From 2b68c471b85ba4243c12c78f6c774a297745a177 Mon Sep 17 00:00:00 2001 From: oetiker Date: Mon, 13 Aug 2007 20:06:10 +0000 Subject: [PATCH] Refactored rrd_update code in preparation of finding the HW update problem -- Evan Miller git-svn-id: svn://svn.oetiker.ch/rrdtool/trunk/program@1191 a5681a0c-68f1-0310-ab6d-d61299d08faa --- src/rrd_update.c | 2712 ++++++++++++++++++++++++++-------------------- 1 file changed, 1523 insertions(+), 1189 deletions(-) diff --git a/src/rrd_update.c b/src/rrd_update.c index 1e53979..45f635b 100644 --- a/src/rrd_update.c +++ b/src/rrd_update.c @@ -57,6 +57,128 @@ static int gettimeofday( } #endif + +/* FUNCTION PROTOTYPES */ + +int rrd_update_r( + const char *filename, + const char *tmplt, + int argc, + const char **argv); +int _rrd_update( + const char *filename, + const char *tmplt, + int argc, + const char **argv, + info_t *); + +static int allocate_data_structures( + rrd_t *rrd, char ***updvals, rrd_value_t **pdp_temp, + const char *tmplt, long **tmpl_idx, unsigned long *tmpl_cnt, + unsigned long **rra_step_cnt, rrd_value_t **pdp_new); + +static int parse_template(rrd_t *rrd, const char *tmplt, + unsigned long *tmpl_cnt, long *tmpl_idx); + +static int process_arg( + char *step_start, + rrd_t *rrd, + rrd_file_t *rrd_file, + unsigned long rra_begin, + unsigned long *rra_current, + time_t *current_time, + unsigned long *current_time_usec, + rrd_value_t *pdp_temp, + rrd_value_t *pdp_new, + unsigned long *rra_step_cnt, + char **updvals, + long *tmpl_idx, + unsigned long tmpl_cnt, + info_t **pcdp_summary, + int version, + int *schedule_smooth); + +static int parse_ds(rrd_t *rrd, char **updvals, long *tmpl_idx, char *input, + unsigned long tmpl_cnt, time_t *current_time, unsigned long *current_time_usec, + int version); + +static int get_time_from_reading(rrd_t *rrd, char timesyntax, char **updvals, + time_t *current_time, unsigned long *current_time_usec, int version); + +static int update_pdp_prep(rrd_t *rrd, char **updvals, + rrd_value_t *pdp_new, double interval); + +static int calculate_elapsed_steps(rrd_t *rrd, + unsigned long current_time, unsigned long current_time_usec, + double interval, double *pre_int, double *post_int, + unsigned long *proc_pdp_cnt); + +static void simple_update(rrd_t *rrd, double interval, rrd_value_t *pdp_new); + +static int process_all_pdp_st(rrd_t *rrd, double interval, + double pre_int, double post_int, unsigned long elapsed_pdp_st, + rrd_value_t *pdp_new, rrd_value_t *pdp_temp); + +static int process_pdp_st(rrd_t *rrd, unsigned long ds_idx, double interval, + double pre_int, double post_int, long diff_pdp_st, rrd_value_t *pdp_new, + rrd_value_t *pdp_temp); + +static int update_all_cdp_prep( + rrd_t *rrd, unsigned long *rra_step_cnt, unsigned long rra_begin, + rrd_file_t *rrd_file, unsigned long elapsed_pdp_st, unsigned long proc_pdp_cnt, + rrd_value_t **last_seasonal_coef, rrd_value_t **seasonal_coef, + rrd_value_t *pdp_temp, unsigned long *rra_current, int *schedule_smooth); + +static int do_schedule_smooth(rrd_t *rrd, unsigned long rra_idx, + unsigned long elapsed_pdp_st); + +static int update_cdp_prep(rrd_t *rrd, unsigned long elapsed_pdp_st, + unsigned long start_pdp_offset, unsigned long *rra_step_cnt, + int rra_idx, rrd_value_t *pdp_temp, rrd_value_t *last_seasonal_coef, + rrd_value_t *seasonal_coef, int current_cf); + +static void update_cdp(unival *scratch, int current_cf, + rrd_value_t pdp_temp_val, unsigned long rra_step_cnt, + unsigned long elapsed_pdp_st, unsigned long start_pdp_offset, + unsigned long pdp_cnt, rrd_value_t xff, int i, int ii); + +static void initialize_cdp_val(unival *scratch, int current_cf, + rrd_value_t pdp_temp_val, unsigned long elapsed_pdp_st, + unsigned long start_pdp_offset, unsigned long pdp_cnt); + +static void reset_cdp(rrd_t *rrd, unsigned long elapsed_pdp_st, + rrd_value_t *pdp_temp, rrd_value_t *last_seasonal_coef, + rrd_value_t *seasonal_coef, + int rra_idx, int ds_idx, int cdp_idx, enum cf_en current_cf); + +static rrd_value_t initialize_average_carry_over(rrd_value_t pdp_temp_val, + unsigned long elapsed_pdp_st, unsigned long start_pdp_offset, + unsigned long pdp_cnt); + +static rrd_value_t calculate_cdp_val( + rrd_value_t cdp_val, rrd_value_t pdp_temp_val, + unsigned long elapsed_pdp_st, int current_cf, int i, int ii); + +static int update_aberrant_cdps(rrd_t *rrd, rrd_file_t *rrd_file, + unsigned long rra_begin, unsigned long *rra_current, + unsigned long elapsed_pdp_st, rrd_value_t *pdp_temp, rrd_value_t **seasonal_coef); + +static int write_to_rras(rrd_t *rrd, rrd_file_t *rrd_file, + unsigned long *rra_step_cnt, unsigned long rra_begin, + unsigned long *rra_current, time_t current_time, info_t **pcdp_summary); + +static int write_RRA_row(rrd_file_t *rrd_file, rrd_t *rrd, unsigned long rra_idx, + unsigned long *rra_current, unsigned short CDP_scratch_idx, info_t **pcdp_summary, + time_t *rra_time); + +static int smooth_all_rras(rrd_t *rrd, rrd_file_t *rrd_file, + unsigned long rra_begin); + +#ifndef HAVE_MMAP +static int write_changes_to_disk(rrd_t *rrd, rrd_file_t *rrd_file, + int version); +#endif + /* * normalize time as returned by gettimeofday. usec part must * be always >= 0 @@ -66,70 +188,32 @@ static inline void normalize_time( { if (t->tv_usec < 0) { t->tv_sec--; - t->tv_usec += 1000000L; + t->tv_usec += 1e6L; } } -static inline info_t *write_RRA_row( - rrd_file_t *rrd_file, - rrd_t *rrd, - unsigned long rra_idx, - unsigned long *rra_current, - unsigned short CDP_scratch_idx, - info_t *pcdp_summary, - time_t *rra_time) +/* + * Sets current_time and current_time_usec based on the current time. + * current_time_usec is set to 0 if the version number is 1 or 2. + */ +static inline void initialize_time( + time_t *current_time, unsigned long *current_time_usec, + int version) { - unsigned long ds_idx, cdp_idx; - infoval iv; + struct timeval tmp_time; /* used for time conversion */ - for (ds_idx = 0; ds_idx < rrd->stat_head->ds_cnt; ds_idx++) { - /* compute the cdp index */ - cdp_idx = rra_idx * (rrd->stat_head->ds_cnt) + ds_idx; -#ifdef DEBUG - fprintf(stderr, " -- RRA WRITE VALUE %e, at %ld CF:%s\n", - rrd->cdp_prep[cdp_idx].scratch[CDP_scratch_idx].u_val, - rrd_file->pos, rrd->rra_def[rra_idx].cf_nam); -#endif - if (pcdp_summary != NULL) { - iv.u_val = rrd->cdp_prep[cdp_idx].scratch[CDP_scratch_idx].u_val; - /* append info to the return hash */ - pcdp_summary = info_push(pcdp_summary, - sprintf_alloc("[%d]RRA[%s][%lu]DS[%s]", - *rra_time, - rrd->rra_def[rra_idx]. - cf_nam, - rrd->rra_def[rra_idx]. - pdp_cnt, - rrd->ds_def[ds_idx]. - ds_nam), RD_I_VAL, iv); - } - if (rrd_write - (rrd_file, - &(rrd->cdp_prep[cdp_idx].scratch[CDP_scratch_idx].u_val), - sizeof(rrd_value_t)) != sizeof(rrd_value_t)) { - rrd_set_error("writing rrd: %s", rrd_strerror(errno)); - return 0; - } - *rra_current += sizeof(rrd_value_t); + gettimeofday(&tmp_time, 0); + normalize_time(&tmp_time); + *current_time = tmp_time.tv_sec; + if (version >= 3) { + *current_time_usec = tmp_time.tv_usec; + } else { + *current_time_usec = 0; } - return (pcdp_summary); } -int rrd_update_r( - const char *filename, - const char *tmplt, - int argc, - const char **argv); -int _rrd_update( - const char *filename, - const char *tmplt, - int argc, - const char **argv, - info_t *); - #define IFDNAN(X,Y) (isnan(X) ? (Y) : (X)); - info_t *rrd_update_v( int argc, char **argv) @@ -244,78 +328,33 @@ int _rrd_update( info_t *pcdp_summary) { - int arg_i = 2; - short j; - unsigned long i, ii, iii = 1; + int arg_i = 2; unsigned long rra_begin; /* byte pointer to the rra * area in the rrd file. this * pointer never changes value */ - unsigned long rra_start; /* byte pointer to the rra - * area in the rrd file. this - * pointer changes as each rrd is - * processed. */ unsigned long rra_current; /* byte pointer to the current write * spot in the rrd file. */ - unsigned long rra_pos_tmp; /* temporary byte pointer. */ - double interval, pre_int, post_int; /* interval between this and - * the last run */ - unsigned long proc_pdp_st; /* which pdp_st was the last - * to be processed */ - unsigned long occu_pdp_st; /* when was the pdp_st - * before the last update - * time */ - unsigned long proc_pdp_age; /* how old was the data in - * the pdp prep area when it - * was last updated */ - unsigned long occu_pdp_age; /* how long ago was the last - * pdp_step time */ - rrd_value_t *pdp_new; /* prepare the incoming data - * to be added the the - * existing entry */ - rrd_value_t *pdp_temp; /* prepare the pdp values - * to be added the the - * cdp values */ - - long *tmpl_idx; /* index representing the settings - transported by the tmplt index */ - unsigned long tmpl_cnt = 2; /* time and data */ + rrd_value_t *pdp_new; /* prepare the incoming data to be added + * to the existing entry */ + rrd_value_t *pdp_temp; /* prepare the pdp values to be added + * to the cdp values */ - rrd_t rrd; - time_t current_time = 0; - time_t rra_time = 0; /* time of update for a RRA */ + long *tmpl_idx; /* index representing the settings + * transported by the tmplt index */ + unsigned long tmpl_cnt = 2; /* time and data */ + rrd_t rrd; + time_t current_time = 0; unsigned long current_time_usec = 0; /* microseconds part of current time */ - struct timeval tmp_time; /* used for time conversion */ - - char **updvals; - int schedule_smooth = 0; - rrd_value_t *seasonal_coef = NULL, *last_seasonal_coef = NULL; - - /* a vector of future Holt-Winters seasonal coefs */ - unsigned long elapsed_pdp_st; + char **updvals; + int schedule_smooth = 0; /* number of elapsed PDP steps since last update */ unsigned long *rra_step_cnt = NULL; - /* number of rows to be updated in an RRA for a data - * value. */ - unsigned long start_pdp_offset; - - /* number of PDP steps since the last update that - * are assigned to the first CDP to be generated - * since the last update. */ - unsigned short scratch_idx; - - /* index into the CDP scratch array */ - enum cf_en current_cf; - - /* numeric id of the current consolidation function */ - rpnstack_t rpnstack; /* used for COMPUTE DS */ - int version; /* rrd version */ - char *endptr; /* used in the conversion */ - rrd_file_t *rrd_file; - - rpnstack_init(&rpnstack); + int version; /* rrd version */ + rrd_file_t *rrd_file; + char *arg_copy; /* for processing the argv */ /* need at least 1 arguments: data. */ if (argc < 1) { @@ -323,23 +362,15 @@ int _rrd_update( goto err_out; } - rrd_file = rrd_open(filename, &rrd, RRD_READWRITE); - if (rrd_file == NULL) { + if ((rrd_file = rrd_open(filename, &rrd, RRD_READWRITE)) == NULL) { goto err_free; } /* We are now at the beginning of the rra's */ - rra_current = rra_start = rra_begin = rrd_file->header_len; + rra_current = rra_begin = rrd_file->header_len; - /* initialize time */ version = atoi(rrd.stat_head->version); - gettimeofday(&tmp_time, 0); - normalize_time(&tmp_time); - current_time = tmp_time.tv_sec; - if (version >= 3) { - current_time_usec = tmp_time.tv_usec; - } else { - current_time_usec = 0; - } + + initialize_time(¤t_time, ¤t_time_usec, version); /* get exclusive lock to whole file. * lock gets removed when we close the file. @@ -349,1191 +380,1494 @@ int _rrd_update( goto err_close; } - if ((updvals = - malloc(sizeof(char *) * (rrd.stat_head->ds_cnt + 1))) == NULL) { - rrd_set_error("allocating updvals pointer array"); + if (allocate_data_structures(&rrd, &updvals, + &pdp_temp, tmplt, &tmpl_idx, &tmpl_cnt, + &rra_step_cnt, &pdp_new) == -1) { goto err_close; } - if ((pdp_temp = malloc(sizeof(rrd_value_t) - * rrd.stat_head->ds_cnt)) == NULL) { + /* loop through the arguments. */ + for (arg_i = 0; arg_i < argc; arg_i++) { + if ((arg_copy = strdup(argv[arg_i])) == NULL) { + rrd_set_error("failed duplication argv entry"); + break; + } + if (process_arg(arg_copy, &rrd, rrd_file, rra_begin, &rra_current, + ¤t_time, ¤t_time_usec, pdp_temp, pdp_new, + rra_step_cnt, updvals, tmpl_idx, tmpl_cnt, &pcdp_summary, + version, &schedule_smooth) == -1) { + free(arg_copy); + break; + } + free(arg_copy); + } + + free(rra_step_cnt); + + /* if we got here and if there is an error and if the file has not been + * written to, then close things up and return. */ + if (rrd_test_error()) { + goto err_free_structures; + } + +#ifndef HAVE_MMAP + if (write_changes_to_disk(&rrd, rrd_file, version) == -1) { + goto err_free_structures; + } +#endif + + /* calling the smoothing code here guarantees at most one smoothing + * operation per rrd_update call. Unfortunately, it is possible with bulk + * updates, or a long-delayed update for smoothing to occur off-schedule. + * This really isn't critical except during the burn-in cycles. */ + if (schedule_smooth) { + smooth_all_rras(&rrd, rrd_file, rra_begin); + } + +/* rrd_dontneed(rrd_file,&rrd); */ + rrd_free(&rrd); + rrd_close(rrd_file); + + free(pdp_new); + free(tmpl_idx); + free(pdp_temp); + free(updvals); + return 0; + + err_free_structures: + free(pdp_new); + free(tmpl_idx); + free(pdp_temp); + free(updvals); + err_close: + rrd_close(rrd_file); + err_free: + rrd_free(&rrd); + err_out: + return -1; +} + +/* + * get exclusive lock to whole file. + * lock gets removed when we close the file + * + * returns 0 on success + */ +int LockRRD( + int in_file) +{ + int rcstat; + + { +#if defined(_WIN32) && !defined(__CYGWIN__) && !defined(__CYGWIN32__) + struct _stat st; + + if (_fstat(in_file, &st) == 0) { + rcstat = _locking(in_file, _LK_NBLCK, st.st_size); + } else { + rcstat = -1; + } +#else + struct flock lock; + + lock.l_type = F_WRLCK; /* exclusive write lock */ + lock.l_len = 0; /* whole file */ + lock.l_start = 0; /* start of file */ + lock.l_whence = SEEK_SET; /* end of file */ + + rcstat = fcntl(in_file, F_SETLK, &lock); +#endif + } + + return (rcstat); +} + +/* + * Allocate some important arrays used, and initialize the template. + * + * When it returns, either all of the structures are allocated + * or none of them are. + * + * Returns 0 on success, -1 on error. + */ +static int allocate_data_structures( + rrd_t *rrd, char ***updvals, rrd_value_t **pdp_temp, const char *tmplt, + long **tmpl_idx, unsigned long *tmpl_cnt, unsigned long **rra_step_cnt, + rrd_value_t **pdp_new) +{ + unsigned i, ii; + if ((*updvals = (char **)malloc(sizeof(char *) + * (rrd->stat_head->ds_cnt + 1))) == NULL) { + rrd_set_error("allocating updvals pointer array"); + return -1; + } + + if ((*pdp_temp = (rrd_value_t *)malloc(sizeof(rrd_value_t) + * rrd->stat_head->ds_cnt)) == NULL) { rrd_set_error("allocating pdp_temp ..."); goto err_free_updvals; } - if ((tmpl_idx = malloc(sizeof(unsigned long) - * (rrd.stat_head->ds_cnt + 1))) == NULL) { + if ((*tmpl_idx = (long *)malloc(sizeof(unsigned long) + * (rrd->stat_head->ds_cnt + 1))) == NULL) { rrd_set_error("allocating tmpl_idx ..."); goto err_free_pdp_temp; } + if ((*rra_step_cnt = (unsigned long *)malloc(sizeof(unsigned long) + * (rrd->stat_head->rra_cnt))) == NULL) { + rrd_set_error("allocating rra_step_cnt..."); + goto err_free_tmpl_idx; + } + /* initialize tmplt redirector */ /* default config example (assume DS 1 is a CDEF DS) tmpl_idx[0] -> 0; (time) tmpl_idx[1] -> 1; (DS 0) tmpl_idx[2] -> 3; (DS 2) tmpl_idx[3] -> 4; (DS 3) */ - tmpl_idx[0] = 0; /* time */ - for (i = 1, ii = 1; i <= rrd.stat_head->ds_cnt; i++) { - if (dst_conv(rrd.ds_def[i - 1].dst) != DST_CDEF) - tmpl_idx[ii++] = i; + (*tmpl_idx)[0] = 0; /* time */ + for (i = 1, ii = 1; i <= rrd->stat_head->ds_cnt; i++) { + if (dst_conv(rrd->ds_def[i-1].dst) != DST_CDEF) + (*tmpl_idx)[ii++] = i; } - tmpl_cnt = ii; - - if (tmplt) { - /* we should work on a writeable copy here */ - char *dsname; - unsigned int tmpl_len; - char *tmplt_copy = strdup(tmplt); - - dsname = tmplt_copy; - tmpl_cnt = 1; /* the first entry is the time */ - tmpl_len = strlen(tmplt_copy); - for (i = 0; i <= tmpl_len; i++) { - if (tmplt_copy[i] == ':' || tmplt_copy[i] == '\0') { - tmplt_copy[i] = '\0'; - if (tmpl_cnt > rrd.stat_head->ds_cnt) { - rrd_set_error - ("tmplt contains more DS definitions than RRD"); - goto err_free_tmpl_idx; - } - if ((tmpl_idx[tmpl_cnt++] = ds_match(&rrd, dsname)) == -1) { - rrd_set_error("unknown DS name '%s'", dsname); - goto err_free_tmpl_idx; - } else { - /* the first element is always the time */ - tmpl_idx[tmpl_cnt - 1]++; - /* go to the next entry on the tmplt_copy */ - dsname = &tmplt_copy[i + 1]; - /* fix the damage we did before */ - if (i < tmpl_len) { - tmplt_copy[i] = ':'; - } + *tmpl_cnt = ii; - } - } + if (tmplt != NULL) { + if (parse_template(rrd, tmplt, tmpl_cnt, *tmpl_idx) == -1) { + goto err_free_tmpl_idx; } - free(tmplt_copy); } - if ((pdp_new = malloc(sizeof(rrd_value_t) - * rrd.stat_head->ds_cnt)) == NULL) { + + if ((*pdp_new = (rrd_value_t *)malloc(sizeof(rrd_value_t) + * rrd->stat_head->ds_cnt)) == NULL) { rrd_set_error("allocating pdp_new ..."); goto err_free_tmpl_idx; } - /* loop through the arguments. */ - for (arg_i = 0; arg_i < argc; arg_i++) { - char *stepper = strdup(argv[arg_i]); - char *step_start = stepper; - char *p; - char *parsetime_error = NULL; - enum { atstyle, normal } timesyntax; - struct rrd_time_value ds_tv; - - if (stepper == NULL) { - rrd_set_error("failed duplication argv entry"); - free(step_start); - goto err_free_pdp_new; - } - /* initialize all ds input to unknown except the first one - which has always got to be set */ - for (ii = 1; ii <= rrd.stat_head->ds_cnt; ii++) - updvals[ii] = "U"; - updvals[0] = stepper; - /* separate all ds elements; first must be examined separately - due to alternate time syntax */ - if ((p = strchr(stepper, '@')) != NULL) { - timesyntax = atstyle; - *p = '\0'; - stepper = p + 1; - } else if ((p = strchr(stepper, ':')) != NULL) { - timesyntax = normal; - *p = '\0'; - stepper = p + 1; - } else { - rrd_set_error - ("expected timestamp not found in data source from %s", - argv[arg_i]); - free(step_start); - break; - } - ii = 1; - updvals[tmpl_idx[ii]] = stepper; - while (*stepper) { - if (*stepper == ':') { - *stepper = '\0'; - ii++; - if (ii < tmpl_cnt) { - updvals[tmpl_idx[ii]] = stepper + 1; - } - } - stepper++; - } - if (ii != tmpl_cnt - 1) { - rrd_set_error - ("expected %lu data source readings (got %lu) from %s", - tmpl_cnt - 1, ii, argv[arg_i]); - free(step_start); - break; - } + return 0; - /* get the time from the reading ... handle N */ - if (timesyntax == atstyle) { - if ((parsetime_error = parsetime(updvals[0], &ds_tv))) { - rrd_set_error("ds time: %s: %s", updvals[0], parsetime_error); - free(step_start); - break; - } - if (ds_tv.type == RELATIVE_TO_END_TIME || - ds_tv.type == RELATIVE_TO_START_TIME) { - rrd_set_error("specifying time relative to the 'start' " - "or 'end' makes no sense here: %s", updvals[0]); - free(step_start); - break; - } +err_free_tmpl_idx: + free(*tmpl_idx); +err_free_pdp_temp: + free(*pdp_temp); +err_free_updvals: + free(*updvals); + return -1; +} - current_time = mktime(&ds_tv.tm) + ds_tv.offset; +/* + * Parses tmplt and puts an ordered list of DS's into tmpl_idx. + * + * Returns 0 on success. + */ +static int parse_template( + rrd_t *rrd, const char *tmplt, + unsigned long *tmpl_cnt, long *tmpl_idx) +{ + char *dsname, *tmplt_copy; + unsigned int tmpl_len, i; - current_time_usec = 0; /* FIXME: how to handle usecs here ? */ + *tmpl_cnt = 1; /* the first entry is the time */ - } else if (strcmp(updvals[0], "N") == 0) { - gettimeofday(&tmp_time, 0); - normalize_time(&tmp_time); - current_time = tmp_time.tv_sec; - current_time_usec = tmp_time.tv_usec; - } else { - double tmp; - char *old_locale; - - old_locale = setlocale(LC_NUMERIC, "C"); - tmp = strtod(updvals[0], 0); - setlocale(LC_NUMERIC, old_locale); - current_time = floor(tmp); - current_time_usec = - (long) ((tmp - (double) current_time) * 1000000.0); - } - /* dont do any correction for old version RRDs */ - if (version < 3) - current_time_usec = 0; - - if (current_time < rrd.live_head->last_up || - (current_time == rrd.live_head->last_up && - (long) current_time_usec <= - (long) rrd.live_head->last_up_usec)) { - rrd_set_error("illegal attempt to update using time %ld when " - "last update time is %ld (minimum one second step)", - current_time, rrd.live_head->last_up); - free(step_start); - break; - } + /* we should work on a writeable copy here */ + if ((tmplt_copy = strdup(tmplt)) == NULL) { + rrd_set_error("error copying tmplt '%s'", tmplt); + return -1; + } - /* seek to the beginning of the rra's */ - if (rra_current != rra_begin) { -#ifndef HAVE_MMAP - if (rrd_seek(rrd_file, rra_begin, SEEK_SET) != 0) { - rrd_set_error("seek error in rrd"); - free(step_start); - break; + dsname = tmplt_copy; + tmpl_len = strlen(tmplt_copy); + for (i = 0; i <= tmpl_len; i++) { + if (tmplt_copy[i] == ':' || tmplt_copy[i] == '\0') { + tmplt_copy[i] = '\0'; + if (*tmpl_cnt > rrd->stat_head->ds_cnt) { + rrd_set_error("tmplt contains more DS definitions than RRD"); + free(tmplt_copy); + return -1; } -#endif - rra_current = rra_begin; - } - rra_start = rra_begin; - - /* when was the current pdp started */ - proc_pdp_age = rrd.live_head->last_up % rrd.stat_head->pdp_step; - proc_pdp_st = rrd.live_head->last_up - proc_pdp_age; - - /* when did the last pdp_st occur */ - occu_pdp_age = current_time % rrd.stat_head->pdp_step; - occu_pdp_st = current_time - occu_pdp_age; - - /* interval = current_time - rrd.live_head->last_up; */ - interval = (double) (current_time - rrd.live_head->last_up) - + (double) ((long) current_time_usec - - (long) rrd.live_head->last_up_usec) / 1000000.0; - - if (occu_pdp_st > proc_pdp_st) { - /* OK we passed the pdp_st moment */ - pre_int = (long) occu_pdp_st - rrd.live_head->last_up; /* how much of the input data - * occurred before the latest - * pdp_st moment*/ - pre_int -= ((double) rrd.live_head->last_up_usec) / 1000000.0; /* adjust usecs */ - post_int = occu_pdp_age; /* how much after it */ - post_int += ((double) current_time_usec) / 1000000.0; /* adjust usecs */ - } else { - pre_int = interval; - post_int = 0; + if ((tmpl_idx[(*tmpl_cnt)++] = ds_match(rrd, dsname)+1) == 0) { + rrd_set_error("unknown DS name '%s'", dsname); + free(tmplt_copy); + return -1; + } + /* go to the next entry on the tmplt_copy */ + if (i < tmpl_len) + dsname = &tmplt_copy[i+1]; } + } + free(tmplt_copy); + return 0; +} -#ifdef DEBUG - printf("proc_pdp_age %lu\t" - "proc_pdp_st %lu\t" - "occu_pfp_age %lu\t" - "occu_pdp_st %lu\t" - "int %lf\t" - "pre_int %lf\t" - "post_int %lf\n", proc_pdp_age, proc_pdp_st, - occu_pdp_age, occu_pdp_st, interval, pre_int, post_int); -#endif - - /* process the data sources and update the pdp_prep - * area accordingly */ - for (i = 0; i < rrd.stat_head->ds_cnt; i++) { - enum dst_en dst_idx; +/* + * Parse an update string, updates the primary data points (PDPs) + * and consolidated data points (CDPs), and writes changes to the RRAs. + * + * Returns 0 on success, -1 on error. + */ +static int process_arg( + char *step_start, + rrd_t *rrd, + rrd_file_t *rrd_file, + unsigned long rra_begin, + unsigned long *rra_current, + time_t *current_time, + unsigned long *current_time_usec, + rrd_value_t *pdp_temp, + rrd_value_t *pdp_new, + unsigned long *rra_step_cnt, + char **updvals, + long *tmpl_idx, + unsigned long tmpl_cnt, + info_t **pcdp_summary, + int version, + int *schedule_smooth) +{ + rrd_value_t *seasonal_coef = NULL, *last_seasonal_coef = NULL; - dst_idx = dst_conv(rrd.ds_def[i].dst); + /* a vector of future Holt-Winters seasonal coefs */ + unsigned long elapsed_pdp_st; - /* make sure we do not build diffs with old last_ds values */ - if (rrd.ds_def[i].par[DS_mrhb_cnt].u_cnt < interval) { - strncpy(rrd.pdp_prep[i].last_ds, "U", LAST_DS_LEN - 1); - rrd.pdp_prep[i].last_ds[LAST_DS_LEN - 1] = '\0'; - } + double interval, pre_int, post_int; /* interval between this and + * the last run */ + unsigned long proc_pdp_cnt; + unsigned long rra_start; - /* NOTE: DST_CDEF should never enter this if block, because - * updvals[i+1][0] is initialized to 'U'; unless the caller - * accidently specified a value for the DST_CDEF. To handle - * this case, an extra check is required. */ - - if ((updvals[i + 1][0] != 'U') && - (dst_idx != DST_CDEF) && - rrd.ds_def[i].par[DS_mrhb_cnt].u_cnt >= interval) { - double rate = DNAN; - char *old_locale; - - /* the data source type defines how to process the data */ - /* pdp_new contains rate * time ... eg the bytes - * transferred during the interval. Doing it this way saves - * a lot of math operations */ - switch (dst_idx) { - case DST_COUNTER: - case DST_DERIVE: - for (ii = 0; updvals[i + 1][ii] != '\0'; ii++) { - if ((updvals[i + 1][ii] < '0' - || updvals[i + 1][ii] > '9') && (ii != 0 - && updvals[i - + 1] - [ii] != '-')) { - rrd_set_error("not a simple integer: '%s'", - updvals[i + 1]); + if (parse_ds(rrd, updvals, tmpl_idx, step_start, tmpl_cnt, + current_time, current_time_usec, version) == -1) { + return -1; + } + /* seek to the beginning of the rra's */ + if (*rra_current != rra_begin) { +#ifndef HAVE_MMAP + if (rrd_seek(rrd_file, rra_begin, SEEK_SET) != 0) { + rrd_set_error("seek error in rrd"); + return -1; + } +#endif + *rra_current = rra_begin; + } + rra_start = rra_begin; + + interval = (double) (*current_time - rrd->live_head->last_up) + + (double) ((long) *current_time_usec - + (long) rrd->live_head->last_up_usec) / 1e6f; + + /* process the data sources and update the pdp_prep + * area accordingly */ + if (update_pdp_prep(rrd, updvals, pdp_new, interval) == -1) { + return -1; + } + + elapsed_pdp_st = calculate_elapsed_steps(rrd, + *current_time, *current_time_usec, + interval, &pre_int, &post_int, + &proc_pdp_cnt); + + /* has a pdp_st moment occurred since the last run ? */ + if (elapsed_pdp_st == 0) { + /* no we have not passed a pdp_st moment. therefore update is simple */ + simple_update(rrd, interval, pdp_new); + } else { + /* an pdp_st has occurred. */ + if (process_all_pdp_st(rrd, interval, + pre_int, post_int, + elapsed_pdp_st, + pdp_new, pdp_temp) == -1) + { + return -1; + } + if (update_all_cdp_prep(rrd, rra_step_cnt, + rra_begin, rrd_file, + elapsed_pdp_st, + proc_pdp_cnt, + &last_seasonal_coef, + &seasonal_coef, + pdp_temp, rra_current, + schedule_smooth) == -1) + { + goto err_free_coefficients; + } + if (update_aberrant_cdps(rrd, rrd_file, rra_begin, rra_current, + elapsed_pdp_st, pdp_temp, &seasonal_coef) == -1) + { + goto err_free_coefficients; + } + if (write_to_rras(rrd, rrd_file, + rra_step_cnt, rra_begin, rra_current, + *current_time, pcdp_summary) == -1) + { + goto err_free_coefficients; + } + } /* endif a pdp_st has occurred */ + rrd->live_head->last_up = *current_time; + rrd->live_head->last_up_usec = *current_time_usec; + + free(seasonal_coef); + free(last_seasonal_coef); + return 0; + +err_free_coefficients: + free(seasonal_coef); + free(last_seasonal_coef); + return -1; +} + +/* + * Parse a DS string (time + colon-separated values), storing the + * results in current_time, current_time_usec, and updvals. + * + * Returns 0 on success, -1 on error. + */ +static int parse_ds( + rrd_t *rrd, char **updvals, long *tmpl_idx, char *input, + unsigned long tmpl_cnt, time_t *current_time, + unsigned long *current_time_usec, int version) +{ + char *p; + unsigned long i; + char timesyntax; + + updvals[0] = input; + /* initialize all ds input to unknown except the first one + which has always got to be set */ + for (i = 1; i <= rrd->stat_head->ds_cnt; i++) + updvals[i] = "U"; + + /* separate all ds elements; first must be examined separately + due to alternate time syntax */ + if ((p = strchr(input, '@')) != NULL) { + timesyntax = '@'; + } else if ((p = strchr(input, ':')) != NULL) { + timesyntax = ':'; + } else { + rrd_set_error("expected timestamp not found in data source from %s", + input); + return -1; + } + *p = '\0'; + i = 1; + updvals[tmpl_idx[i++]] = p+1; + while (*(++p)) { + if (*p == ':') { + *p = '\0'; + if (i < tmpl_cnt) { + updvals[tmpl_idx[i++]] = p+1; + } + } + } + + if (i != tmpl_cnt) { + rrd_set_error("expected %lu data source readings (got %lu) from %s", + tmpl_cnt - 1, i, input); + return -1; + } + + if (get_time_from_reading(rrd, timesyntax, updvals, + current_time, current_time_usec, + version) == -1) { + return -1; + } + return 0; +} + +/* + * Parse the time in a DS string, store it in current_time and + * current_time_usec and verify that it's later than the last + * update for this DS. + * + * Returns 0 on success, -1 on error. + */ +static int get_time_from_reading( + rrd_t *rrd, char timesyntax, char **updvals, + time_t *current_time, unsigned long *current_time_usec, + int version) +{ + double tmp; + char *parsetime_error = NULL; + char *old_locale; + struct rrd_time_value ds_tv; + struct timeval tmp_time; /* used for time conversion */ + + /* get the time from the reading ... handle N */ + if (timesyntax == '@') { /* at-style */ + if ((parsetime_error = parsetime(updvals[0], &ds_tv))) { + rrd_set_error("ds time: %s: %s", updvals[0], parsetime_error); + return -1; + } + if (ds_tv.type == RELATIVE_TO_END_TIME || + ds_tv.type == RELATIVE_TO_START_TIME) { + rrd_set_error("specifying time relative to the 'start' " + "or 'end' makes no sense here: %s", updvals[0]); + return -1; + } + *current_time = mktime(&ds_tv.tm) + ds_tv.offset; + *current_time_usec = 0; /* FIXME: how to handle usecs here ? */ + } else if (strcmp(updvals[0], "N") == 0) { + gettimeofday(&tmp_time, 0); + normalize_time(&tmp_time); + *current_time = tmp_time.tv_sec; + *current_time_usec = tmp_time.tv_usec; + } else { + old_locale = setlocale(LC_NUMERIC, "C"); + tmp = strtod(updvals[0], 0); + setlocale(LC_NUMERIC, old_locale); + *current_time = floor(tmp); + *current_time_usec = (long) ((tmp - (double) *current_time) * 1e6f); + } + /* dont do any correction for old version RRDs */ + if (version < 3) + *current_time_usec = 0; + + if (*current_time < rrd->live_head->last_up || + (*current_time == rrd->live_head->last_up && + (long) *current_time_usec <= + (long) rrd->live_head->last_up_usec)) { + rrd_set_error("illegal attempt to update using time %ld when " + "last update time is %ld (minimum one second step)", + *current_time, rrd->live_head->last_up); + return -1; + } + return 0; +} + +/* + * Update pdp_new by interpreting the updvals according to the DS type + * (COUNTER, GAUGE, etc.). + * + * Returns 0 on success, -1 on error. + */ +static int update_pdp_prep( + rrd_t *rrd, char **updvals, + rrd_value_t *pdp_new, double interval) +{ + unsigned long ds_idx; + int ii; + char *endptr; /* used in the conversion */ + double rate; + char *old_locale; + enum dst_en dst_idx; + + for (ds_idx = 0; ds_idx < rrd->stat_head->ds_cnt; ds_idx++) { + dst_idx = dst_conv(rrd->ds_def[ds_idx].dst); + + /* make sure we do not build diffs with old last_ds values */ + if (rrd->ds_def[ds_idx].par[DS_mrhb_cnt].u_cnt < interval) { + strncpy(rrd->pdp_prep[ds_idx].last_ds, "U", LAST_DS_LEN - 1); + rrd->pdp_prep[ds_idx].last_ds[LAST_DS_LEN - 1] = '\0'; + } + + /* NOTE: DST_CDEF should never enter this if block, because + * updvals[ds_idx+1][0] is initialized to 'U'; unless the caller + * accidently specified a value for the DST_CDEF. To handle this case, + * an extra check is required. */ + + if ((updvals[ds_idx+1][0] != 'U') && + (dst_idx != DST_CDEF) && + rrd->ds_def[ds_idx].par[DS_mrhb_cnt].u_cnt >= interval) { + rate = DNAN; + + /* pdp_new contains rate * time ... eg the bytes transferred during + * the interval. Doing it this way saves a lot of math operations + */ + switch (dst_idx) { + case DST_COUNTER: + case DST_DERIVE: + for (ii = 0; updvals[ds_idx + 1][ii] != '\0'; ii++) { + if ((updvals[ds_idx + 1][ii] < '0' || updvals[ds_idx + 1][ii] > '9') + && (ii != 0 && updvals[ds_idx + 1][ii] != '-')) { + rrd_set_error("not a simple integer: '%s'", updvals[ds_idx + 1]); + return -1; + } + } + if (rrd->pdp_prep[ds_idx].last_ds[0] != 'U') { + pdp_new[ds_idx] = rrd_diff(updvals[ds_idx+1], rrd->pdp_prep[ds_idx].last_ds); + if (dst_idx == DST_COUNTER) { + /* simple overflow catcher. This will fail + * terribly for non 32 or 64 bit counters + * ... are there any others in SNMP land? + */ + if (pdp_new[ds_idx] < (double) 0.0) + pdp_new[ds_idx] += (double) 4294967296.0; /* 2^32 */ + if (pdp_new[ds_idx] < (double) 0.0) + pdp_new[ds_idx] += (double) 18446744069414584320.0; /* 2^64-2^32 */ + } + rate = pdp_new[ds_idx] / interval; + } else { + pdp_new[ds_idx] = DNAN; + } break; - } - } - if (rrd_test_error()) { - break; - } - if (rrd.pdp_prep[i].last_ds[0] != 'U') { - pdp_new[i] = - rrd_diff(updvals[i + 1], rrd.pdp_prep[i].last_ds); - if (dst_idx == DST_COUNTER) { - /* simple overflow catcher suggested by Andres Kroonmaa */ - /* this will fail terribly for non 32 or 64 bit counters ... */ - /* are there any others in SNMP land ? */ - if (pdp_new[i] < (double) 0.0) - pdp_new[i] += (double) 4294967296.0; /* 2^32 */ - if (pdp_new[i] < (double) 0.0) - pdp_new[i] += (double) 18446744069414584320.0; - /* 2^64-2^32 */ ; - } - rate = pdp_new[i] / interval; - } else { - pdp_new[i] = DNAN; - } - break; - case DST_ABSOLUTE: - old_locale = setlocale(LC_NUMERIC, "C"); - errno = 0; - pdp_new[i] = strtod(updvals[i + 1], &endptr); - setlocale(LC_NUMERIC, old_locale); - if (errno > 0) { - rrd_set_error("converting '%s' to float: %s", - updvals[i + 1], rrd_strerror(errno)); - break; - }; - if (endptr[0] != '\0') { - rrd_set_error - ("conversion of '%s' to float not complete: tail '%s'", - updvals[i + 1], endptr); - break; - } - rate = pdp_new[i] / interval; - break; - case DST_GAUGE: - errno = 0; - old_locale = setlocale(LC_NUMERIC, "C"); - pdp_new[i] = strtod(updvals[i + 1], &endptr) * interval; - setlocale(LC_NUMERIC, old_locale); - if (errno > 0) { - rrd_set_error("converting '%s' to float: %s", - updvals[i + 1], rrd_strerror(errno)); - break; - }; - if (endptr[0] != '\0') { - rrd_set_error - ("conversion of '%s' to float not complete: tail '%s'", - updvals[i + 1], endptr); - break; - } - rate = pdp_new[i] / interval; - break; - default: - rrd_set_error("rrd contains unknown DS type : '%s'", - rrd.ds_def[i].dst); - break; - } - /* break out of this for loop if the error string is set */ - if (rrd_test_error()) { - break; - } - /* make sure pdp_temp is neither too large or too small - * if any of these occur it becomes unknown ... - * sorry folks ... */ - if (!isnan(rate) && - ((!isnan(rrd.ds_def[i].par[DS_max_val].u_val) && - rate > rrd.ds_def[i].par[DS_max_val].u_val) || - (!isnan(rrd.ds_def[i].par[DS_min_val].u_val) && - rate < rrd.ds_def[i].par[DS_min_val].u_val))) { - pdp_new[i] = DNAN; - } - } else { - /* no news is news all the same */ - pdp_new[i] = DNAN; + case DST_ABSOLUTE: + old_locale = setlocale(LC_NUMERIC, "C"); + errno = 0; + pdp_new[ds_idx] = strtod(updvals[ds_idx + 1], &endptr); + setlocale(LC_NUMERIC, old_locale); + if (errno > 0) { + rrd_set_error("converting '%s' to float: %s", + updvals[ds_idx + 1], rrd_strerror(errno)); + return -1; + }; + if (endptr[0] != '\0') { + rrd_set_error("conversion of '%s' to float not complete: tail '%s'", + updvals[ds_idx + 1], endptr); + return -1; + } + rate = pdp_new[ds_idx] / interval; + break; + case DST_GAUGE: + errno = 0; + old_locale = setlocale(LC_NUMERIC, "C"); + pdp_new[ds_idx] = strtod(updvals[ds_idx + 1], &endptr) * interval; + setlocale(LC_NUMERIC, old_locale); + if (errno) { + rrd_set_error("converting '%s' to float: %s", + updvals[ds_idx + 1], rrd_strerror(errno)); + return -1; + }; + if (endptr[0] != '\0') { + rrd_set_error("conversion of '%s' to float not complete: tail '%s'", + updvals[ds_idx + 1], endptr); + return -1; + } + rate = pdp_new[ds_idx] / interval; + break; + default: + rrd_set_error("rrd contains unknown DS type : '%s'", + rrd->ds_def[ds_idx].dst); + return -1; + } + /* break out of this for loop if the error string is set */ + if (rrd_test_error()) { + return -1; + } + /* make sure pdp_temp is neither too large or too small + * if any of these occur it becomes unknown ... + * sorry folks ... */ + if (!isnan(rate) && + ((!isnan(rrd->ds_def[ds_idx].par[DS_max_val].u_val) && + rate > rrd->ds_def[ds_idx].par[DS_max_val].u_val) || + (!isnan(rrd->ds_def[ds_idx].par[DS_min_val].u_val) && + rate < rrd->ds_def[ds_idx].par[DS_min_val].u_val))) { + pdp_new[ds_idx] = DNAN; } + } else { + /* no news is news all the same */ + pdp_new[ds_idx] = DNAN; + } - /* make a copy of the command line argument for the next run */ + /* make a copy of the command line argument for the next run */ #ifdef DEBUG - fprintf(stderr, - "prep ds[%lu]\t" - "last_arg '%s'\t" - "this_arg '%s'\t" - "pdp_new %10.2f\n", - i, rrd.pdp_prep[i].last_ds, updvals[i + 1], pdp_new[i]); + fprintf(stderr, "prep ds[%lu]\t" + "last_arg '%s'\t" + "this_arg '%s'\t" + "pdp_new %10.2f\n", + ds_idx, rrd->pdp_prep[ds_idx].last_ds, updvals[ds_idx+1], pdp_new[ds_idx]); #endif - strncpy(rrd.pdp_prep[i].last_ds, updvals[i + 1], LAST_DS_LEN - 1); - rrd.pdp_prep[i].last_ds[LAST_DS_LEN - 1] = '\0'; - } - /* break out of the argument parsing loop if the error_string is set */ - if (rrd_test_error()) { - free(step_start); - break; + strncpy(rrd->pdp_prep[ds_idx].last_ds, updvals[ds_idx+1], LAST_DS_LEN - 1); + rrd->pdp_prep[ds_idx].last_ds[LAST_DS_LEN-1] = '\0'; + } + return 0; +} + +/* + * How many PDP steps have elapsed since the last update? Returns the answer, + * and stores the time between the last update and the last PDP in pre_time, + * and the time between the last PDP and the current time in post_int. + */ +static int calculate_elapsed_steps( + rrd_t *rrd, + unsigned long current_time, + unsigned long current_time_usec, + double interval, + double *pre_int, + double *post_int, + unsigned long *proc_pdp_cnt) +{ + + unsigned long proc_pdp_st; /* which pdp_st was the last + * to be processed */ + unsigned long occu_pdp_st; /* when was the pdp_st + * before the last update + * time */ + unsigned long proc_pdp_age; /* how old was the data in + * the pdp prep area when it + * was last updated */ + unsigned long occu_pdp_age; /* how long ago was the last + * pdp_step time */ + + /* when was the current pdp started */ + proc_pdp_age = rrd->live_head->last_up % rrd->stat_head->pdp_step; + proc_pdp_st = rrd->live_head->last_up - proc_pdp_age; + + /* when did the last pdp_st occur */ + occu_pdp_age = current_time % rrd->stat_head->pdp_step; + occu_pdp_st = current_time - occu_pdp_age; + + if (occu_pdp_st > proc_pdp_st) { + /* OK we passed the pdp_st moment */ + *pre_int = (long) occu_pdp_st - rrd->live_head->last_up; /* how much of the input data + * occurred before the latest + * pdp_st moment*/ + *pre_int -= ((double) rrd->live_head->last_up_usec) / 1e6f; /* adjust usecs */ + *post_int = occu_pdp_age; /* how much after it */ + *post_int += ((double) current_time_usec) / 1e6f; /* adjust usecs */ + } else { + *pre_int = interval; + *post_int = 0; + } + + *proc_pdp_cnt = proc_pdp_st / rrd->stat_head->pdp_step; + +#ifdef DEBUG + printf("proc_pdp_age %lu\t" + "proc_pdp_st %lu\t" + "occu_pfp_age %lu\t" + "occu_pdp_st %lu\t" + "int %lf\t" + "pre_int %lf\t" + "post_int %lf\n", proc_pdp_age, proc_pdp_st, + occu_pdp_age, occu_pdp_st, interval, *pre_int, *post_int); +#endif + + /* compute the number of elapsed pdp_st moments */ + return (occu_pdp_st - proc_pdp_st) / rrd->stat_head->pdp_step; +} + +/* + * Increment the PDP values by the values in pdp_new, or else initialize them. + */ +static void simple_update( + rrd_t *rrd, double interval, rrd_value_t *pdp_new) +{ + int i; + for (i = 0; i < (signed)rrd->stat_head->ds_cnt; i++) { + if (isnan(pdp_new[i])) { + /* this is not really accurate if we use subsecond data arrival time + should have thought of it when going subsecond resolution ... + sorry next format change we will have it! */ + rrd->pdp_prep[i].scratch[PDP_unkn_sec_cnt].u_cnt += floor(interval); + } else { + if (isnan(rrd->pdp_prep[i].scratch[PDP_val].u_val)) { + rrd->pdp_prep[i].scratch[PDP_val].u_val = pdp_new[i]; + } else { + rrd->pdp_prep[i].scratch[PDP_val].u_val += pdp_new[i]; + } } - /* has a pdp_st moment occurred since the last run ? */ - - if (proc_pdp_st == occu_pdp_st) { - /* no we have not passed a pdp_st moment. therefore update is simple */ - - for (i = 0; i < rrd.stat_head->ds_cnt; i++) { - if (isnan(pdp_new[i])) { - /* this is not realy accurate if we use subsecond data arival time - should have thought of it when going subsecond resolution ... - sorry next format change we will have it! */ - rrd.pdp_prep[i].scratch[PDP_unkn_sec_cnt].u_cnt += - floor(interval); - } else { - if (isnan(rrd.pdp_prep[i].scratch[PDP_val].u_val)) { - rrd.pdp_prep[i].scratch[PDP_val].u_val = pdp_new[i]; - } else { - rrd.pdp_prep[i].scratch[PDP_val].u_val += pdp_new[i]; - } - } #ifdef DEBUG - fprintf(stderr, - "NO PDP ds[%lu]\t" + fprintf(stderr, + "NO PDP ds[%i]\t" "value %10.2f\t" "unkn_sec %5lu\n", i, - rrd.pdp_prep[i].scratch[PDP_val].u_val, - rrd.pdp_prep[i].scratch[PDP_unkn_sec_cnt].u_cnt); + rrd->pdp_prep[i].scratch[PDP_val].u_val, + rrd->pdp_prep[i].scratch[PDP_unkn_sec_cnt].u_cnt); #endif - } - } else { - /* an pdp_st has occurred. */ - - /* in pdp_prep[].scratch[PDP_val].u_val we have collected - rate*seconds which occurred up to the last run. - pdp_new[] contains rate*seconds from the latest run. - pdp_temp[] will contain the rate for cdp */ - - for (i = 0; i < rrd.stat_head->ds_cnt; i++) { - /* update pdp_prep to the current pdp_st. */ - double pre_unknown = 0.0; - - if (isnan(pdp_new[i])) { - /* a final bit of unkonwn to be added bevore calculation - we use a temporary variable for this so that we - don't have to turn integer lines before using the value */ - pre_unknown = pre_int; - } else { - if (isnan(rrd.pdp_prep[i].scratch[PDP_val].u_val)) { - rrd.pdp_prep[i].scratch[PDP_val].u_val = - pdp_new[i] / interval * pre_int; - } else { - rrd.pdp_prep[i].scratch[PDP_val].u_val += - pdp_new[i] / interval * pre_int; - } - } - - - /* if too much of the pdp_prep is unknown we dump it */ - if ( - /* removed because this does not agree with the - definition that a heartbeat can be unknown */ - /* (rrd.pdp_prep[i].scratch[PDP_unkn_sec_cnt].u_cnt - > rrd.ds_def[i].par[DS_mrhb_cnt].u_cnt) || */ - /* if the interval is larger thatn mrhb we get NAN */ - (interval > rrd.ds_def[i].par[DS_mrhb_cnt].u_cnt) || - (occu_pdp_st - proc_pdp_st <= - rrd.pdp_prep[i].scratch[PDP_unkn_sec_cnt].u_cnt)) { - pdp_temp[i] = DNAN; - } else { - pdp_temp[i] = rrd.pdp_prep[i].scratch[PDP_val].u_val - / ((double) (occu_pdp_st - proc_pdp_st - - - rrd.pdp_prep[i]. - scratch[PDP_unkn_sec_cnt].u_cnt) - - pre_unknown); - } - - /* process CDEF data sources; remember each CDEF DS can - * only reference other DS with a lower index number */ - if (dst_conv(rrd.ds_def[i].dst) == DST_CDEF) { - rpnp_t *rpnp; - - rpnp = - rpn_expand((rpn_cdefds_t *) & - (rrd.ds_def[i].par[DS_cdef])); - /* substitue data values for OP_VARIABLE nodes */ - for (ii = 0; rpnp[ii].op != OP_END; ii++) { - if (rpnp[ii].op == OP_VARIABLE) { - rpnp[ii].op = OP_NUMBER; - rpnp[ii].val = pdp_temp[rpnp[ii].ptr]; - } - } - /* run the rpn calculator */ - if (rpn_calc(rpnp, &rpnstack, 0, pdp_temp, i) == -1) { - free(rpnp); - break; /* exits the data sources pdp_temp loop */ - } - } + } +} - /* make pdp_prep ready for the next run */ - if (isnan(pdp_new[i])) { - /* this is not realy accurate if we use subsecond data arival time - should have thought of it when going subsecond resolution ... - sorry next format change we will have it! */ - rrd.pdp_prep[i].scratch[PDP_unkn_sec_cnt].u_cnt = - floor(post_int); - rrd.pdp_prep[i].scratch[PDP_val].u_val = DNAN; - } else { - rrd.pdp_prep[i].scratch[PDP_unkn_sec_cnt].u_cnt = 0; - rrd.pdp_prep[i].scratch[PDP_val].u_val = - pdp_new[i] / interval * post_int; - } +/* + * Call process_pdp_st for each DS. + * + * Returns 0 on success, -1 on error. + */ +static int process_all_pdp_st( + rrd_t *rrd, double interval, double pre_int, double post_int, + unsigned long elapsed_pdp_st, rrd_value_t *pdp_new, rrd_value_t *pdp_temp) +{ + unsigned long ds_idx; + /* in pdp_prep[].scratch[PDP_val].u_val we have collected + rate*seconds which occurred up to the last run. + pdp_new[] contains rate*seconds from the latest run. + pdp_temp[] will contain the rate for cdp */ + for (ds_idx = 0; ds_idx < rrd->stat_head->ds_cnt; ds_idx++) { + if (process_pdp_st(rrd, ds_idx, interval, pre_int, post_int, + elapsed_pdp_st * rrd->stat_head->pdp_step, + pdp_new, pdp_temp) == -1) { + return -1; + } #ifdef DEBUG - fprintf(stderr, - "PDP UPD ds[%lu]\t" + fprintf(stderr, "PDP UPD ds[%lu]\t" "pdp_temp %10.2f\t" "new_prep %10.2f\t" "new_unkn_sec %5lu\n", - i, pdp_temp[i], - rrd.pdp_prep[i].scratch[PDP_val].u_val, - rrd.pdp_prep[i].scratch[PDP_unkn_sec_cnt].u_cnt); + ds_idx, pdp_temp[ds_idx], + rrd->pdp_prep[ds_idx].scratch[PDP_val].u_val, + rrd->pdp_prep[ds_idx].scratch[PDP_unkn_sec_cnt].u_cnt); #endif - } + } + return 0; +} - /* if there were errors during the last loop, bail out here */ - if (rrd_test_error()) { - free(step_start); - break; +/* + * Process an update that occurs after one of the PDP moments. + * Increments the PDP value, sets NAN if time greater than the + * heartbeats have elapsed, processes CDEFs. + * + * Returns 0 on success, -1 on error. + */ +static int process_pdp_st(rrd_t *rrd, unsigned long ds_idx, double interval, + double pre_int, double post_int, long diff_pdp_st, + rrd_value_t *pdp_new, rrd_value_t *pdp_temp) +{ + int i; + /* update pdp_prep to the current pdp_st. */ + double pre_unknown = 0.0; + unival *scratch = rrd->pdp_prep[ds_idx].scratch; + unsigned long mrhb = rrd->ds_def[ds_idx].par[DS_mrhb_cnt].u_cnt; + + rpnstack_t rpnstack; /* used for COMPUTE DS */ + rpnstack_init(&rpnstack); + + + if (isnan(pdp_new[ds_idx])) { + /* a final bit of unknown to be added bevore calculation + we use a temporary variable for this so that we + don't have to turn integer lines before using the value */ + pre_unknown = pre_int; + } else { + if (isnan(scratch[PDP_val].u_val)) { + scratch[PDP_val].u_val = 0; + } + scratch[PDP_val].u_val += pdp_new[ds_idx] / interval * pre_int; + } + + /* if too much of the pdp_prep is unknown we dump it */ + /* if the interval is larger thatn mrhb we get NAN */ + if ((interval > mrhb) || + (diff_pdp_st <= (signed)scratch[PDP_unkn_sec_cnt].u_cnt)) { + pdp_temp[ds_idx] = DNAN; + } else { + pdp_temp[ds_idx] = scratch[PDP_val].u_val / + ((double) (diff_pdp_st - scratch[PDP_unkn_sec_cnt].u_cnt) - pre_unknown); + } + + /* process CDEF data sources; remember each CDEF DS can + * only reference other DS with a lower index number */ + if (dst_conv(rrd->ds_def[ds_idx].dst) == DST_CDEF) { + rpnp_t *rpnp; + + rpnp = rpn_expand((rpn_cdefds_t *)&(rrd->ds_def[ds_idx].par[DS_cdef])); + /* substitute data values for OP_VARIABLE nodes */ + for (i = 0; rpnp[i].op != OP_END; i++) { + if (rpnp[i].op == OP_VARIABLE) { + rpnp[i].op = OP_NUMBER; + rpnp[i].val = pdp_temp[rpnp[i].ptr]; } + } + /* run the rpn calculator */ + if (rpn_calc(rpnp, &rpnstack, 0, pdp_temp, ds_idx) == -1) { + free(rpnp); + rpnstack_free(&rpnstack); + return -1; + } + } - /* compute the number of elapsed pdp_st moments */ - elapsed_pdp_st = - (occu_pdp_st - proc_pdp_st) / rrd.stat_head->pdp_step; + /* make pdp_prep ready for the next run */ + if (isnan(pdp_new[ds_idx])) { + /* this is not realy accurate if we use subsecond data arival time + should have thought of it when going subsecond resolution ... + sorry next format change we will have it! */ + scratch[PDP_unkn_sec_cnt].u_cnt = floor(post_int); + scratch[PDP_val].u_val = DNAN; + } else { + scratch[PDP_unkn_sec_cnt].u_cnt = 0; + scratch[PDP_val].u_val = pdp_new[ds_idx] / interval * post_int; + } + rpnstack_free(&rpnstack); + return 0; +} + +/* + * Iterate over all the RRAs for a given DS and: + * 1. Decide whether to schedule a smooth later + * 2. Shift the seasonal array if it's a bulk update + * 3. Update the CDP + * + * Returns 0 on success, -1 on error + */ +static int update_all_cdp_prep( + rrd_t *rrd, unsigned long *rra_step_cnt, unsigned long rra_begin, + rrd_file_t *rrd_file, unsigned long elapsed_pdp_st, unsigned long proc_pdp_cnt, + rrd_value_t **last_seasonal_coef, rrd_value_t **seasonal_coef, + rrd_value_t *pdp_temp, unsigned long *rra_current, int *schedule_smooth) +{ + unsigned long rra_idx; + /* index into the CDP scratch array */ + enum cf_en current_cf; + unsigned long rra_start; + /* number of rows to be updated in an RRA for a data value. */ + unsigned long start_pdp_offset; + + rra_start = rra_begin; + for (rra_idx = 0; rra_idx < rrd->stat_head->rra_cnt; rra_idx++) { + current_cf = cf_conv(rrd->rra_def[rra_idx].cf_nam); + start_pdp_offset = rrd->rra_def[rra_idx].pdp_cnt - proc_pdp_cnt % rrd->rra_def[rra_idx].pdp_cnt; + if (start_pdp_offset <= elapsed_pdp_st) { + rra_step_cnt[rra_idx] = (elapsed_pdp_st - start_pdp_offset) / + rrd->rra_def[rra_idx].pdp_cnt + 1; + } else { + rra_step_cnt[rra_idx] = 0; + } + + if (current_cf == CF_SEASONAL || current_cf == CF_DEVSEASONAL) { + /* If this is a bulk update, we need to skip ahead in the seasonal arrays + * so that they will be correct for the next observed value; note that for + * the bulk update itself, no update will occur to DEVSEASONAL or SEASONAL; + * futhermore, HWPREDICT and DEVPREDICT will be set to DNAN. */ + if (rra_step_cnt[rra_idx] > 2) { + /* skip update by resetting rra_step_cnt[rra_idx], note that this is not data + * source specific; this is due to the bulk update, not a DNAN value + * for the specific data source. */ + rra_step_cnt[rra_idx] = 0; + lookup_seasonal(rrd, rra_idx, rra_start, rrd_file, + elapsed_pdp_st, last_seasonal_coef); + lookup_seasonal(rrd, rra_idx, rra_start, rrd_file, + elapsed_pdp_st + 1, seasonal_coef); + } + /* periodically run a smoother for seasonal effects */ + if (do_schedule_smooth(rrd, rra_idx, elapsed_pdp_st)) { #ifdef DEBUG - fprintf(stderr, "elapsed PDP steps: %lu\n", elapsed_pdp_st); + fprintf(stderr, "schedule_smooth: cur_row %lu, elapsed_pdp_st %lu, smooth idx %lu\n", + rrd->rra_ptr[rra_idx].cur_row, elapsed_pdp_st, + rrd->rra_def[rra_idx].par[RRA_seasonal_smooth_idx].u_cnt); #endif - if (rra_step_cnt == NULL) { - rra_step_cnt = (unsigned long *) - malloc((rrd.stat_head->rra_cnt) * sizeof(unsigned long)); + *schedule_smooth = 1; } + *rra_current = rrd_tell(rrd_file); + } + /* if cf is DEVSEASONAL or SEASONAL */ + if (rrd_test_error()) + return -1; + + if (update_cdp_prep(rrd, elapsed_pdp_st, start_pdp_offset, rra_step_cnt, + rra_idx, pdp_temp, *last_seasonal_coef, *seasonal_coef, + current_cf) == -1) { + return -1; + } + rra_start += rrd->rra_def[rra_idx].row_cnt * rrd->stat_head->ds_cnt * sizeof(rrd_value_t); + } + return 0; +} - for (i = 0, rra_start = rra_begin; - i < rrd.stat_head->rra_cnt; - rra_start += - rrd.rra_def[i].row_cnt * rrd.stat_head->ds_cnt * - sizeof(rrd_value_t), i++) { - current_cf = cf_conv(rrd.rra_def[i].cf_nam); - start_pdp_offset = rrd.rra_def[i].pdp_cnt - - (proc_pdp_st / rrd.stat_head->pdp_step) % - rrd.rra_def[i].pdp_cnt; - if (start_pdp_offset <= elapsed_pdp_st) { - rra_step_cnt[i] = (elapsed_pdp_st - start_pdp_offset) / - rrd.rra_def[i].pdp_cnt + 1; - } else { - rra_step_cnt[i] = 0; - } +/* + * Are we due for a smooth? Also increments our position in the burn-in cycle. + */ +static int do_schedule_smooth( + rrd_t *rrd, unsigned long rra_idx, + unsigned long elapsed_pdp_st) +{ + unsigned long cdp_idx = rra_idx * (rrd->stat_head->ds_cnt); + unsigned long cur_row = rrd->rra_ptr[rra_idx].cur_row; + unsigned long row_cnt = rrd->rra_def[rra_idx].row_cnt; + unsigned long seasonal_smooth_idx = rrd->rra_def[rra_idx].par[RRA_seasonal_smooth_idx].u_cnt; + unsigned long *init_seasonal = &(rrd->cdp_prep[cdp_idx].scratch[CDP_init_seasonal].u_cnt); + + /* Need to use first cdp parameter buffer to track burnin (burnin requires + * a specific smoothing schedule). The CDP_init_seasonal parameter is + * really an RRA level, not a data source within RRA level parameter, but + * the rra_def is read only for rrd_update (not flushed to disk). */ + if (*init_seasonal > BURNIN_CYCLES) { + /* someone has no doubt invented a trick to deal with this wrap around, + * but at least this code is clear. */ + if (seasonal_smooth_idx > cur_row) { + /* here elapsed_pdp_st = rra_step_cnt[rra_idx] because of 1-1 mapping + * between PDP and CDP */ + return (cur_row + elapsed_pdp_st >= seasonal_smooth_idx); + } + /* can't rely on negative numbers because we are working with + * unsigned values */ + return (cur_row + elapsed_pdp_st >= row_cnt + && cur_row + elapsed_pdp_st >= row_cnt + seasonal_smooth_idx); + } + /* mark off one of the burn-in cycles */ + return (cur_row + elapsed_pdp_st >= row_cnt && ++(*init_seasonal)); +} - if (current_cf == CF_SEASONAL || current_cf == CF_DEVSEASONAL) { - /* If this is a bulk update, we need to skip ahead in - the seasonal arrays so that they will be correct for - the next observed value; - note that for the bulk update itself, no update will - occur to DEVSEASONAL or SEASONAL; futhermore, HWPREDICT - and DEVPREDICT will be set to DNAN. */ - if (rra_step_cnt[i] > 2) { - /* skip update by resetting rra_step_cnt[i], - note that this is not data source specific; this is - due to the bulk update, not a DNAN value for the - specific data source. */ - rra_step_cnt[i] = 0; - lookup_seasonal(&rrd, i, rra_start, rrd_file, - elapsed_pdp_st, &last_seasonal_coef); - lookup_seasonal(&rrd, i, rra_start, rrd_file, - elapsed_pdp_st + 1, &seasonal_coef); - } +/* + * For a given RRA, iterate over the data sources and call the appropriate + * consolidation function. + * + * Returns 0 on success, -1 on error. + */ +static int update_cdp_prep( + rrd_t *rrd, + unsigned long elapsed_pdp_st, + unsigned long start_pdp_offset, + unsigned long *rra_step_cnt, + int rra_idx, + rrd_value_t *pdp_temp, + rrd_value_t *last_seasonal_coef, + rrd_value_t *seasonal_coef, + int current_cf) +{ + unsigned long ds_idx, cdp_idx; + /* update CDP_PREP areas */ + /* loop over data soures within each RRA */ + for (ds_idx = 0; ds_idx < rrd->stat_head->ds_cnt; ds_idx++) { - /* periodically run a smoother for seasonal effects */ - /* Need to use first cdp parameter buffer to track - * burnin (burnin requires a specific smoothing schedule). - * The CDP_init_seasonal parameter is really an RRA level, - * not a data source within RRA level parameter, but the rra_def - * is read only for rrd_update (not flushed to disk). */ - iii = i * (rrd.stat_head->ds_cnt); - if (rrd.cdp_prep[iii].scratch[CDP_init_seasonal].u_cnt - <= BURNIN_CYCLES) { - if (rrd.rra_ptr[i].cur_row + elapsed_pdp_st - > rrd.rra_def[i].row_cnt - 1) { - /* mark off one of the burnin cycles */ - ++(rrd.cdp_prep[iii].scratch[CDP_init_seasonal]. - u_cnt); - schedule_smooth = 1; - } - } else { - /* someone has no doubt invented a trick to deal with this - * wrap around, but at least this code is clear. */ - if (rrd.rra_def[i].par[RRA_seasonal_smooth_idx]. - u_cnt > rrd.rra_ptr[i].cur_row) { - /* here elapsed_pdp_st = rra_step_cnt[i] because of 1-1 - * mapping between PDP and CDP */ - if (rrd.rra_ptr[i].cur_row + elapsed_pdp_st - >= - rrd.rra_def[i].par[RRA_seasonal_smooth_idx]. - u_cnt) { -#ifdef DEBUG - fprintf(stderr, - "schedule_smooth 1: cur_row %lu, elapsed_pdp_st %lu, smooth idx %lu\n", - rrd.rra_ptr[i].cur_row, - elapsed_pdp_st, - rrd.rra_def[i]. - par[RRA_seasonal_smooth_idx].u_cnt); -#endif - schedule_smooth = 1; - } - } else { - /* can't rely on negative numbers because we are working with - * unsigned values */ - /* Don't need modulus here. If we've wrapped more than once, only - * one smooth is executed at the end. */ - if (rrd.rra_ptr[i].cur_row + elapsed_pdp_st >= - rrd.rra_def[i].row_cnt - && rrd.rra_ptr[i].cur_row + elapsed_pdp_st - - rrd.rra_def[i].row_cnt >= - rrd.rra_def[i].par[RRA_seasonal_smooth_idx]. - u_cnt) { -#ifdef DEBUG - fprintf(stderr, - "schedule_smooth 2: cur_row %lu, elapsed_pdp_st %lu, smooth idx %lu\n", - rrd.rra_ptr[i].cur_row, - elapsed_pdp_st, - rrd.rra_def[i]. - par[RRA_seasonal_smooth_idx].u_cnt); -#endif - schedule_smooth = 1; - } - } - } + cdp_idx = rra_idx * rrd->stat_head->ds_cnt + ds_idx; + + if (rrd->rra_def[rra_idx].pdp_cnt > 1) { + update_cdp(rrd->cdp_prep[cdp_idx].scratch, current_cf, + pdp_temp[ds_idx], rra_step_cnt[rra_idx], + elapsed_pdp_st, start_pdp_offset, + rrd->rra_def[rra_idx].pdp_cnt, + rrd->rra_def[rra_idx].par[RRA_cdp_xff_val].u_val, rra_idx, ds_idx); + } else { + /* Nothing to consolidate if there's one PDP per CDP. However, if + * we've missed some PDPs, let's update null counters etc. */ + if (elapsed_pdp_st > 2) { + reset_cdp(rrd, elapsed_pdp_st, pdp_temp, last_seasonal_coef, seasonal_coef, + rra_idx, ds_idx, cdp_idx, current_cf); + } + } - rra_current = rrd_tell(rrd_file); - } - /* if cf is DEVSEASONAL or SEASONAL */ - if (rrd_test_error()) - break; + if (rrd_test_error()) + return -1; + } /* endif data sources loop */ + return 0; +} - /* update CDP_PREP areas */ - /* loop over data soures within each RRA */ - for (ii = 0; ii < rrd.stat_head->ds_cnt; ii++) { - - /* iii indexes the CDP prep area for this data source within the RRA */ - iii = i * rrd.stat_head->ds_cnt + ii; - - if (rrd.rra_def[i].pdp_cnt > 1) { - - if (rra_step_cnt[i] > 0) { - /* If we are in this block, as least 1 CDP value will be written to - * disk, this is the CDP_primary_val entry. If more than 1 value needs - * to be written, then the "fill in" value is the CDP_secondary_val - * entry. */ - if (isnan(pdp_temp[ii])) { - rrd.cdp_prep[iii].scratch[CDP_unkn_pdp_cnt]. - u_cnt += start_pdp_offset; - rrd.cdp_prep[iii].scratch[CDP_secondary_val]. - u_val = DNAN; - } else { - /* CDP_secondary value is the RRA "fill in" value for intermediary - * CDP data entries. No matter the CF, the value is the same because - * the average, max, min, and last of a list of identical values is - * the same, namely, the value itself. */ - rrd.cdp_prep[iii].scratch[CDP_secondary_val]. - u_val = pdp_temp[ii]; - } +/* + * Given the new reading (pdp_temp_val), update or initialize the CDP value, + * primary value, secondary value, and # of unknowns. + */ +static void update_cdp( + unival *scratch, + int current_cf, + rrd_value_t pdp_temp_val, + unsigned long rra_step_cnt, + unsigned long elapsed_pdp_st, + unsigned long start_pdp_offset, + unsigned long pdp_cnt, + rrd_value_t xff, + int i, int ii) +{ + /* shorthand variables */ + rrd_value_t *cdp_val = &scratch[CDP_val].u_val; + rrd_value_t *cdp_primary_val = &scratch[CDP_primary_val].u_val; + rrd_value_t *cdp_secondary_val = &scratch[CDP_secondary_val].u_val; + unsigned long *cdp_unkn_pdp_cnt = &scratch[CDP_unkn_pdp_cnt].u_cnt; + + if (rra_step_cnt) { + /* If we are in this block, as least 1 CDP value will be written to + * disk, this is the CDP_primary_val entry. If more than 1 value needs + * to be written, then the "fill in" value is the CDP_secondary_val + * entry. */ + if (isnan(pdp_temp_val)) { + *cdp_unkn_pdp_cnt += start_pdp_offset; + *cdp_secondary_val = DNAN; + } else { + /* CDP_secondary value is the RRA "fill in" value for intermediary + * CDP data entries. No matter the CF, the value is the same because + * the average, max, min, and last of a list of identical values is + * the same, namely, the value itself. */ + *cdp_secondary_val = pdp_temp_val; + } + + if (*cdp_unkn_pdp_cnt > pdp_cnt * xff) { + *cdp_primary_val = DNAN; + if (current_cf == CF_AVERAGE) { + *cdp_val = initialize_average_carry_over(pdp_temp_val, elapsed_pdp_st, + start_pdp_offset, pdp_cnt); + } else { + *cdp_val = pdp_temp_val; + } + } else { + initialize_cdp_val(scratch, current_cf, pdp_temp_val, + elapsed_pdp_st, start_pdp_offset, pdp_cnt); + } /* endif meets xff value requirement for a valid value */ + /* initialize carry over CDP_unkn_pdp_cnt, this must after CDP_primary_val + * is set because CDP_unkn_pdp_cnt is required to compute that value. */ + if (isnan(pdp_temp_val)) + *cdp_unkn_pdp_cnt = (elapsed_pdp_st - start_pdp_offset) % pdp_cnt; + else + *cdp_unkn_pdp_cnt = 0; + } else { /* rra_step_cnt[i] == 0 */ - if (rrd.cdp_prep[iii].scratch[CDP_unkn_pdp_cnt]. - u_cnt > - rrd.rra_def[i].pdp_cnt * - rrd.rra_def[i].par[RRA_cdp_xff_val].u_val) { - rrd.cdp_prep[iii].scratch[CDP_primary_val]. - u_val = DNAN; - /* initialize carry over */ - if (current_cf == CF_AVERAGE) { - if (isnan(pdp_temp[ii])) { - rrd.cdp_prep[iii].scratch[CDP_val]. - u_val = DNAN; - } else { - rrd.cdp_prep[iii].scratch[CDP_val]. - u_val = - pdp_temp[ii] * - ((elapsed_pdp_st - - start_pdp_offset) % - rrd.rra_def[i].pdp_cnt); - } - } else { - rrd.cdp_prep[iii].scratch[CDP_val].u_val = - pdp_temp[ii]; - } - } else { - rrd_value_t cum_val, cur_val; - - switch (current_cf) { - case CF_AVERAGE: - cum_val = - IFDNAN(rrd.cdp_prep[iii]. - scratch[CDP_val].u_val, 0.0); - cur_val = IFDNAN(pdp_temp[ii], 0.0); - rrd.cdp_prep[iii]. - scratch[CDP_primary_val].u_val = - (cum_val + - cur_val * start_pdp_offset) / - (rrd.rra_def[i].pdp_cnt - - rrd.cdp_prep[iii]. - scratch[CDP_unkn_pdp_cnt].u_cnt); - /* initialize carry over value */ - if (isnan(pdp_temp[ii])) { - rrd.cdp_prep[iii].scratch[CDP_val]. - u_val = DNAN; - } else { - rrd.cdp_prep[iii].scratch[CDP_val]. - u_val = - pdp_temp[ii] * - ((elapsed_pdp_st - - start_pdp_offset) % - rrd.rra_def[i].pdp_cnt); - } - break; - case CF_MAXIMUM: - cum_val = - IFDNAN(rrd.cdp_prep[iii]. - scratch[CDP_val].u_val, -DINF); - cur_val = IFDNAN(pdp_temp[ii], -DINF); #ifdef DEBUG - if (isnan - (rrd.cdp_prep[iii].scratch[CDP_val]. - u_val) && isnan(pdp_temp[ii])) { - fprintf(stderr, - "RRA %lu, DS %lu, both CDP_val and pdp_temp are DNAN!", - i, ii); - exit(-1); - } + if (isnan(*cdp_val)) { + fprintf(stderr, "schedule CDP_val update, RRA %d DS %d, DNAN\n", + i, ii); + } else { + fprintf(stderr, "schedule CDP_val update, RRA %d DS %d, %10.2f\n", + i, ii, *cdp_val); + } #endif - if (cur_val > cum_val) - rrd.cdp_prep[iii]. - scratch[CDP_primary_val].u_val = - cur_val; - else - rrd.cdp_prep[iii]. - scratch[CDP_primary_val].u_val = - cum_val; - /* initialize carry over value */ - rrd.cdp_prep[iii].scratch[CDP_val].u_val = - pdp_temp[ii]; - break; - case CF_MINIMUM: - cum_val = - IFDNAN(rrd.cdp_prep[iii]. - scratch[CDP_val].u_val, DINF); - cur_val = IFDNAN(pdp_temp[ii], DINF); + if (isnan(pdp_temp_val)) { + *cdp_unkn_pdp_cnt += elapsed_pdp_st; + } else { + *cdp_val = calculate_cdp_val(*cdp_val, pdp_temp_val, elapsed_pdp_st, current_cf, i, ii); + } + } +} + +/* + * Set the CDP_primary_val and CDP_val to the appropriate initial value based + * on the type of consolidation function. + */ +static void initialize_cdp_val( + unival *scratch, + int current_cf, + rrd_value_t pdp_temp_val, + unsigned long elapsed_pdp_st, + unsigned long start_pdp_offset, + unsigned long pdp_cnt) +{ + rrd_value_t cum_val, cur_val; + + switch (current_cf) { + case CF_AVERAGE: + cum_val = IFDNAN(scratch[CDP_val].u_val, 0.0); + cur_val = IFDNAN(pdp_temp_val, 0.0); + scratch[CDP_primary_val].u_val = + (cum_val + cur_val * start_pdp_offset) / + (pdp_cnt - scratch[CDP_unkn_pdp_cnt].u_cnt); + scratch[CDP_val].u_val = initialize_average_carry_over( + pdp_temp_val, elapsed_pdp_st, start_pdp_offset, pdp_cnt); + break; + case CF_MAXIMUM: + cum_val = IFDNAN(scratch[CDP_val].u_val, -DINF); + cur_val = IFDNAN(pdp_temp_val, -DINF); +#if 0 #ifdef DEBUG - if (isnan - (rrd.cdp_prep[iii].scratch[CDP_val]. - u_val) && isnan(pdp_temp[ii])) { - fprintf(stderr, - "RRA %lu, DS %lu, both CDP_val and pdp_temp are DNAN!", - i, ii); - exit(-1); - } + if (isnan(scratch[CDP_val].u_val) && isnan(pdp_temp)) { + fprintf(stderr, + "RRA %lu, DS %lu, both CDP_val and pdp_temp are DNAN!", + i, ii); + exit(-1); + } #endif - if (cur_val < cum_val) - rrd.cdp_prep[iii]. - scratch[CDP_primary_val].u_val = - cur_val; - else - rrd.cdp_prep[iii]. - scratch[CDP_primary_val].u_val = - cum_val; - /* initialize carry over value */ - rrd.cdp_prep[iii].scratch[CDP_val].u_val = - pdp_temp[ii]; - break; - case CF_LAST: - default: - rrd.cdp_prep[iii]. - scratch[CDP_primary_val].u_val = - pdp_temp[ii]; - /* initialize carry over value */ - rrd.cdp_prep[iii].scratch[CDP_val].u_val = - pdp_temp[ii]; - break; - } - } /* endif meets xff value requirement for a valid value */ - /* initialize carry over CDP_unkn_pdp_cnt, this must after CDP_primary_val - * is set because CDP_unkn_pdp_cnt is required to compute that value. */ - if (isnan(pdp_temp[ii])) - rrd.cdp_prep[iii].scratch[CDP_unkn_pdp_cnt]. - u_cnt = - (elapsed_pdp_st - - start_pdp_offset) % - rrd.rra_def[i].pdp_cnt; - else - rrd.cdp_prep[iii].scratch[CDP_unkn_pdp_cnt]. - u_cnt = 0; - } else { /* rra_step_cnt[i] == 0 */ - +#endif + if (cur_val > cum_val) + scratch[CDP_primary_val].u_val = cur_val; + else + scratch[CDP_primary_val].u_val = cum_val; + /* initialize carry over value */ + scratch[CDP_val].u_val = pdp_temp_val; + break; + case CF_MINIMUM: + cum_val = IFDNAN(scratch[CDP_val].u_val, DINF); + cur_val = IFDNAN(pdp_temp_val, DINF); +#if 0 #ifdef DEBUG - if (isnan - (rrd.cdp_prep[iii].scratch[CDP_val].u_val)) { - fprintf(stderr, - "schedule CDP_val update, RRA %lu DS %lu, DNAN\n", + if (isnan(scratch[CDP_val].u_val) && isnan(pdp_temp)) { + fprintf(stderr, "RRA %lu, DS %lu, both CDP_val and pdp_temp are DNAN!", i, ii); - } else { - fprintf(stderr, - "schedule CDP_val update, RRA %lu DS %lu, %10.2f\n", - i, ii, - rrd.cdp_prep[iii].scratch[CDP_val]. - u_val); - } + exit(-1); + } #endif - if (isnan(pdp_temp[ii])) { - rrd.cdp_prep[iii].scratch[CDP_unkn_pdp_cnt]. - u_cnt += elapsed_pdp_st; - } else - if (isnan - (rrd.cdp_prep[iii].scratch[CDP_val]. - u_val)) { - if (current_cf == CF_AVERAGE) { - rrd.cdp_prep[iii].scratch[CDP_val].u_val = - pdp_temp[ii] * elapsed_pdp_st; - } else { - rrd.cdp_prep[iii].scratch[CDP_val].u_val = - pdp_temp[ii]; - } +#endif + if (cur_val < cum_val) + scratch[CDP_primary_val].u_val = cur_val; + else + scratch[CDP_primary_val].u_val = cum_val; + /* initialize carry over value */ + scratch[CDP_val].u_val = pdp_temp_val; + break; + case CF_LAST: + default: + scratch[CDP_primary_val].u_val = pdp_temp_val; + /* initialize carry over value */ + scratch[CDP_val].u_val = pdp_temp_val; + break; + } +} + +/* + * Update the consolidation function for Holt-Winters functions as + * well as other functions that don't actually consolidate multiple + * PDPs. + */ +static void reset_cdp( + rrd_t *rrd, + unsigned long elapsed_pdp_st, + rrd_value_t *pdp_temp, + rrd_value_t *last_seasonal_coef, + rrd_value_t *seasonal_coef, + int rra_idx, int ds_idx, int cdp_idx, + enum cf_en current_cf) +{ + unival *scratch = rrd->cdp_prep[cdp_idx].scratch; + + switch (current_cf) { + case CF_AVERAGE: + default: + scratch[CDP_primary_val].u_val = pdp_temp[ds_idx]; + scratch[CDP_secondary_val].u_val = pdp_temp[ds_idx]; + break; + case CF_SEASONAL: + case CF_DEVSEASONAL: + /* need to update cached seasonal values, so they are consistent + * with the bulk update */ + /* WARNING: code relies on the fact that CDP_hw_last_seasonal and + * CDP_last_deviation are the same. */ + scratch[CDP_hw_last_seasonal].u_val = last_seasonal_coef[ds_idx]; + scratch[CDP_hw_seasonal].u_val = seasonal_coef[ds_idx]; + break; + case CF_HWPREDICT: + case CF_MHWPREDICT: + /* need to update the null_count and last_null_count. + * even do this for non-DNAN pdp_temp because the + * algorithm is not learning from batch updates. */ + scratch[CDP_null_count].u_cnt += elapsed_pdp_st; + scratch[CDP_last_null_count].u_cnt += elapsed_pdp_st - 1; + /* fall through */ + case CF_DEVPREDICT: + scratch[CDP_primary_val].u_val = DNAN; + scratch[CDP_secondary_val].u_val = DNAN; + break; + case CF_FAILURES: + /* do not count missed bulk values as failures */ + scratch[CDP_primary_val].u_val = 0; + scratch[CDP_secondary_val].u_val = 0; + /* need to reset violations buffer. + * could do this more carefully, but for now, just + * assume a bulk update wipes away all violations. */ + erase_violations(rrd, cdp_idx, rra_idx); + break; + } +} + +static rrd_value_t initialize_average_carry_over( + rrd_value_t pdp_temp_val, + unsigned long elapsed_pdp_st, + unsigned long start_pdp_offset, + unsigned long pdp_cnt) +{ + /* initialize carry over value */ + if (isnan(pdp_temp_val)) { + return DNAN; + } + return pdp_temp_val * ((elapsed_pdp_st - start_pdp_offset) % pdp_cnt); +} + +/* + * Update or initialize a CDP value based on the consolidation + * function. + * + * Returns the new value. + */ +static rrd_value_t calculate_cdp_val( + rrd_value_t cdp_val, + rrd_value_t pdp_temp_val, + unsigned long elapsed_pdp_st, + int current_cf, int i, int ii) +{ + if (isnan(cdp_val)) { + if (current_cf == CF_AVERAGE) { + pdp_temp_val *= elapsed_pdp_st; + } #ifdef DEBUG - fprintf(stderr, - "Initialize CDP_val for RRA %lu DS %lu: %10.2f\n", - i, ii, - rrd.cdp_prep[iii].scratch[CDP_val]. - u_val); + fprintf(stderr, "Initialize CDP_val for RRA %d DS %d: %10.2f\n", + i, ii, pdp_temp_val); #endif - } else { - switch (current_cf) { - case CF_AVERAGE: - rrd.cdp_prep[iii].scratch[CDP_val]. - u_val += - pdp_temp[ii] * elapsed_pdp_st; - break; - case CF_MINIMUM: - if (pdp_temp[ii] < - rrd.cdp_prep[iii].scratch[CDP_val]. - u_val) - rrd.cdp_prep[iii].scratch[CDP_val]. - u_val = pdp_temp[ii]; - break; - case CF_MAXIMUM: - if (pdp_temp[ii] > - rrd.cdp_prep[iii].scratch[CDP_val]. - u_val) - rrd.cdp_prep[iii].scratch[CDP_val]. - u_val = pdp_temp[ii]; - break; - case CF_LAST: - default: - rrd.cdp_prep[iii].scratch[CDP_val].u_val = - pdp_temp[ii]; - break; - } - } - } - } else { /* rrd.rra_def[i].pdp_cnt == 1 */ - if (elapsed_pdp_st > 2) { - switch (current_cf) { - case CF_AVERAGE: - default: - rrd.cdp_prep[iii].scratch[CDP_primary_val]. - u_val = pdp_temp[ii]; - rrd.cdp_prep[iii].scratch[CDP_secondary_val]. - u_val = pdp_temp[ii]; - break; - case CF_SEASONAL: - case CF_DEVSEASONAL: - /* need to update cached seasonal values, so they are consistent - * with the bulk update */ - /* WARNING: code relies on the fact that CDP_hw_last_seasonal and - * CDP_last_deviation are the same. */ - rrd.cdp_prep[iii]. - scratch[CDP_hw_last_seasonal].u_val = - last_seasonal_coef[ii]; - rrd.cdp_prep[iii].scratch[CDP_hw_seasonal]. - u_val = seasonal_coef[ii]; - break; - case CF_HWPREDICT: - case CF_MHWPREDICT: - /* need to update the null_count and last_null_count. - * even do this for non-DNAN pdp_temp because the - * algorithm is not learning from batch updates. */ - rrd.cdp_prep[iii].scratch[CDP_null_count]. - u_cnt += elapsed_pdp_st; - rrd.cdp_prep[iii]. - scratch[CDP_last_null_count].u_cnt += - elapsed_pdp_st - 1; - /* fall through */ - case CF_DEVPREDICT: - rrd.cdp_prep[iii].scratch[CDP_primary_val]. - u_val = DNAN; - rrd.cdp_prep[iii].scratch[CDP_secondary_val]. - u_val = DNAN; - break; - case CF_FAILURES: - /* do not count missed bulk values as failures */ - rrd.cdp_prep[iii].scratch[CDP_primary_val]. - u_val = 0; - rrd.cdp_prep[iii].scratch[CDP_secondary_val]. - u_val = 0; - /* need to reset violations buffer. - * could do this more carefully, but for now, just - * assume a bulk update wipes away all violations. */ - erase_violations(&rrd, iii, i); - break; - } - } - } /* endif rrd.rra_def[i].pdp_cnt == 1 */ - - if (rrd_test_error()) - break; - - } /* endif data sources loop */ - } /* end RRA Loop */ - - /* this loop is only entered if elapsed_pdp_st < 3 */ - for (j = elapsed_pdp_st, scratch_idx = CDP_primary_val; - j > 0 && j < 3; j--, scratch_idx = CDP_secondary_val) { - for (i = 0, rra_start = rra_begin; - i < rrd.stat_head->rra_cnt; - rra_start += - rrd.rra_def[i].row_cnt * rrd.stat_head->ds_cnt * - sizeof(rrd_value_t), i++) { - if (rrd.rra_def[i].pdp_cnt > 1) - continue; - - current_cf = cf_conv(rrd.rra_def[i].cf_nam); - if (current_cf == CF_SEASONAL - || current_cf == CF_DEVSEASONAL) { - lookup_seasonal(&rrd, i, rra_start, rrd_file, - elapsed_pdp_st + (scratch_idx == - CDP_primary_val ? 1 - : 2), - &seasonal_coef); - rra_current = rrd_tell(rrd_file); - } - if (rrd_test_error()) - break; - /* loop over data soures within each RRA */ - for (ii = 0; ii < rrd.stat_head->ds_cnt; ii++) { - update_aberrant_CF(&rrd, pdp_temp[ii], current_cf, - i * (rrd.stat_head->ds_cnt) + ii, - i, ii, scratch_idx, seasonal_coef); + return pdp_temp_val; + } + if (current_cf == CF_AVERAGE) + return cdp_val + pdp_temp_val * elapsed_pdp_st; + if (current_cf == CF_MINIMUM) + return (pdp_temp_val < cdp_val) ? pdp_temp_val : cdp_val; + if (current_cf == CF_MAXIMUM) + return (pdp_temp_val > cdp_val) ? pdp_temp_val : cdp_val; + + return pdp_temp_val; +} + +/* + * For each RRA, update the seasonal values and then call update_aberrant_CF + * for each data source. + * + * Return 0 on success, -1 on error. + */ +static int update_aberrant_cdps( + rrd_t *rrd, rrd_file_t *rrd_file, unsigned long rra_begin, + unsigned long *rra_current, unsigned long elapsed_pdp_st, + rrd_value_t *pdp_temp, rrd_value_t **seasonal_coef) +{ + unsigned long rra_idx, ds_idx, j; + + /* number of PDP steps since the last update that + * are assigned to the first CDP to be generated + * since the last update. */ + unsigned short scratch_idx; + unsigned long rra_start; + enum cf_en current_cf; + + /* this loop is only entered if elapsed_pdp_st < 3 */ + for (j = elapsed_pdp_st, scratch_idx = CDP_primary_val; + j > 0 && j < 3; j--, scratch_idx = CDP_secondary_val) { + rra_start = rra_begin; + for (rra_idx = 0; rra_idx < rrd->stat_head->rra_cnt; rra_idx++) { + if (rrd->rra_def[rra_idx].pdp_cnt == 1) { + current_cf = cf_conv(rrd->rra_def[rra_idx].cf_nam); + if (current_cf == CF_SEASONAL || current_cf == CF_DEVSEASONAL) { + if (scratch_idx == CDP_primary_val) { + lookup_seasonal(rrd, rra_idx, rra_start, rrd_file, + elapsed_pdp_st + 1, seasonal_coef); + } else { + lookup_seasonal(rrd, rra_idx, rra_start, rrd_file, + elapsed_pdp_st + 2, seasonal_coef); } - } /* end RRA Loop */ + *rra_current = rrd_tell(rrd_file); + } if (rrd_test_error()) - break; - } /* end elapsed_pdp_st loop */ + return -1; + /* loop over data soures within each RRA */ + for (ds_idx = 0; ds_idx < rrd->stat_head->ds_cnt; ds_idx++) { + update_aberrant_CF(rrd, pdp_temp[ds_idx], current_cf, + rra_idx * (rrd->stat_head->ds_cnt) + ds_idx, + rra_idx, ds_idx, scratch_idx, *seasonal_coef); + } + } + rra_start += rrd->rra_def[rra_idx].row_cnt + * rrd->stat_head->ds_cnt + * sizeof(rrd_value_t); + } + } + return 0; +} - if (rrd_test_error()) - break; - - /* Ready to write to disk */ - /* Move sequentially through the file, writing one RRA at a time. - * Note this architecture divorces the computation of CDP with - * flushing updated RRA entries to disk. */ - for (i = 0, rra_start = rra_begin; - i < rrd.stat_head->rra_cnt; - rra_start += - rrd.rra_def[i].row_cnt * rrd.stat_head->ds_cnt * - sizeof(rrd_value_t), i++) { - /* is th5Aere anything to write for this RRA? If not, continue. */ - if (rra_step_cnt[i] == 0) - continue; - - /* write the first row */ +/* + * Move sequentially through the file, writing one RRA at a time. Note this + * architecture divorces the computation of CDP with flushing updated RRA + * entries to disk. + * + * Return 0 on success, -1 on error. + */ +static int write_to_rras( + rrd_t *rrd, + rrd_file_t *rrd_file, + unsigned long *rra_step_cnt, + unsigned long rra_begin, + unsigned long *rra_current, + time_t current_time, + info_t **pcdp_summary) +{ + unsigned long rra_idx; + unsigned long rra_start; + unsigned long rra_pos_tmp; /* temporary byte pointer. */ + /* number of PDP steps since the last update that + * are assigned to the first CDP to be generated + * since the last update. */ + unsigned short scratch_idx; + time_t rra_time = 0; /* time of update for a RRA */ + + /* Ready to write to disk */ + rra_start = rra_begin; + for (rra_idx = 0; rra_idx < rrd->stat_head->rra_cnt; rra_idx++) { + /* skip unless there's something to write */ + if (rra_step_cnt[rra_idx]) { + /* write the first row */ #ifdef DEBUG - fprintf(stderr, " -- RRA Preseek %ld\n", rrd_file->pos); + fprintf(stderr, " -- RRA Preseek %ld\n", rrd_file->pos); #endif - rrd.rra_ptr[i].cur_row++; - if (rrd.rra_ptr[i].cur_row >= rrd.rra_def[i].row_cnt) - rrd.rra_ptr[i].cur_row = 0; /* wrap around */ - /* positition on the first row */ - rra_pos_tmp = rra_start + - (rrd.stat_head->ds_cnt) * (rrd.rra_ptr[i].cur_row) * + rrd->rra_ptr[rra_idx].cur_row++; + if (rrd->rra_ptr[rra_idx].cur_row >= rrd->rra_def[rra_idx].row_cnt) + rrd->rra_ptr[rra_idx].cur_row = 0; /* wrap around */ + /* positition on the first row */ + rra_pos_tmp = rra_start + + (rrd->stat_head->ds_cnt) * (rrd->rra_ptr[rra_idx].cur_row) * sizeof(rrd_value_t); - if (rra_pos_tmp != rra_current) { - if (rrd_seek(rrd_file, rra_pos_tmp, SEEK_SET) != 0) { - rrd_set_error("seek error in rrd"); - break; - } - rra_current = rra_pos_tmp; + if (rra_pos_tmp != *rra_current) { + if (rrd_seek(rrd_file, rra_pos_tmp, SEEK_SET) != 0) { + rrd_set_error("seek error in rrd"); + return -1; } + *rra_current = rra_pos_tmp; + } #ifdef DEBUG - fprintf(stderr, " -- RRA Postseek %ld\n", rrd_file->pos); + fprintf(stderr, " -- RRA Postseek %ld\n", rrd_file->pos); #endif - scratch_idx = CDP_primary_val; - if (pcdp_summary != NULL) { - rra_time = (current_time - current_time - % (rrd.rra_def[i].pdp_cnt * - rrd.stat_head->pdp_step)) - - - ((rra_step_cnt[i] - - 1) * rrd.rra_def[i].pdp_cnt * - rrd.stat_head->pdp_step); - } - pcdp_summary = - write_RRA_row(rrd_file, &rrd, i, &rra_current, - scratch_idx, pcdp_summary, &rra_time); - if (rrd_test_error()) - break; + scratch_idx = CDP_primary_val; + if (*pcdp_summary != NULL) { + rra_time = (current_time - current_time + % (rrd->rra_def[rra_idx].pdp_cnt * + rrd->stat_head->pdp_step)) + - ((rra_step_cnt[rra_idx] - 1) * rrd->rra_def[rra_idx].pdp_cnt * + rrd->stat_head->pdp_step); + } + if (write_RRA_row(rrd_file, rrd, rra_idx, rra_current, scratch_idx, + pcdp_summary, &rra_time) == -1) + return -1; + if (rrd_test_error()) + return -1; - /* write other rows of the bulk update, if any */ - scratch_idx = CDP_secondary_val; - for (; rra_step_cnt[i] > 1; rra_step_cnt[i]--) { - if (++rrd.rra_ptr[i].cur_row == rrd.rra_def[i].row_cnt) { + /* write other rows of the bulk update, if any */ + scratch_idx = CDP_secondary_val; + for (; rra_step_cnt[rra_idx] > 1; rra_step_cnt[rra_idx]--) { + if (++rrd->rra_ptr[rra_idx].cur_row == rrd->rra_def[rra_idx].row_cnt) { #ifdef DEBUG - fprintf(stderr, - "Wraparound for RRA %s, %lu updates left\n", - rrd.rra_def[i].cf_nam, rra_step_cnt[i] - 1); + fprintf(stderr, + "Wraparound for RRA %s, %lu updates left\n", + rrd->rra_def[rra_idx].cf_nam, rra_step_cnt[rra_idx] - 1); #endif - /* wrap */ - rrd.rra_ptr[i].cur_row = 0; - /* seek back to beginning of current rra */ - if (rrd_seek(rrd_file, rra_start, SEEK_SET) != 0) { - rrd_set_error("seek error in rrd"); - break; - } + /* wrap */ + rrd->rra_ptr[rra_idx].cur_row = 0; + /* seek back to beginning of current rra */ + if (rrd_seek(rrd_file, rra_start, SEEK_SET) != 0) { + rrd_set_error("seek error in rrd"); + return -1; + } #ifdef DEBUG - fprintf(stderr, " -- Wraparound Postseek %ld\n", - rrd_file->pos); + fprintf(stderr, " -- Wraparound Postseek %ld\n", + rrd_file->pos); #endif - rra_current = rra_start; - } - if (pcdp_summary != NULL) { - rra_time = (current_time - current_time - % (rrd.rra_def[i].pdp_cnt * - rrd.stat_head->pdp_step)) + *rra_current = rra_start; + } + if (*pcdp_summary != NULL) { + rra_time = (current_time - current_time + % (rrd->rra_def[rra_idx].pdp_cnt * + rrd->stat_head->pdp_step)) - - ((rra_step_cnt[i] - - 2) * rrd.rra_def[i].pdp_cnt * - rrd.stat_head->pdp_step); - } - pcdp_summary = - write_RRA_row(rrd_file, &rrd, i, &rra_current, - scratch_idx, pcdp_summary, &rra_time); + ((rra_step_cnt[rra_idx] - 2) * rrd->rra_def[rra_idx].pdp_cnt * + rrd->stat_head->pdp_step); } + if (write_RRA_row(rrd_file, rrd, rra_idx, rra_current, + scratch_idx, pcdp_summary, &rra_time) == -1) + return -1; + } - if (rrd_test_error()) - break; - } /* RRA LOOP */ + if (rrd_test_error()) + return -1; + } + rra_start += rrd->rra_def[rra_idx].row_cnt * rrd->stat_head->ds_cnt * + sizeof(rrd_value_t); + } /* RRA LOOP */ - /* break out of the argument parsing loop if error_string is set */ - if (rrd_test_error()) { - free(step_start); - break; - } + return 0; +} - } /* endif a pdp_st has occurred */ - rrd.live_head->last_up = current_time; - rrd.live_head->last_up_usec = current_time_usec; - free(step_start); - } /* function argument loop */ - - if (seasonal_coef != NULL) - free(seasonal_coef); - if (last_seasonal_coef != NULL) - free(last_seasonal_coef); - if (rra_step_cnt != NULL) - free(rra_step_cnt); - rpnstack_free(&rpnstack); +/* + * Write out one row of values (one value per DS) to the archive. + * + * Returns 0 on success, -1 on error. + */ +static int write_RRA_row( + rrd_file_t *rrd_file, + rrd_t *rrd, + unsigned long rra_idx, + unsigned long *rra_current, + unsigned short CDP_scratch_idx, + info_t **pcdp_summary, + time_t *rra_time) +{ + unsigned long ds_idx, cdp_idx; + infoval iv; -#if 0 - //rrd_flush(rrd_file); //XXX: really needed? + for (ds_idx = 0; ds_idx < rrd->stat_head->ds_cnt; ds_idx++) { + /* compute the cdp index */ + cdp_idx = rra_idx * (rrd->stat_head->ds_cnt) + ds_idx; +#ifdef DEBUG + fprintf(stderr, " -- RRA WRITE VALUE %e, at %ld CF:%s\n", + rrd->cdp_prep[cdp_idx].scratch[CDP_scratch_idx].u_val, + rrd_file->pos, rrd->rra_def[rra_idx].cf_nam); #endif - /* if we got here and if there is an error and if the file has not been - * written to, then close things up and return. */ - if (rrd_test_error()) { - goto err_free_pdp_new; + if (pcdp_summary != NULL) { + iv.u_val = rrd->cdp_prep[cdp_idx].scratch[CDP_scratch_idx].u_val; + /* append info to the return hash */ + *pcdp_summary = info_push(*pcdp_summary, + sprintf_alloc("[%d]RRA[%s][%lu]DS[%s]", *rra_time, + rrd->rra_def[rra_idx].cf_nam, + rrd->rra_def[rra_idx].pdp_cnt, + rrd->ds_def[ds_idx].ds_nam), RD_I_VAL, iv); + } + if (rrd_write(rrd_file, + &(rrd->cdp_prep[cdp_idx].scratch[CDP_scratch_idx].u_val), + sizeof(rrd_value_t)) != sizeof(rrd_value_t)) { + rrd_set_error("writing rrd: %s", rrd_strerror(errno)); + return -1; + } + *rra_current += sizeof(rrd_value_t); } + return 0; +} - /* aargh ... that was tough ... so many loops ... anyway, its done. - * we just need to write back the live header portion now*/ +/* + * Call apply_smoother for all DEVSEASONAL and SEASONAL RRAs. + * + * Returns 0 on success, -1 otherwise + */ +static int smooth_all_rras( + rrd_t *rrd, + rrd_file_t *rrd_file, + unsigned long rra_begin) +{ + unsigned long rra_start = rra_begin; + unsigned long rra_idx; + for (rra_idx = 0; rra_idx < rrd->stat_head->rra_cnt; ++rra_idx) { + if (cf_conv(rrd->rra_def[rra_idx].cf_nam) == CF_DEVSEASONAL || + cf_conv(rrd->rra_def[rra_idx].cf_nam) == CF_SEASONAL) { +#ifdef DEBUG + fprintf(stderr, "Running smoother for rra %lu\n", rra_idx); +#endif + apply_smoother(rrd, rra_idx, rra_start, rrd_file); + if (rrd_test_error()) + return -1; + } + rra_start += rrd->rra_def[rra_idx].row_cnt + * rrd->stat_head->ds_cnt * sizeof(rrd_value_t); + } + return 0; +} +#ifndef HAVE_MMAP +/* + * Flush changes to disk (unless we're using mmap) + * + * Returns 0 on success, -1 otherwise + */ +static int write_changes_to_disk( + rrd_t *rrd, rrd_file_t *rrd_file, int version) +{ + /* we just need to write back the live header portion now*/ if (rrd_seek(rrd_file, (sizeof(stat_head_t) - + sizeof(ds_def_t) * rrd.stat_head->ds_cnt - + sizeof(rra_def_t) * rrd.stat_head->rra_cnt), + + sizeof(ds_def_t) * rrd->stat_head->ds_cnt + + sizeof(rra_def_t) * rrd->stat_head->rra_cnt), SEEK_SET) != 0) { rrd_set_error("seek rrd for live header writeback"); - goto err_free_pdp_new; + return -1; } - /* for mmap, we did already write to the underlying mapping, so we do - not need to write again. */ -#ifndef HAVE_MMAP if (version >= 3) { - if (rrd_write(rrd_file, rrd.live_head, + if (rrd_write(rrd_file, rrd->live_head, sizeof(live_head_t) * 1) != sizeof(live_head_t) * 1) { rrd_set_error("rrd_write live_head to rrd"); - goto err_free_pdp_new; + return -1; } } else { - if (rrd_write(rrd_file, &rrd.live_head->last_up, + if (rrd_write(rrd_file, &rrd->live_head->last_up, sizeof(time_t) * 1) != sizeof(time_t) * 1) { rrd_set_error("rrd_write live_head to rrd"); - goto err_free_pdp_new; + return -1; } } - if (rrd_write(rrd_file, rrd.pdp_prep, - sizeof(pdp_prep_t) * rrd.stat_head->ds_cnt) - != (ssize_t) (sizeof(pdp_prep_t) * rrd.stat_head->ds_cnt)) { + if (rrd_write(rrd_file, rrd->pdp_prep, + sizeof(pdp_prep_t) * rrd->stat_head->ds_cnt) + != (ssize_t) (sizeof(pdp_prep_t) * rrd->stat_head->ds_cnt)) { rrd_set_error("rrd_write pdp_prep to rrd"); - goto err_free_pdp_new; + return -1; } - if (rrd_write(rrd_file, rrd.cdp_prep, - sizeof(cdp_prep_t) * rrd.stat_head->rra_cnt * - rrd.stat_head->ds_cnt) - != (ssize_t) (sizeof(cdp_prep_t) * rrd.stat_head->rra_cnt * - rrd.stat_head->ds_cnt)) { + if (rrd_write(rrd_file, rrd->cdp_prep, + sizeof(cdp_prep_t) * rrd->stat_head->rra_cnt * + rrd->stat_head->ds_cnt) + != (ssize_t) (sizeof(cdp_prep_t) * rrd->stat_head->rra_cnt * + rrd->stat_head->ds_cnt)) { rrd_set_error("rrd_write cdp_prep to rrd"); - goto err_free_pdp_new; + return -1; } - if (rrd_write(rrd_file, rrd.rra_ptr, - sizeof(rra_ptr_t) * rrd.stat_head->rra_cnt) - != (ssize_t) (sizeof(rra_ptr_t) * rrd.stat_head->rra_cnt)) { + if (rrd_write(rrd_file, rrd->rra_ptr, + sizeof(rra_ptr_t) * rrd->stat_head->rra_cnt) + != (ssize_t) (sizeof(rra_ptr_t) * rrd->stat_head->rra_cnt)) { rrd_set_error("rrd_write rra_ptr to rrd"); - goto err_free_pdp_new; - } -#endif - - /* rrd_flush(rrd_file); */ - - /* calling the smoothing code here guarantees at most - * one smoothing operation per rrd_update call. Unfortunately, - * it is possible with bulk updates, or a long-delayed update - * for smoothing to occur off-schedule. This really isn't - * critical except during the burning cycles. */ - if (schedule_smooth) { - - rra_start = rra_begin; - for (i = 0; i < rrd.stat_head->rra_cnt; ++i) { - if (cf_conv(rrd.rra_def[i].cf_nam) == CF_DEVSEASONAL || - cf_conv(rrd.rra_def[i].cf_nam) == CF_SEASONAL) { -#ifdef DEBUG - fprintf(stderr, "Running smoother for rra %ld\n", i); -#endif - apply_smoother(&rrd, i, rra_start, rrd_file); - if (rrd_test_error()) - break; - } - rra_start += rrd.rra_def[i].row_cnt - * rrd.stat_head->ds_cnt * sizeof(rrd_value_t); - } + return -1; } - -/* rrd_dontneed(rrd_file,&rrd); */ - rrd_free(&rrd); - rrd_close(rrd_file); - - free(pdp_new); - free(tmpl_idx); - free(pdp_temp); - free(updvals); - return (0); - - err_free_pdp_new: - free(pdp_new); - err_free_tmpl_idx: - free(tmpl_idx); - err_free_pdp_temp: - free(pdp_temp); - err_free_updvals: - free(updvals); - err_close: - rrd_close(rrd_file); - err_free: - rrd_free(&rrd); - err_out: - return (-1); + return 0; } - -/* - * get exclusive lock to whole file. - * lock gets removed when we close the file - * - * returns 0 on success - */ -int LockRRD( - int in_file) -{ - int rcstat; - - { -#if defined(_WIN32) && !defined(__CYGWIN__) && !defined(__CYGWIN32__) - struct _stat st; - - if (_fstat(in_file, &st) == 0) { - rcstat = _locking(in_file, _LK_NBLCK, st.st_size); - } else { - rcstat = -1; - } -#else - struct flock lock; - - lock.l_type = F_WRLCK; /* exclusive write lock */ - lock.l_len = 0; /* whole file */ - lock.l_start = 0; /* start of file */ - lock.l_whence = SEEK_SET; /* end of file */ - - rcstat = fcntl(in_file, F_SETLK, &lock); #endif - } - - return (rcstat); -} -- 2.30.2