter->first;
1166         Glib::ustring newName = iter->second;
1168         Glib::ustring ext = getExtension(oldName);
1169         if (ext == ".jpeg")
1170             ext = ".jpg";
1171         outs.printf("    <manifest:file-entry manifest:media-type=\"");
1172         if (ext == ".gif")
1173             outs.printf("image/gif");
1174         else if (ext == ".png")
1175             outs.printf("image/png");
1176         else if (ext == ".jpg")
1177             outs.printf("image/jpeg");
1178         outs.printf("\" manifest:full-path=\"");
1179         outs.printf(newName.c_str());
1180         outs.printf("\"/>\n");
1181         }
1182     outs.printf("</manifest:manifest>\n");
1184     outs.close();
1186     //Make our entry
1187     ZipEntry *ze = zf.newEntry("META-INF/manifest.xml", "ODF file manifest");
1188     ze->setUncompressedData(bouts.getBuffer());
1189     ze->finish();
1191     return true;
1195 /**
1196  * This writes the document meta information to meta.xml
1197  */
1198 bool OdfOutput::writeMeta(ZipFile &zf)
1200     BufferOutputStream bouts;
1201     OutputStreamWriter outs(bouts);
1203     time_t tim;
1204     time(&tim);
1206     std::map<Glib::ustring, Glib::ustring>::iterator iter;
1207     Glib::ustring creator = "unknown";
1208     iter = metadata.find("dc:creator");
1209     if (iter != metadata.end())
1210         creator = iter->second;
1211     Glib::ustring date = "";
1212     iter = metadata.find("dc:date");
1213     if (iter != metadata.end())
1214         date = iter->second;
1216     outs.printf("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n");
1217     outs.printf("\n");
1218     outs.printf("\n");
1219     outs.printf("<!--\n");
1220     outs.printf("*************************************************************************\n");
1221     outs.printf("  file:  meta.xml\n");
1222     outs.printf("  Generated by Inkscape: %s", ctime(&tim)); //ctime has its own <cr>
1223     outs.printf("  http://www.inkscape.org\n");
1224     outs.printf("*************************************************************************\n");
1225     outs.printf("-->\n");
1226     outs.printf("\n");
1227     outs.printf("\n");
1228     outs.printf("<office:document-meta\n");
1229     outs.printf("xmlns:office=\"urn:oasis:names:tc:opendocument:xmlns:office:1.0\"\n");
1230     outs.printf("xmlns:xlink=\"http://www.w3.org/1999/xlink\"\n");
1231     outs.printf("xmlns:dc=\"http://purl.org/dc/elements/1.1/\"\n");
1232     outs.printf("xmlns:meta=\"urn:oasis:names:tc:opendocument:xmlns:meta:1.0\"\n");
1233     outs.printf("xmlns:presentation=\"urn:oasis:names:tc:opendocument:xmlns:presentation:1.0\"\n");
1234     outs.printf("xmlns:ooo=\"http://openoffice.org/2004/office\"\n");
1235     outs.printf("xmlns:smil=\"urn:oasis:names:tc:opendocument:xmlns:smil-compatible:1.0\"\n");
1236     outs.printf("xmlns:anim=\"urn:oasis:names:tc:opendocument:xmlns:animation:1.0\"\n");
1237     outs.printf("office:version=\"1.0\">\n");
1238     outs.printf("<office:meta>\n");
1239     outs.printf("    <meta:generator>Inkscape.org - 0.45</meta:generator>\n");
1240     outs.printf("    <meta:initial-creator>%#s</meta:initial-creator>\n",
1241                                   creator.c_str());
1242     outs.printf("    <meta:creation-date>%#s</meta:creation-date>\n", date.c_str());
1243     for (iter = metadata.begin() ; iter != metadata.end() ; iter++)
1244         {
1245         Glib::ustring name  = iter->first;
1246         Glib::ustring value = iter->second;
1247         if (name.size() > 0 && value.size()>0)
1248             {
1249             outs.printf("    <%#s>%#s</%#s>\n",
1250                       name.c_str(), value.c_str(), name.c_str());
1251             }
1252         }
1253     outs.printf("    <meta:editing-cycles>2</meta:editing-cycles>\n");
1254     outs.printf("    <meta:editing-duration>PT56S</meta:editing-duration>\n");
1255     outs.printf("    <meta:user-defined meta:name=\"Info 1\"/>\n");
1256     outs.printf("    <meta:user-defined meta:name=\"Info 2\"/>\n");
1257     outs.printf("    <meta:user-defined meta:name=\"Info 3\"/>\n");
1258     outs.printf("    <meta:user-defined meta:name=\"Info 4\"/>\n");
1259     outs.printf("    <meta:document-statistic meta:object-count=\"2\"/>\n");
1260     outs.printf("</office:meta>\n");
1261     outs.printf("</office:document-meta>\n");
1262     outs.printf("\n");
1263     outs.printf("\n");
1266     outs.close();
1268     //Make our entry
1269     ZipEntry *ze = zf.newEntry("meta.xml", "ODF info file");
1270     ze->setUncompressedData(bouts.getBuffer());
1271     ze->finish();
1273     return true;
1279 /**
1280  * This is called just before writeTree(), since it will write style and
1281  * gradient information above the <draw> tag in the content.xml file
1282  */
1283 bool OdfOutput::writeStyle(ZipFile &zf)
1285     BufferOutputStream bouts;
1286     OutputStreamWriter outs(bouts);
1288     /*
1289     ==========================================================
1290     Dump our style table.  Styles should have a general layout
1291     something like the following.  Look in:
1292     http://books.evc-cit.info/odbook/ch06.html#draw-style-file-section
1293     for style and gradient information.
1294     <style:style style:name="gr13"
1295       style:family="graphic" style:parent-style-name="standard">
1296         <style:graphic-properties draw:stroke="solid"
1297             svg:stroke-width="0.1cm"
1298             svg:stroke-color="#ff0000"
1299             draw:fill="solid" draw:fill-color="#e6e6ff"/>
1300     </style:style>
1301     ==========================================================
1302     */
1303     outs.printf("<!-- ####### Styles from Inkscape document ####### -->\n");
1304     std::vector<StyleInfo>::iterator iter;
1305     for (iter = styleTable.begin() ; iter != styleTable.end() ; iter++)
1306         {
1307         outs.printf("<style:style style:name=\"%s\"", iter->name.c_str());
1308         StyleInfo s(*iter);
1309         outs.printf(" style:family=\"graphic\" style:parent-style-name=\"standard\">\n");
1310         outs.printf("  <style:graphic-properties");
1311         outs.printf(" draw:fill=\"%s\" ", s.fill.c_str());
1312         if (s.fill != "none")
1313             {
1314             outs.printf(" draw:fill-color=\"%s\" ", s.fillColor.c_str());
1315             outs.printf(" draw:fill-opacity=\"%s\" ", s.fillOpacity.c_str());
1316             }
1317         outs.printf(" draw:stroke=\"%s\" ", s.stroke.c_str());
1318         if (s.stroke != "none")
1319             {
1320             outs.printf(" svg:stroke-width=\"%s\" ", s.strokeWidth.c_str());
1321             outs.printf(" svg:stroke-color=\"%s\" ", s.strokeColor.c_str());
1322             outs.printf(" svg:stroke-opacity=\"%s\" ", s.strokeOpacity.c_str());
1323             }
1324         outs.printf("/>\n");
1325         outs.printf("</style:style>\n");
1326         }
1328     //##  Dump our gradient table
1329     int gradientCount = 0;
1330     outs.printf("\n");
1331     outs.printf("<!-- ####### Gradients from Inkscape document ####### -->\n");
1332     std::vector<GradientInfo>::iterator giter;
1333     for (giter = gradientTable.begin() ; giter != gradientTable.end() ; giter++)
1334         {
1335         GradientInfo gi(*giter);
1336         if (gi.style == "linear")
1337             {
1338             /*
1339             ===================================================================
1340             LINEAR gradient.  We need something that looks like this:
1341             <draw:gradient draw:name="Gradient_20_7"
1342                 draw:display-name="Gradient 7"
1343                 draw:style="linear"
1344                 draw:start-color="#008080" draw:end-color="#993366"
1345                 draw:start-intensity="100%" draw:end-intensity="100%"
1346                 draw:angle="150" draw:border="0%"/>
1347             ===================================================================
1348             */
1349             if (gi.stops.size() < 2)
1350                 {
1351                 g_warning("Need at least 2 tops for a linear gradient");
1352                 continue;
1353                 }
1354             outs.printf("<svg:linearGradient ");
1355             outs.printf("id=\"%#s_g\" ", gi.name.c_str());
1356             outs.printf("draw:name=\"%#s_g\"\n", gi.name.c_str());
1357             outs.printf("    draw:display-name=\"imported linear %u\"\n",
1358                         gradientCount);
1359             outs.printf("    svg:x1=\"%05.3fcm\" svg:y1=\"%05.3fcm\"\n",
1360                         gi.x1, gi.y1);
1361             outs.printf("    svg:x2=\"%05.3fcm\" svg:y2=\"%05.3fcm\"\n",
1362                         gi.x2, gi.y2);
1363             outs.printf("    svg:gradientUnits=\"objectBoundingBox\">\n");
1364             outs.printf("    <svg:stop\n");
1365             outs.printf("        svg:stop-color=\"#%06lx\"\n",
1366                         gi.stops[0].rgb);
1367             outs.printf("        svg:stop-opacity=\"%f%%\"\n",
1368                         gi.stops[0].opacity * 100.0);
1369             outs.printf("        svg:offset=\"0\"/>\n");
1370             outs.printf("    <svg:stop\n");
1371             outs.printf("        svg:stop-color=\"#%06lx\"\n",
1372                         gi.stops[1].rgb);
1373             outs.printf("        svg:stop-opacity=\"%f%%\"\n",
1374                         gi.stops[1].opacity * 100.0);
1375             outs.printf("        svg:offset=\"1\"/>\n");
1376             outs.printf("</svg:linearGradient>\n");
1377             }
1378         else if (gi.style == "radial")
1379             {
1380             /*
1381             ===================================================================
1382             RADIAL gradient.  We need something that looks like this:
1383             <!-- radial gradient, light gray to white, centered, 0% border -->
1384             <draw:gradient draw:name="radial_20_borderless"
1385                 draw:display-name="radial borderless"
1386                 draw:style="radial"
1387                 draw:cx="50%" draw:cy="50%"
1388                 draw:start-color="#999999" draw:end-color="#ffffff"
1389                 draw:border="0%"/>
1390             ===================================================================
1391             */
1392             if (gi.stops.size() < 2)
1393                 {
1394                 g_warning("Need at least 2 tops for a radial gradient");
1395                 continue;
1396                 }
1397             outs.printf("<svg:radialGradient ");
1398             outs.printf("id=\"%#s_g\" ", gi.name.c_str());
1399             outs.printf("draw:name=\"%#s_g\"\n", gi.name.c_str());
1400             outs.printf("    draw:display-name=\"imported radial %d\"\n",
1401                         gradientCount);
1402             outs.printf("    svg:cx=\"%05.3f\" svg:cy=\"%05.3f\"\n",
1403                         gi.cx, gi.cy);
1404             outs.printf("    svg:fx=\"%05.3f\" svg:fy=\"%05.3f\"\n",
1405                         gi.fx, gi.fy);
1406             outs.printf("    svg:r=\"%05.3f\"\n",
1407                         gi.r);
1408             outs.printf("    svg:gradientUnits=\"objectBoundingBox\">\n");
1409             outs.printf("    <svg:stop\n");
1410             outs.printf("        svg:stop-color=\"#%06lx\"\n",
1411                         gi.stops[0].rgb);
1412             outs.printf("        svg:stop-opacity=\"%f%%\"\n",
1413                         gi.stops[0].opacity * 100.0);
1414             outs.printf("        svg:offset=\"0\"/>\n");
1415             outs.printf("    <svg:stop\n");
1416             outs.printf("        svg:stop-color=\"#%06lx\"\n",
1417                         gi.stops[1].rgb);
1418             outs.printf("        svg:stop-opacity=\"%f%%\"\n",
1419                         gi.stops[1].opacity * 100.0);
1420             outs.printf("        svg:offset=\"1\"/>\n");
1421             outs.printf("</svg:radialGradient>\n");
1422             }
1423         else
1424             {
1425             g_warning("unsupported gradient style '%s'", gi.style.c_str());
1426             }
1427         outs.printf("<style:style style:name=\"%#s\" style:family=\"graphic\" ",
1428                   gi.name.c_str());
1429         outs.printf("style:parent-style-name=\"standard\">\n");
1430         outs.printf("    <style:graphic-properties draw:fill=\"gradient\" ");
1431         outs.printf("draw:fill-gradient-name=\"%#s_g\"\n",
1432                   gi.name.c_str());
1433         outs.printf("        draw:textarea-horizontal-align=\"center\" ");
1434         outs.printf("draw:textarea-vertical-align=\"middle\"/>\n");
1435         outs.printf("</style:style>\n\n");
1437         gradientCount++;
1438         }
1440     outs.printf("\n");
1441     outs.printf("</office:automatic-styles>\n");
1442     outs.printf("\n");
1443     outs.printf("\n");
1444     outs.printf("<office:master-styles>\n");
1445     outs.printf("<draw:layer-set>\n");
1446     outs.printf("    <draw:layer draw:name=\"layout\"/>\n");
1447     outs.printf("    <draw:layer draw:name=\"background\"/>\n");
1448     outs.printf("    <draw:layer draw:name=\"backgroundobjects\"/>\n");
1449     outs.printf("    <draw:layer draw:name=\"controls\"/>\n");
1450     outs.printf("    <draw:layer draw:name=\"measurelines\"/>\n");
1451     outs.printf("</draw:layer-set>\n");
1452     outs.printf("\n");
1453     outs.printf("<style:master-page style:name=\"Default\"\n");
1454     outs.printf("    style:page-master-name=\"PM1\" draw:style-name=\"dp1\"/>\n");
1455     outs.printf("</office:master-styles>\n");
1456     outs.printf("\n");
1457     outs.printf("\n");
1458     outs.printf("\n");
1459     outs.printf("</office:document-styles>\n");
1460     outs.printf("\n");
1461     outs.printf("<!--\n");
1462     outs.printf("*************************************************************************\n");
1463     outs.printf("  E N D    O F    F I L E\n");
1464     outs.printf("  Have a nice day  - ishmal\n");
1465     outs.printf("*************************************************************************\n");
1466     outs.printf("-->\n");
1467     outs.printf("\n");
1469     //Make our entry
1470     ZipEntry *ze = zf.newEntry("styles.xml", "ODF style file");
1471     ze->setUncompressedData(bouts.getBuffer());
1472     ze->finish();
1474     return true;
1479 /**
1480  * Writes an SVG path as an ODF <draw:path> and returns the number of points written
1481  */
1482 static int
1483 writePath(Writer &outs, Geom::PathVector const &pathv,
1484           Geom::Matrix const &tf, double xoff, double yoff)
1486     using Geom::X;
1487     using Geom::Y;
1489     int nrPoints  = 0;
1491     // convert the path to only lineto's and cubic curveto's:
1492     Geom::PathVector pv = pathv_to_linear_and_cubic_beziers(pathv * tf * Geom::Translate(xoff, yoff) * Geom::Scale(1000.));
1494         for (Geom::PathVector::const_iterator pit = pathv.begin(); pit != pathv.end(); ++pit) {
1496             double destx = pit->initialPoint()[X];
1497             double desty = pit->initialPoint()[Y];
1498             if (fabs(destx)<1.0) destx = 0.0;   // Why is this needed? Shouldn't we just round all numbers then?
1499             if (fabs(desty)<1.0) desty = 0.0;
1500             outs.printf("M %.3f %.3f ", destx, desty);
1501             nrPoints++;
1503             for (Geom::Path::const_iterator cit = pit->begin(); cit != pit->end_closed(); ++cit) {
1505                 if( dynamic_cast<Geom::LineSegment const *> (&*cit) ||
1506                     dynamic_cast<Geom::HLineSegment const *>(&*cit) ||
1507                     dynamic_cast<Geom::VLineSegment const *>(&*cit) )
1508                 {
1509                     double destx = cit->finalPoint()[X];
1510                     double desty = cit->finalPoint()[Y];
1511                     if (fabs(destx)<1.0) destx = 0.0;   // Why is this needed? Shouldn't we just round all numbers then?
1512                     if (fabs(desty)<1.0) desty = 0.0;
1513                     outs.printf("L %.3f %.3f ",  destx, desty);
1514                 }
1515                 else if(Geom::CubicBezier const *cubic = dynamic_cast<Geom::CubicBezier const*>(&*cit)) {
1516                     std::vector<Geom::Point> points = cubic->points();
1517                     for (unsigned i = 1; i <= 3; i++) {
1518                         if (fabs(points[i][X])<1.0) points[i][X] = 0.0;   // Why is this needed? Shouldn't we just round all numbers then?
1519                         if (fabs(points[i][Y])<1.0) points[i][Y] = 0.0;
1520                     }
1521                     outs.printf("C %.3f %.3f %.3f %.3f %.3f %.3f ", points[1][X],points[1][Y], points[2][X],points[2][Y], points[3][X],points[3][Y]);
1522                 }
1523                 else {
1524                     g_error ("logical error, because pathv_to_linear_and_cubic_beziers was used");
1525                 }
1527                 nrPoints++;
1528             }
1530             if (pit->closed()) {
1531                 outs.printf("Z");
1532             }
1533         }
1535     return nrPoints;
1540 bool OdfOutput::processStyle(Writer &outs, SPItem *item,
1541                              const Glib::ustring &id)
1543     SPStyle *style = item->style;
1545     StyleInfo si;
1547     //## FILL
1548     if (style->fill.isColor())
1549         {
1550         guint32 fillCol = style->fill.value.color.toRGBA32( 0 );
1551         char buf[16];
1552         int r = (fillCol >> 24) & 0xff;
1553         int g = (fillCol >> 16) & 0xff;
1554         int b = (fillCol >>  8) & 0xff;
1555         //g_message("## %s %lx", id.c_str(), (unsigned int)fillCol);
1556         snprintf(buf, 15, "#%02x%02x%02x", r, g, b);
1557         si.fillColor = buf;
1558         si.fill      = "solid";
1559         double opacityPercent = 100.0 *
1560              (SP_SCALE24_TO_FLOAT(style->fill_opacity.value));
1561         snprintf(buf, 15, "%.3f%%", opacityPercent);
1562         si.fillOpacity = buf;
1563         }
1565     //## STROKE
1566     if (style->stroke.isColor())
1567         {
1568         guint32 strokeCol = style->stroke.value.color.toRGBA32( 0 );
1569         char buf[16];
1570         int r = (strokeCol >> 24) & 0xff;
1571         int g = (strokeCol >> 16) & 0xff;
1572         int b = (strokeCol >>  8) & 0xff;
1573         snprintf(buf, 15, "#%02x%02x%02x", r, g, b);
1574         si.strokeColor = buf;
1575         snprintf(buf, 15, "%.3fpt", style->stroke_width.value);
1576         si.strokeWidth = buf;
1577         si.stroke      = "solid";
1578         double opacityPercent = 100.0 *
1579              (SP_SCALE24_TO_FLOAT(style->stroke_opacity.value));
1580         snprintf(buf, 15, "%.3f%%", opacityPercent);
1581         si.strokeOpacity = buf;
1582         }
1584     //Look for existing identical style;
1585     bool styleMatch = false;
1586     std::vector<StyleInfo>::iterator iter;
1587     for (iter=styleTable.begin() ; iter!=styleTable.end() ; iter++)
1588         {
1589         if (si.equals(*iter))
1590             {
1591             //map to existing styleTable entry
1592             Glib::ustring styleName = iter->name;
1593             //g_message("found duplicate style:%s", styleName.c_str());
1594             styleLookupTable[id] = styleName;
1595             styleMatch = true;
1596             break;
1597             }
1598         }
1600     //## Dont need a new style
1601     if (styleMatch)
1602         return false;
1604     char buf[16];
1605     snprintf(buf, 15, "style%d", (int)styleTable.size());
1606     Glib::ustring styleName = buf;
1607     si.name = styleName;
1608     styleTable.push_back(si);
1609     styleLookupTable[id] = styleName;
1611     outs.printf("<style:style style:name=\"%s\"", si.name.c_str());
1612     outs.printf(" style:family=\"graphic\" style:parent-style-name=\"standard\">\n");
1613     outs.printf("  <style:graphic-properties");
1614     outs.printf(" draw:fill=\"%s\" ", si.fill.c_str());
1615     if (si.fill != "none")
1616         {
1617         outs.printf(" draw:fill-color=\"%s\" ", si.fillColor.c_str());
1618         outs.printf(" draw:fill-opacity=\"%s\" ", si.fillOpacity.c_str());
1619         }
1620     outs.printf(" draw:stroke=\"%s\" ", si.stroke.c_str());
1621     if (si.stroke != "none")
1622         {
1623         outs.printf(" svg:stroke-width=\"%s\" ", si.strokeWidth.c_str());
1624         outs.printf(" svg:stroke-color=\"%s\" ", si.strokeColor.c_str());
1625         outs.printf(" svg:stroke-opacity=\"%s\" ", si.strokeOpacity.c_str());
1626         }
1627     outs.printf("/>\n");
1628     outs.printf("</style:style>\n");
1630     return true;
1636 bool OdfOutput::processGradient(Writer &outs, SPItem *item,
1637                                 const Glib::ustring &id, NR::Matrix &/*tf*/)
1639     if (!item)
1640         return false;
1642     SPStyle *style = item->style;
1644     if (!style)
1645         return false;
1647     if (!style->fill.isPaintserver())
1648         return false;
1650     //## Gradient.  Look in writeStyle() below to see what info
1651     //   we need to read into GradientInfo.
1652     if (!SP_IS_GRADIENT(SP_STYLE_FILL_SERVER(style)))
1653         return false;
1655     SPGradient *gradient = SP_GRADIENT(SP_STYLE_FILL_SERVER(style));
1657     GradientInfo gi;
1659     SPGradient *grvec = sp_gradient_get_vector(gradient, FALSE);
1660     for (SPStop *stop = sp_first_stop(grvec) ;
1661           stop ; stop = sp_next_stop(stop))
1662         {
1663         unsigned long rgba = sp_stop_get_rgba32(stop);
1664         unsigned long rgb  = (rgba >> 8) & 0xffffff;
1665         double opacity     = ((double)(rgba & 0xff)) / 256.0;
1666         GradientStop gs(rgb, opacity);
1667         gi.stops.push_back(gs);
1668         }
1670     if (SP_IS_LINEARGRADIENT(gradient))
1671         {
1672         gi.style = "linear";
1673         SPLinearGradient *linGrad = SP_LINEARGRADIENT(gradient);
1674         /*
1675         NR::Point p1(linGrad->x1.value, linGrad->y1.value);
1676         p1 = p1 * tf;
1677         gi.x1 = p1[NR::X];
1678         gi.y1 = p1[NR::Y];
1679         NR::Point p2(linGrad->x2.value, linGrad->y2.value);
1680         p2 = p2 * tf;
1681         gi.x2 = p2[NR::X];
1682         gi.y2 = p2[NR::Y];
1683         */
1684         gi.x1 = linGrad->x1.value;
1685         gi.y1 = linGrad->y1.value;
1686         gi.x2 = linGrad->x2.value;
1687         gi.y2 = linGrad->y2.value;
1688         }
1689     else if (SP_IS_RADIALGRADIENT(gradient))
1690         {
1691         gi.style = "radial";
1692         SPRadialGradient *radGrad = SP_RADIALGRADIENT(gradient);
1693         gi.cx = radGrad->cx.computed * 100.0;//ODG cx is percentages
1694         gi.cy = radGrad->cy.computed * 100.0;
1695         }
1696     else
1697         {
1698         g_warning("not a supported gradient type");
1699         return false;
1700         }
1702     //Look for existing identical style;
1703     bool gradientMatch = false;
1704     std::vector<GradientInfo>::iterator iter;
1705     for (iter=gradientTable.begin() ; iter!=gradientTable.end() ; iter++)
1706         {
1707         if (gi.equals(*iter))
1708             {
1709             //map to existing gradientTable entry
1710             Glib::ustring gradientName = iter->name;
1711             //g_message("found duplicate style:%s", gradientName.c_str());
1712             gradientLookupTable[id] = gradientName;
1713             gradientMatch = true;
1714             break;
1715             }
1716         }
1718     if (gradientMatch)
1719         return true;
1721     //## No match, let us write a new entry
1722     char buf[16];
1723     snprintf(buf, 15, "gradient%d", (int)gradientTable.size());
1724     Glib::ustring gradientName = buf;
1725     gi.name = gradientName;
1726     gradientTable.push_back(gi);
1727     gradientLookupTable[id] = gradientName;
1729     int gradientCount = gradientTable.size();
1731     if (gi.style == "linear")
1732         {
1733         /*
1734         ===================================================================
1735         LINEAR gradient.  We need something that looks like this:
1736         <draw:gradient draw:name="Gradient_20_7"
1737             draw:display-name="Gradient 7"
1738             draw:style="linear"
1739             draw:start-color="#008080" draw:end-color="#993366"
1740             draw:start-intensity="100%" draw:end-intensity="100%"
1741             draw:angle="150" draw:border="0%"/>
1742         ===================================================================
1743         */
1744         if (gi.stops.size() < 2)
1745             {
1746             g_warning("Need at least 2 stops for a linear gradient");
1747             return false;;
1748             }
1749         outs.printf("<svg:linearGradient ");
1750         outs.printf("id=\"%#s_g\" ", gi.name.c_str());
1751         outs.printf("draw:name=\"%#s_g\"\n", gi.name.c_str());
1752         outs.printf("    draw:display-name=\"imported linear %d\"\n",
1753                     gradientCount);
1754         outs.printf("    svg:gradientUnits=\"objectBoundingBox\"\n");
1755         outs.printf("    svg:x1=\"%05.3fcm\" svg:y1=\"%05.3fcm\"\n",
1756                     gi.x1 * pxToCm, gi.y1 * pxToCm);
1757         outs.printf("    svg:x2=\"%05.3fcm\" svg:y2=\"%05.3fcm\">\n",
1758                     gi.x2 * pxToCm, gi.y2 * pxToCm);
1759         outs.printf("    <svg:stop\n");
1760         outs.printf("        svg:stop-color=\"#%06lx\"\n",
1761                     gi.stops[0].rgb);
1762         outs.printf("        svg:stop-opacity=\"%f%%\"\n",
1763                     gi.stops[0].opacity * 100.0);
1764         outs.printf("        svg:offset=\"0\"/>\n");
1765         outs.printf("    <svg:stop\n");
1766         outs.printf("        svg:stop-color=\"#%06lx\"\n",
1767                     gi.stops[1].rgb);
1768         outs.printf("        svg:stop-opacity=\"%f%%\"\n",
1769                     gi.stops[1].opacity * 100.0);
1770         outs.printf("        svg:offset=\"1\"/>\n");
1771         outs.printf("</svg:linearGradient>\n");
1772         }
1773     else if (gi.style == "radial")
1774         {
1775         /*
1776         ===================================================================
1777         RADIAL gradient.  We need something that looks like this:
1778         <!-- radial gradient, light gray to white, centered, 0% border -->
1779         <draw:gradient draw:name="radial_20_borderless"
1780             draw:display-name="radial borderless"
1781             draw:style="radial"
1782             draw:cx="50%" draw:cy="50%"
1783             draw:start-color="#999999" draw:end-color="#ffffff"
1784             draw:border="0%"/>
1785         ===================================================================
1786         */
1787         if (gi.stops.size() < 2)
1788             {
1789             g_warning("Need at least 2 stops for a radial gradient");
1790             return false;
1791             }
1792         outs.printf("<svg:radialGradient ");
1793         outs.printf("id=\"%#s_g\" ", gi.name.c_str());
1794         outs.printf("draw:name=\"%#s_g\"\n", gi.name.c_str());
1795         outs.printf("    draw:display-name=\"imported radial %d\"\n",
1796                     gradientCount);
1797         outs.printf("    svg:gradientUnits=\"objectBoundingBox\"\n");
1798         outs.printf("    svg:cx=\"%05.3f\" svg:cy=\"%05.3f\"\n",
1799                     gi.cx, gi.cy);
1800         outs.printf("    svg:fx=\"%05.3f\" svg:fy=\"%05.3f\"\n",
1801                     gi.fx, gi.fy);
1802         outs.printf("    svg:r=\"%05.3f\">\n",
1803                     gi.r);
1804         outs.printf("    <svg:stop\n");
1805         outs.printf("        svg:stop-color=\"#%06lx\"\n",
1806                     gi.stops[0].rgb);
1807         outs.printf("        svg:stop-opacity=\"%f%%\"\n",
1808                     gi.stops[0].opacity * 100.0);
1809         outs.printf("        svg:offset=\"0\"/>\n");
1810         outs.printf("    <svg:stop\n");
1811         outs.printf("        svg:stop-color=\"#%06lx\"\n",
1812                     gi.stops[1].rgb);
1813         outs.printf("        svg:stop-opacity=\"%f%%\"\n",
1814                     gi.stops[1].opacity * 100.0);
1815         outs.printf("        svg:offset=\"1\"/>\n");
1816         outs.printf("</svg:radialGradient>\n");
1817         }
1818     else
1819         {
1820         g_warning("unsupported gradient style '%s'", gi.style.c_str());
1821         return false;
1822         }
1823     outs.printf("<style:style style:name=\"%#s\" style:family=\"graphic\" ",
1824               gi.name.c_str());
1825     outs.printf("style:parent-style-name=\"standard\">\n");
1826     outs.printf("    <style:graphic-properties draw:fill=\"gradient\" ");
1827     outs.printf("draw:fill-gradient-name=\"%#s_g\"\n",
1828               gi.name.c_str());
1829     outs.printf("        draw:textarea-horizontal-align=\"center\" ");
1830     outs.printf("draw:textarea-vertical-align=\"middle\"/>\n");
1831     outs.printf("</style:style>\n\n");
1833     return true;
1839 /**
1840  * SECOND PASS.
1841  * This is the main SPObject tree output to ODF.  preprocess()
1842  * must be called prior to this, as elements will often reference
1843  * data parsed and tabled in preprocess().
1844  */
1845 bool OdfOutput::writeTree(Writer &couts, Writer &souts,
1846                           Inkscape::XML::Node *node)
1848     //# Get the SPItem, if applicable
1849     SPObject *reprobj = SP_ACTIVE_DOCUMENT->getObjectByRepr(node);
1850     if (!reprobj)
1851         return true;
1852     if (!SP_IS_ITEM(reprobj))
1853         {
1854         return true;
1855         }
1856     SPItem *item = SP_ITEM(reprobj);
1859     Glib::ustring nodeName = node->name();
1860     Glib::ustring id       = getAttribute(node, "id");
1862     //### Get SVG-to-ODF transform
1863     NR::Matrix tf        = getODFTransform(item);
1865     //### Get ODF bounding box params for item
1866     NR::Maybe<NR::Rect> bbox = getODFBoundingBox(item);
1867     if (!bbox) {
1868         return true;
1869     }
1871     double bbox_x        = bbox->min()[NR::X];
1872     double bbox_y        = bbox->min()[NR::Y];
1873     double bbox_width    = bbox->extent(NR::X);
1874     double bbox_height   = bbox->extent(NR::Y);
1876     double rotate;
1877     double xskew;
1878     double yskew;
1879     double xscale;
1880     double yscale;
1881     analyzeTransform(tf, rotate, xskew, yskew, xscale, yscale);
1883     //# Do our stuff
1884     SPCurve *curve = NULL;
1888     if (nodeName == "svg" || nodeName == "svg:svg")
1889         {
1890         //# Iterate through the children
1891         for (Inkscape::XML::Node *child = node->firstChild() ;
1892                child ; child = child->next())
1893             {
1894             if (!writeTree(couts, souts, child))
1895                 return false;
1896             }
1897         return true;
1898         }
1899     else if (nodeName == "g" || nodeName == "svg:g")
1900         {
1901         if (id.size() > 0)
1902             couts.printf("<draw:g id=\"%s\">\n", id.c_str());
1903         else
1904             couts.printf("<draw:g>\n");
1905         //# Iterate through the children
1906         for (Inkscape::XML::Node *child = node->firstChild() ;
1907                child ; child = child->next())
1908             {
1909             if (!writeTree(couts, souts, child))
1910                 return false;
1911             }
1912         if (id.size() > 0)
1913             couts.printf("</draw:g> <!-- id=\"%s\" -->\n", id.c_str());
1914         else
1915             couts.printf("</draw:g>\n");
1916         return true;
1917         }
1919     //######################################
1920     //# S T Y L E
1921     //######################################
1922     processStyle(souts, item, id);
1924     //######################################
1925     //# G R A D I E N T
1926     //######################################
1927     processGradient(souts, item, id, tf);
1932     //######################################
1933     //# I T E M    D A T A
1934     //######################################
1935     //g_message("##### %s #####", nodeName.c_str());
1936     if (nodeName == "image" || nodeName == "svg:image")
1937         {
1938         if (!SP_IS_IMAGE(item))
1939             {
1940             g_warning("<image> is not an SPImage.  Why?  ;-)");
1941             return false;
1942             }
1944         SPImage *img   = SP_IMAGE(item);
1945         double ix      = img->x.value;
1946         double iy      = img->y.value;
1947         double iwidth  = img->width.value;
1948         double iheight = img->height.value;
1950         NR::Rect ibbox(NR::Point(ix, iy), NR::Point(ix+iwidth, iy+iheight));
1951         ibbox = ibbox * tf;
1952         ix      = ibbox.min()[NR::X];
1953         iy      = ibbox.min()[NR::Y];
1954         //iwidth  = ibbox.max()[NR::X] - ibbox.min()[NR::X];
1955         //iheight = ibbox.max()[NR::Y] - ibbox.min()[NR::Y];
1956         iwidth  = xscale * iwidth;
1957         iheight = yscale * iheight;
1959         NR::Matrix itemTransform = getODFItemTransform(item);
1961         Glib::ustring itemTransformString = formatTransform(itemTransform);
1963         Glib::ustring href = getAttribute(node, "xlink:href");
1964         std::map<Glib::ustring, Glib::ustring>::iterator iter = imageTable.find(href);
1965         if (iter == imageTable.end())
1966             {
1967             g_warning("image '%s' not in table", href.c_str());
1968             return false;
1969             }
1970         Glib::ustring newName = iter->second;
1972         couts.printf("<draw:frame ");
1973         if (id.size() > 0)
1974             couts.printf("id=\"%s\" ", id.c_str());
1975         couts.printf("draw:style-name=\"gr1\" draw:text-style-name=\"P1\" draw:layer=\"layout\" ");
1976         //no x or y.  make them the translate transform, last one
1977         couts.printf("svg:width=\"%.3fcm\" svg:height=\"%.3fcm\" ",
1978                                   iwidth, iheight);
1979         if (itemTransformString.size() > 0)
1980             {
1981             couts.printf("draw:transform=\"%s translate(%.3fcm, %.3fcm)\" ",
1982                            itemTransformString.c_str(), ix, iy);
1983             }
1984         else
1985             {
1986             couts.printf("draw:transform=\"translate(%.3fcm, %.3fcm)\" ",
1987                                 ix, iy);
1988             }
1990         couts.printf(">\n");
1991         couts.printf("    <draw:image xlink:href=\"%s\" xlink:type=\"simple\"\n",
1992                               newName.c_str());
1993         couts.printf("        xlink:show=\"embed\" xlink:actuate=\"onLoad\">\n");
1994         couts.printf("        <text:p/>\n");
1995         couts.printf("    </draw:image>\n");
1996         couts.printf("</draw:frame>\n");
1997         return true;
1998         }
1999     else if (SP_IS_SHAPE(item))
2000         {
2001         //g_message("### %s is a shape", nodeName.c_str());
2002         curve = sp_shape_get_curve(SP_SHAPE(item));
2003         }
2004     else if (SP_IS_TEXT(item) || SP_IS_FLOWTEXT(item))
2005         {
2006         curve = te_get_layout(item)->convertToCurves();
2007         }
2009     if (curve)
2010         {
2011         //### Default <path> output
2013         couts.printf("<draw:path ");
2014         if (id.size()>0)
2015             couts.printf("id=\"%s\" ", id.c_str());
2017         std::map<Glib::ustring, Glib::ustring>::iterator siter;
2018         siter = styleLookupTable.find(id);
2019         if (siter != styleLookupTable.end())
2020             {
2021             Glib::ustring styleName = siter->second;
2022             couts.printf("draw:style-name=\"%s\" ", styleName.c_str());
2023             }
2025         std::map<Glib::ustring, Glib::ustring>::iterator giter;
2026         giter = gradientLookupTable.find(id);
2027         if (giter != gradientLookupTable.end())
2028             {
2029             Glib::ustring gradientName = giter->second;
2030             couts.printf("draw:fill-gradient-name=\"%s\" ",
2031                  gradientName.c_str());
2032             }
2034         couts.printf("draw:layer=\"layout\" svg:x=\"%.3fcm\" svg:y=\"%.3fcm\" ",
2035                        bbox_x, bbox_y);
2036         couts.printf("svg:width=\"%.3fcm\" svg:height=\"%.3fcm\" ",
2037                        bbox_width, bbox_height);
2038         couts.printf("svg:viewBox=\"0.0 0.0 %.3f %.3f\"\n",
2039                        bbox_width * 1000.0, bbox_height * 1000.0);
2041         couts.printf("    svg:d=\"");
2042         int nrPoints = writePath(couts, curve->get_pathvector(),
2043                              to_2geom(tf), bbox_x, bbox_y);
2044         couts.printf("\"");
2046         couts.printf(">\n");
2047         couts.printf("    <!-- %d nodes -->\n", nrPoints);
2048         couts.printf("</draw:path>\n\n");
2051         curve->unref();
2052         }
2054     return true;
2059 /**
2060  * Write the header for the content.xml file
2061  */
2062 bool OdfOutput::writeStyleHeader(Writer &outs)
2064     time_t tim;
2065     time(&tim);
2067     outs.printf("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n");
2068     outs.printf("\n");
2069     outs.printf("\n");
2070     outs.printf("<!--\n");
2071     outs.printf("*************************************************************************\n");
2072     outs.printf("  file:  styles.xml\n");
2073     outs.printf("  Generated by Inkscape: %s", ctime(&tim)); //ctime has its own <cr>
2074     outs.printf("  http://www.inkscape.org\n");
2075     outs.printf("*************************************************************************\n");
2076     outs.printf("-->\n");
2077     outs.printf("\n");
2078     outs.printf("\n");
2079     outs.printf("<office:document-styles\n");
2080     outs.printf("    xmlns:office=\"urn:oasis:names:tc:opendocument:xmlns:office:1.0\"\n");
2081     outs.printf("    xmlns:style=\"urn:oasis:names:tc:opendocument:xmlns:style:1.0\"\n");
2082     outs.printf("    xmlns:text=\"urn:oasis:names:tc:opendocument:xmlns:text:1.0\"\n");
2083     outs.printf("    xmlns:table=\"urn:oasis:names:tc:opendocument:xmlns:table:1.0\"\n");
2084     outs.printf("    xmlns:draw=\"urn:oasis:names:tc:opendocument:xmlns:drawing:1.0\"\n");
2085     outs.printf("    xmlns:fo=\"urn:oasis:names:tc:opendocument:xmlns:xsl-fo-compatible:1.0\"\n");
2086     outs.printf("    xmlns:xlink=\"http://www.w3.org/1999/xlink\"\n");
2087     outs.printf("    xmlns:dc=\"http://purl.org/dc/elements/1.1/\"\n");
2088     outs.printf("    xmlns:meta=\"urn:oasis:names:tc:opendocument:xmlns:meta:1.0\"\n");
2089     outs.printf("    xmlns:number=\"urn:oasis:names:tc:opendocument:xmlns:datastyle:1.0\"\n");
2090     outs.printf("    xmlns:presentation=\"urn:oasis:names:tc:opendocument:xmlns:presentation:1.0\"\n");
2091     outs.printf("    xmlns:svg=\"urn:oasis:names:tc:opendocument:xmlns:svg-compatible:1.0\"\n");
2092     outs.printf("    xmlns:chart=\"urn:oasis:names:tc:opendocument:xmlns:chart:1.0\"\n");
2093     outs.printf("    xmlns:dr3d=\"urn:oasis:names:tc:opendocument:xmlns:dr3d:1.0\"\n");
2094     outs.printf("    xmlns:math=\"http://www.w3.org/1998/Math/MathML\"\n");
2095     outs.printf("    xmlns:form=\"urn:oasis:names:tc:opendocument:xmlns:form:1.0\"\n");
2096     outs.printf("    xmlns:script=\"urn:oasis:names:tc:opendocument:xmlns:script:1.0\"\n");
2097     outs.printf("    xmlns:ooo=\"http://openoffice.org/2004/office\"\n");
2098     outs.printf("    xmlns:ooow=\"http://openoffice.org/2004/writer\"\n");
2099     outs.printf("    xmlns:oooc=\"http://openoffice.org/2004/calc\"\n");
2100     outs.printf("    xmlns:dom=\"http://www.w3.org/2001/xml-events\"\n");
2101     outs.printf("    xmlns:xforms=\"http://www.w3.org/2002/xforms\"\n");
2102     outs.printf("    xmlns:xsd=\"http://www.w3.org/2001/XMLSchema\"\n");
2103     outs.printf("    xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"\n");
2104     outs.printf("    xmlns:smil=\"urn:oasis:names:tc:opendocument:xmlns:smil-compatible:1.0\"\n");
2105     outs.printf("    xmlns:anim=\"urn:oasis:names:tc:opendocument:xmlns:animation:1.0\"\n");
2106     outs.printf("    office:version=\"1.0\">\n");
2107     outs.printf("\n");
2108     outs.printf("\n");
2109     outs.printf("<!--\n");
2110     outs.printf("*************************************************************************\n");
2111     outs.printf("  S T Y L E S\n");
2112     outs.printf("  Style entries have been pulled from the svg style and\n");
2113     outs.printf("  representation attributes in the SVG tree.  The tree elements\n");
2114     outs.printf("  then refer to them by name, in the ODF manner\n");
2115     outs.printf("*************************************************************************\n");
2116     outs.printf("-->\n");
2117     outs.printf("\n");
2118     outs.printf("<office:styles>\n");
2119     outs.printf("\n");
2121     return true;
2125 /**
2126  * Write the footer for the style.xml file
2127  */
2128 bool OdfOutput::writeStyleFooter(Writer &outs)
2130     outs.printf("\n");
2131     outs.printf("</office:styles>\n");
2132     outs.printf("\n");
2133     outs.printf("\n");
2134     outs.printf("<office:automatic-styles>\n");
2135     outs.printf("<!-- ####### 'Standard' styles ####### -->\n");
2136     outs.printf("<style:style style:name=\"dp1\" style:family=\"drawing-page\"/>\n");
2137     outs.printf("<style:style style:name=\"gr1\" style:family=\"graphic\" style:parent-style-name=\"standard\">\n");
2138     outs.printf("  <style:graphic-properties draw:stroke=\"none\" draw:fill=\"none\"\n");
2139     outs.printf("       draw:textarea-horizontal-align=\"center\"\n");
2140     outs.printf("       draw:textarea-vertical-align=\"middle\" draw:color-mode=\"standard\"\n");
2141     outs.printf("       draw:luminance=\"0%%\" draw:contrast=\"0%%\" draw:gamma=\"100%%\" draw:red=\"0%%\"\n");
2142     outs.printf("       draw:green=\"0%%\" draw:blue=\"0%%\" fo:clip=\"rect(0cm 0cm 0cm 0cm)\"\n");
2143     outs.printf("       draw:image-opacity=\"100%%\" style:mirror=\"none\"/>\n");
2144     outs.printf("</style:style>\n");
2145     outs.printf("<style:style style:name=\"P1\" style:family=\"paragraph\">\n");
2146     outs.printf("  <style:paragraph-properties fo:text-align=\"center\"/>\n");
2147     outs.printf("</style:style>\n");
2148     outs.printf("</office:automatic-styles>\n");
2149     outs.printf("\n");
2150     outs.printf("\n");
2151     outs.printf("<office:master-styles>\n");
2152     outs.printf("<draw:layer-set>\n");
2153     outs.printf("    <draw:layer draw:name=\"layout\"/>\n");
2154     outs.printf("    <draw:layer draw:name=\"background\"/>\n");
2155     outs.printf("    <draw:layer draw:name=\"backgroundobjects\"/>\n");
2156     outs.printf("    <draw:layer draw:name=\"controls\"/>\n");
2157     outs.printf("    <draw:layer draw:name=\"measurelines\"/>\n");
2158     outs.printf("</draw:layer-set>\n");
2159     outs.printf("\n");
2160     outs.printf("<style:master-page style:name=\"Default\"\n");
2161     outs.printf("    style:page-master-name=\"PM1\" draw:style-name=\"dp1\"/>\n");
2162     outs.printf("</office:master-styles>\n");
2163     outs.printf("\n");
2164     outs.printf("\n");
2165     outs.printf("\n");
2166     outs.printf("</office:document-styles>\n");
2167     outs.printf("\n");
2168     outs.printf("<!--\n");
2169     outs.printf("*************************************************************************\n");
2170     outs.printf("  E N D    O F    F I L E\n");
2171     outs.printf("  Have a nice day  - ishmal\n");
2172     outs.printf("*************************************************************************\n");
2173     outs.printf("-->\n");
2174     outs.printf("\n");
2176     return true;
2182 /**
2183  * Write the header for the content.xml file
2184  */
2185 bool OdfOutput::writeContentHeader(Writer &outs)
2187     time_t tim;
2188     time(&tim);
2190     outs.printf("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n");
2191     outs.printf("\n");
2192     outs.printf("\n");
2193     outs.printf("<!--\n");
2194     outs.printf("*************************************************************************\n");
2195     outs.printf("  file:  content.xml\n");
2196     outs.printf("  Generated by Inkscape: %s", ctime(&tim)); //ctime has its own <cr>
2197     outs.printf("  http://www.inkscape.org\n");
2198     outs.printf("*************************************************************************\n");
2199     outs.printf("-->\n");
2200     outs.printf("\n");
2201     outs.printf("\n");
2202     outs.printf("<office:document-content\n");
2203     outs.printf("    xmlns:office=\"urn:oasis:names:tc:opendocument:xmlns:office:1.0\"\n");
2204     outs.printf("    xmlns:style=\"urn:oasis:names:tc:opendocument:xmlns:style:1.0\"\n");
2205     outs.printf("    xmlns:text=\"urn:oasis:names:tc:opendocument:xmlns:text:1.0\"\n");
2206     outs.printf("    xmlns:table=\"urn:oasis:names:tc:opendocument:xmlns:table:1.0\"\n");
2207     outs.printf("    xmlns:draw=\"urn:oasis:names:tc:opendocument:xmlns:drawing:1.0\"\n");
2208     outs.printf("    xmlns:fo=\"urn:oasis:names:tc:opendocument:xmlns:xsl-fo-compatible:1.0\"\n");
2209     outs.printf("    xmlns:xlink=\"http://www.w3.org/1999/xlink\"\n");
2210     outs.printf("    xmlns:dc=\"http://purl.org/dc/elements/1.1/\"\n");
2211     outs.printf("    xmlns:meta=\"urn:oasis:names:tc:opendocument:xmlns:meta:1.0\"\n");
2212     outs.printf("    xmlns:number=\"urn:oasis:names:tc:opendocument:xmlns:datastyle:1.0\"\n");
2213     outs.printf("    xmlns:presentation=\"urn:oasis:names:tc:opendocument:xmlns:presentation:1.0\"\n");
2214     outs.printf("    xmlns:svg=\"urn:oasis:names:tc:opendocument:xmlns:svg-compatible:1.0\"\n");
2215     outs.printf("    xmlns:chart=\"urn:oasis:names:tc:opendocument:xmlns:chart:1.0\"\n");
2216     outs.printf("    xmlns:dr3d=\"urn:oasis:names:tc:opendocument:xmlns:dr3d:1.0\"\n");
2217     outs.printf("    xmlns:math=\"http://www.w3.org/1998/Math/MathML\"\n");
2218     outs.printf("    xmlns:form=\"urn:oasis:names:tc:opendocument:xmlns:form:1.0\"\n");
2219     outs.printf("    xmlns:script=\"urn:oasis:names:tc:opendocument:xmlns:script:1.0\"\n");
2220     outs.printf("    xmlns:ooo=\"http://openoffice.org/2004/office\"\n");
2221     outs.printf("    xmlns:ooow=\"http://openoffice.org/2004/writer\"\n");
2222     outs.printf("    xmlns:oooc=\"http://openoffice.org/2004/calc\"\n");
2223     outs.printf("    xmlns:dom=\"http://www.w3.org/2001/xml-events\"\n");
2224     outs.printf("    xmlns:xforms=\"http://www.w3.org/2002/xforms\"\n");
2225     outs.printf("    xmlns:xsd=\"http://www.w3.org/2001/XMLSchema\"\n");
2226     outs.printf("    xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"\n");
2227     outs.printf("    xmlns:smil=\"urn:oasis:names:tc:opendocument:xmlns:smil-compatible:1.0\"\n");
2228     outs.printf("    xmlns:anim=\"urn:oasis:names:tc:opendocument:xmlns:animation:1.0\"\n");
2229     outs.printf("    office:version=\"1.0\">\n");
2230     outs.printf("\n");
2231     outs.printf("\n");
2232     outs.printf("<office:scripts/>\n");
2233     outs.printf("\n");
2234     outs.printf("\n");
2235     outs.printf("<!--\n");
2236     outs.printf("*************************************************************************\n");
2237     outs.printf("  D R A W I N G\n");
2238     outs.printf("  This section is the heart of SVG-ODF conversion.  We are\n");
2239     outs.printf("  starting with simple conversions, and will slowly evolve\n");
2240     outs.printf("  into a 'smarter' translation as time progresses.  Any help\n");
2241     outs.printf("  in improving .odg export is welcome.\n");
2242     outs.printf("*************************************************************************\n");
2243     outs.printf("-->\n");
2244     outs.printf("\n");
2245     outs.printf("\n");
2246     outs.printf("<office:body>\n");
2247     outs.printf("<office:drawing>\n");
2248     outs.printf("<draw:page draw:name=\"page1\" draw:style-name=\"dp1\"\n");
2249     outs.printf("        draw:master-page-name=\"Default\">\n");
2250     outs.printf("\n");
2251     outs.printf("\n");
2253     return true;
2257 /**
2258  * Write the footer for the content.xml file
2259  */
2260 bool OdfOutput::writeContentFooter(Writer &outs)
2262     outs.printf("\n");
2263     outs.printf("\n");
2265     outs.printf("</draw:page>\n");
2266     outs.printf("</office:drawing>\n");
2268     outs.printf("\n");
2269     outs.printf("\n");
2270     outs.printf("<!-- ######### CONVERSION FROM SVG ENDS ######## -->\n");
2271     outs.printf("\n");
2272     outs.printf("\n");
2274     outs.printf("</office:body>\n");
2275     outs.printf("</office:document-content>\n");
2276     outs.printf("\n");
2277     outs.printf("\n");
2278     outs.printf("\n");
2279     outs.printf("<!--\n");
2280     outs.printf("*************************************************************************\n");
2281     outs.printf("  E N D    O F    F I L E\n");
2282     outs.printf("  Have a nice day  - ishmal\n");
2283     outs.printf("*************************************************************************\n");
2284     outs.printf("-->\n");
2285     outs.printf("\n");
2286     outs.printf("\n");
2288     return true;
2293 /**
2294  * Write the content.xml file.  Writes the namesspace headers, then
2295  * calls writeTree().
2296  */
2297 bool OdfOutput::writeContent(ZipFile &zf, Inkscape::XML::Node *node)
2299     //Content.xml stream
2300     BufferOutputStream cbouts;
2301     OutputStreamWriter couts(cbouts);
2303     if (!writeContentHeader(couts))
2304         return false;
2306     //Style.xml stream
2307     BufferOutputStream sbouts;
2308     OutputStreamWriter souts(sbouts);
2310     if (!writeStyleHeader(souts))
2311         return false;
2314     //# Descend into the tree, doing all of our conversions
2315     //# to both files as the same time
2316     if (!writeTree(couts, souts, node))
2317         {
2318         g_warning("Failed to convert SVG tree");
2319         return false;
2320         }
2324     //# Finish content file
2325     if (!writeContentFooter(couts))
2326         return false;
2328     ZipEntry *ze = zf.newEntry("content.xml", "ODF master content file");
2329     ze->setUncompressedData(cbouts.getBuffer());
2330     ze->finish();
2334     //# Finish style file
2335     if (!writeStyleFooter(souts))
2336         return false;
2338     ze = zf.newEntry("styles.xml", "ODF style file");
2339     ze->setUncompressedData(sbouts.getBuffer());
2340     ze->finish();
2342     return true;
2346 /**
2347  * Resets class to its pristine condition, ready to use again
2348  */
2349 void
2350 OdfOutput::reset()
2352     metadata.clear();
2353     styleTable.clear();
2354     styleLookupTable.clear();
2355     gradientTable.clear();
2356     gradientLookupTable.clear();
2357     imageTable.clear();
2363 /**
2364  * Descends into the SVG tree, mapping things to ODF when appropriate
2365  */
2366 void
2367 OdfOutput::save(Inkscape::Extension::Output */*mod*/, SPDocument *doc, gchar const *uri)
2369     reset();
2371     //g_message("native file:%s\n", uri);
2372     documentUri = URI(uri);
2374     ZipFile zf;
2375     preprocess(zf, doc->rroot);
2377     if (!writeManifest(zf))
2378         {
2379         g_warning("Failed to write manifest");
2380         return;
2381         }
2383     if (!writeContent(zf, doc->rroot))
2384         {
2385         g_warning("Failed to write content");
2386         return;
2387         }
2389     if (!writeMeta(zf))
2390         {
2391         g_warning("Failed to write metafile");
2392         return;
2393         }
2395     if (!zf.writeFile(uri))
2396         {
2397         return;
2398         }
2402 /**
2403  * This is the definition of PovRay output.  This function just
2404  * calls the extension system with the memory allocated XML that
2405  * describes the data.
2406 */
2407 void
2408 OdfOutput::init()
2410     Inkscape::Extension::build_from_mem(
2411         "<inkscape-extension xmlns=\"" INKSCAPE_EXTENSION_URI "\">\n"
2412             "<name>" N_("OpenDocument Drawing Output") "</name>\n"
2413             "<id>org.inkscape.output.odf</id>\n"
2414             "<output>\n"
2415                 "<extension>.odg</extension>\n"
2416                 "<mimetype>text/x-povray-script</mimetype>\n"
2417                 "<filetypename>" N_("OpenDocument drawing (*.odg)") "</filetypename>\n"
2418                 "<filetypetooltip>" N_("OpenDocument drawing file") "</filetypetooltip>\n"
2419             "</output>\n"
2420         "</inkscape-extension>",
2421         new OdfOutput());
2424 /**
2425  * Make sure that we are in the database
2426  */
2427 bool
2428 OdfOutput::check (Inkscape::Extension::Extension */*module*/)
2430     /* We don't need a Key
2431     if (NULL == Inkscape::Extension::db.get(SP_MODULE_KEY_OUTPUT_POV))
2432         return FALSE;
2433     */
2435     return TRUE;
2440 //########################################################################
2441 //# I N P U T
2442 //########################################################################
2446 //#######################
2447 //# L A T E R  !!!  :-)
2448 //#######################
2462 }  //namespace Internal
2463 }  //namespace Extension
2464 }  //namespace Inkscape
2467 //########################################################################
2468 //# E N D    O F    F I L E
2469 //########################################################################
2471 /*
2472   Local Variables:
2473   mode:c++
2474   c-file-style:"stroustrup"
2475   c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
2476   indent-tabs-mode:nil
2477   fill-column:99
2478   End:
2479 */
2480 // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:encoding=utf-8:textwidth=99 :