summary | shortlog | log | commit | commitdiff | tree
raw | patch | inline | side by side (parent: e41c946)
raw | patch | inline | side by side (parent: e41c946)
author | johanengelen <johanengelen@users.sourceforge.net> | |
Sun, 16 Sep 2007 01:27:54 +0000 (01:27 +0000) | ||
committer | johanengelen <johanengelen@users.sourceforge.net> | |
Sun, 16 Sep 2007 01:27:54 +0000 (01:27 +0000) |
21 files changed:
index 03c99a9bd12bf48350692d5e386b5f57da143380..f88913584b3d54e7830c5bb1f0dbded05d983e4e 100644 (file)
namespace Geom{
-template <unsigned order>
-struct bezier_to_sbasis_impl {
- static inline SBasis compute(Coord const *handles) {
- return multiply(Linear(1, 0), bezier_to_sbasis_impl<order-1>::compute(handles)) +
- multiply(Linear(0, 1), bezier_to_sbasis_impl<order-1>::compute(handles+1));
- }
-};
-
-template <>
-struct bezier_to_sbasis_impl<1> {
- static inline SBasis compute(Coord const *handles) {
+inline SBasis bezier_to_sbasis(Coord const *handles, unsigned order) {
+ if(order == 0)
+ return Linear(handles[0]);
+ else if(order == 1)
return Linear(handles[0], handles[1]);
- }
-};
-
-template <>
-struct bezier_to_sbasis_impl<0> {
- static inline SBasis compute(Coord const *handles) {
- return Linear(handles[0], handles[0]);
- }
-};
-
-template <unsigned order>
-inline SBasis bezier_to_sbasis(Coord const *handles) {
- return bezier_to_sbasis_impl<order>::compute(handles);
+ else
+ return multiply(Linear(1, 0), bezier_to_sbasis(handles, order-1)) +
+ multiply(Linear(0, 1), bezier_to_sbasis(handles+1, order-1));
}
-template <unsigned order, typename T>
-inline D2<SBasis> handles_to_sbasis(T const &handles) {
+
+template <typename T>
+inline D2<SBasis> handles_to_sbasis(T const &handles, unsigned order) {
double v[2][order+1];
for(unsigned i = 0; i <= order; i++)
for(unsigned j = 0; j < 2; j++)
v[j][i] = handles[i][j];
- return D2<SBasis>(bezier_to_sbasis<order>(v[0]),
- bezier_to_sbasis<order>(v[1]));
+ return D2<SBasis>(bezier_to_sbasis(v[0], order),
+ bezier_to_sbasis(v[1], order));
}
};
diff --git a/src/2geom/bezier.h b/src/2geom/bezier.h
index 2c1b49213acd4fd40b73b24eca18054ecac81b6c..e0d274e3bec628698423376cacd055a3c627dcb4 100644 (file)
--- a/src/2geom/bezier.h
+++ b/src/2geom/bezier.h
-/*
+ /*
* bezier.h
*
* Copyright 2007 MenTaLguY <mental@rydia.net>
#define SEEN_BEZIER_H
#include "coord.h"
+#include <valarray>
#include "isnan.h"
#include "bezier-to-sbasis.h"
#include "d2.h"
namespace Geom {
-template<unsigned order>
-Coord subdivideArr(Coord t, Coord const *v, Coord *left, Coord *right) {
+inline Coord subdivideArr(Coord t, Coord const *v, Coord *left, Coord *right, unsigned order) {
Coord vtemp[order+1][order+1];
/* Copy control points */
}
-template <unsigned order>
class Bezier {
private:
- Coord c_[order+1];
+ std::valarray<Coord> c_;
- template<unsigned ord>
- friend Bezier<ord> portion(const Bezier<ord> & a, Coord from, Coord to);
+ friend Bezier portion(const Bezier & a, Coord from, Coord to);
- template<unsigned ord>
- friend Interval bounds_fast(Bezier<ord> const & b);
+ friend Interval bounds_fast(Bezier const & b);
- template<unsigned ord>
- friend Bezier<ord-1> derivative(const Bezier<ord> & a);
+ friend Bezier derivative(const Bezier & a);
protected:
- Bezier(Coord const c[]) {
- std::copy(c, c+order+1, c_);
+ Bezier(Coord const c[], unsigned ord) : c_(c, ord+1){
+ //std::copy(c, c+order()+1, &c_[0]);
}
public:
+ unsigned int order() const { return c_.size()-1;}
+ unsigned int size() const { return c_.size();}
+
+ Bezier() :c_(0., 32) {}
+ Bezier(const Bezier& b) :c_(b.c_) {}
+ Bezier &operator=(Bezier const &other) {
+ if ( c_.size() != other.c_.size() ) {
+ c_.resize(other.c_.size());
+ }
+ c_ = other.c_;
+ return *this;
+ }
- //TODO: fix this assert - get it compiling!
- //template <unsigned required_order>
- //static void assert_order(Bezier<required_order> const *) {}
+ struct Order {
+ unsigned order;
+ explicit Order(Bezier const &b) : order(b.order()) {}
+ explicit Order(unsigned o) : order(o) {}
+ operator unsigned() const { return order; }
+ };
- Bezier() {}
+ //Construct an arbitrary order bezier
+ Bezier(Order ord) : c_(0., ord.order+1) {
+ assert(ord.order == order());
+ }
- //Construct an order-0 bezier (constant Bézier)
- explicit Bezier(Coord c0) {
- //assert_order<0>(this);
+ explicit Bezier(Coord c0) : c_(0., 1) {
c_[0] = c0;
}
//Construct an order-1 bezier (linear Bézier)
- Bezier(Coord c0, Coord c1) {
- //assert_order<1>(this);
+ Bezier(Coord c0, Coord c1) : c_(0., 2) {
c_[0] = c0; c_[1] = c1;
}
//Construct an order-2 bezier (quadratic Bézier)
- Bezier(Coord c0, Coord c1, Coord c2) {
- //assert_order<2>(this);
+ Bezier(Coord c0, Coord c1, Coord c2) : c_(0., 3) {
c_[0] = c0; c_[1] = c1; c_[2] = c2;
}
//Construct an order-3 bezier (cubic Bézier)
- Bezier(Coord c0, Coord c1, Coord c2, Coord c3) {
- //assert_order<3>(this);
+ Bezier(Coord c0, Coord c1, Coord c2, Coord c3) : c_(0., 4) {
c_[0] = c0; c_[1] = c1; c_[2] = c2; c_[3] = c3;
}
- inline unsigned degree() const { return order; }
+ inline unsigned degree() const { return order(); }
//IMPL: FragmentConcept
typedef Coord output_type;
inline bool isZero() const {
- for(unsigned i = 0; i <= order; i++) {
+ for(unsigned i = 0; i <= order(); i++) {
if(c_[i] != 0) return false;
}
return true;
}
inline bool isFinite() const {
- for(unsigned i = 0; i <= order; i++) {
+ for(unsigned i = 0; i <= order(); i++) {
if(!is_finite(c_[i])) return false;
}
return true;
}
inline Coord at0() const { return c_[0]; }
- inline Coord at1() const { return c_[order]; }
+ inline Coord at1() const { return c_[order()]; }
- inline Coord valueAt(double t) const { return subdivideArr<order>(t, c_, NULL, NULL); }
+ inline Coord valueAt(double t) const {
+ return subdivideArr(t, &c_[0], NULL, NULL, order());
+ }
inline Coord operator()(double t) const { return valueAt(t); }
- inline SBasis toSBasis() const { return bezier_to_sbasis<order>(c_); }
+ inline SBasis toSBasis() const {
+ return bezier_to_sbasis(&c_[0], order());
+ }
//Only mutator
inline Coord &operator[](unsigned ix) { return c_[ix]; }
* evaluate roughly in situ. */
std::vector<Coord> valueAndDerivatives(Coord t, unsigned n_derivs) const {
- throw NotImplemented();
- // Can't be implemented without a dynamic version of subdivide.
- /*std::vector<Coord> val_n_der;
- Coord d_[order+1];
- for(int di = n_derivs; di > 0; di--) {
- val_n_der.push_back(subdivideArr<di>(t, d_, NULL, NULL));
- for(unsigned i = 0; i < di; i++) {
- d[i] = order*(a._c[i+1] - a._c[i]);
+ std::vector<Coord> val_n_der;
+ Coord d_[order()+1];
+ unsigned nn = n_derivs;
+ if(nn > order())
+ nn = order();
+ for(unsigned i = 0; i < size(); i++)
+ d_[i] = c_[i];
+ for(unsigned di = 0; di < nn; di++) {
+ val_n_der.push_back(subdivideArr(t, d_, NULL, NULL, order() - di));
+ for(unsigned i = 0; i < order() - di; i++) {
+ d_[i] = (order()-di)*(d_[i+1] - d_[i]);
}
- }*/
+ }
+ val_n_der.resize(n_derivs);
+ return val_n_der;
}
- std::pair<Bezier<order>, Bezier<order> > subdivide(Coord t) const {
- Bezier<order> a, b;
- subdivideArr(t, order, c_, a.c_, b.c_);
- return std::pair<Bezier<order>, Bezier<order> >(a, b);
+ std::pair<Bezier, Bezier > subdivide(Coord t) const {
+ Bezier a(Bezier::Order(*this)), b(Bezier::Order(*this));
+ subdivideArr(t, &c_[0], &a.c_[0], &b.c_[0], order());
+ return std::pair<Bezier, Bezier >(a, b);
}
std::vector<double> roots() const {
std::vector<double> solutions;
- find_bernstein_roots(c_, order, solutions, 0, 0.0, 1.0);
+ find_bernstein_roots(&c_[0], order(), solutions, 0, 0.0, 1.0);
return solutions;
}
};
//TODO: implement others
-template<unsigned order>
-Bezier<order> operator+(const Bezier<order> & a, double v) {
- Bezier<order> result;
- for(unsigned i = 0; i <= order; i++)
+inline Bezier operator+(const Bezier & a, double v) {
+ Bezier result = Bezier(Bezier::Order(a));
+ for(unsigned i = 0; i <= a.order(); i++)
result[i] = a[i] + v;
return result;
}
-template<unsigned order>
-Bezier<order> operator-(const Bezier<order> & a, double v) {
- Bezier<order> result;
- for(unsigned i = 0; i <= order; i++)
+
+inline Bezier operator-(const Bezier & a, double v) {
+ Bezier result = Bezier(Bezier::Order(a));
+ for(unsigned i = 0; i <= a.order(); i++)
result[i] = a[i] - v;
return result;
}
-template<unsigned order>
-Bezier<order> operator*(const Bezier<order> & a, double v) {
- Bezier<order> result;
- for(unsigned i = 0; i <= order; i++)
+
+inline Bezier operator*(const Bezier & a, double v) {
+ Bezier result = Bezier(Bezier::Order(a));
+ for(unsigned i = 0; i <= a.order(); i++)
result[i] = a[i] * v;
return result;
}
-template<unsigned order>
-Bezier<order> operator/(const Bezier<order> & a, double v) {
- Bezier<order> result;
- for(unsigned i = 0; i <= order; i++)
+
+inline Bezier operator/(const Bezier & a, double v) {
+ Bezier result = Bezier(Bezier::Order(a));
+ for(unsigned i = 0; i <= a.order(); i++)
result[i] = a[i] / v;
return result;
}
-template<unsigned order>
-Bezier<order> reverse(const Bezier<order> & a) {
- Bezier<order> result;
- for(unsigned i = 0; i <= order; i++)
- result[i] = a[order - i];
+inline Bezier reverse(const Bezier & a) {
+ Bezier result = Bezier(Bezier::Order(a));
+ for(unsigned i = 0; i <= a.order(); i++)
+ result[i] = a[a.order() - i];
return result;
}
-template<unsigned order>
-Bezier<order> portion(const Bezier<order> & a, double from, double to) {
+inline Bezier portion(const Bezier & a, double from, double to) {
//TODO: implement better?
- Coord res[order+1];
+ Coord res[a.order()+1];
if(from == 0) {
- if(to == 1) { return Bezier<order>(a); }
- subdivideArr<order>(to, a.c_, res, NULL);
- return Bezier<order>(res);
+ if(to == 1) { return Bezier(a); }
+ subdivideArr(to, &a.c_[0], res, NULL, a.order());
+ return Bezier(res, a.order());
}
- subdivideArr<order>(from, a.c_, NULL, res);
- if(to == 1) return Bezier<order>(res);
- Coord res2[order+1];
- subdivideArr<order>((to - from)/(1 - from), res, res2, NULL);
- return Bezier<order>(res2);
+ subdivideArr(from, &a.c_[0], NULL, res, a.order());
+ if(to == 1) return Bezier(res, a.order());
+ Coord res2[a.order()+1];
+ subdivideArr((to - from)/(1 - from), res, res2, NULL, a.order());
+ return Bezier(res2, a.order());
}
-template<unsigned order>
-std::vector<Point> bezier_points(const D2<Bezier<order> > & a) {
+// XXX Todo: how to handle differing orders
+inline std::vector<Point> bezier_points(const D2<Bezier > & a) {
std::vector<Point> result;
- for(unsigned i = 0; i <= order; i++) {
+ for(unsigned i = 0; i <= a[0].order(); i++) {
Point p;
for(unsigned d = 0; d < 2; d++) p[d] = a[d][i];
result.push_back(p);
return result;
}
-template<unsigned order>
-Bezier<order-1> derivative(const Bezier<order> & a) {
- Bezier<order-1> der;
+inline Bezier derivative(const Bezier & a) {
+ if(a.order() == 1) return Bezier(0.0);
+ Bezier der(Bezier::Order(a.order()-1));
- for(unsigned i = 0; i < order; i++) {
- der.c_[i] = order*(a.c_[i+1] - a.c_[i]);
+ for(unsigned i = 0; i < a.order(); i++) {
+ der.c_[i] = a.order()*(a.c_[i+1] - a.c_[i]);
}
return der;
}
-template<unsigned order>
-inline Interval bounds_fast(Bezier<order> const & b) {
- return Interval::fromArray(b.c_, order+1);
+inline Bezier integral(const Bezier & a) {
+ Bezier inte(Bezier::Order(a.order()+1));
+
+ inte[0] = 0;
+ for(unsigned i = 0; i < inte.order(); i++) {
+ inte[i+1] = inte[i] + a[i]/(inte.order());
+ }
+ return inte;
+}
+
+inline Interval bounds_fast(Bezier const & b) {
+ return Interval::fromArray(&b.c_[0], b.size());
}
//TODO: better bounds exact
-template<unsigned order>
-inline Interval bounds_exact(Bezier<order> const & b) {
+inline Interval bounds_exact(Bezier const & b) {
return bounds_exact(b.toSBasis());
}
-template<unsigned order>
-inline Interval bounds_local(Bezier<order> const & b, Interval i) {
+inline Interval bounds_local(Bezier const & b, Interval i) {
return bounds_fast(portion(b, i.min(), i.max()));
//return bounds_local(b.toSBasis(), i);
}
+inline std::ostream &operator<< (std::ostream &out_file, const Bezier & b) {
+ for(unsigned i = 0; i < b.size(); i++) {
+ out_file << b[i] << ", ";
+ }
+ return out_file;
+}
+
}
#endif //SEEN_BEZIER_H
/*
diff --git a/src/2geom/crossing.h b/src/2geom/crossing.h
index 72b2eea4bfdaa54a3a27af36f71fce94f1df7429..79912f024dd558b2b376e6316d7d9ad351abd315 100644 (file)
--- a/src/2geom/crossing.h
+++ b/src/2geom/crossing.h
Crossing(double t_a, double t_b, unsigned ai, unsigned bi, bool direction) : dir(direction), ta(t_a), tb(t_b), a(ai), b(bi) {}
bool operator==(const Crossing & other) const { return a == other.a && b == other.b && dir == other.dir && ta == other.ta && tb == other.tb; }
bool operator!=(const Crossing & other) const { return !(*this == other); }
- unsigned getOther(unsigned cur) { return a == cur ? b : a; }
+ unsigned getOther(unsigned cur) const { return a == cur ? b : a; }
+ double getTime(unsigned cur) const { return a == cur ? ta : tb; }
+ double getOtherTime(unsigned cur) const { return a == cur ? tb : ta; }
+ bool onIx(unsigned ix) const { return a == ix || b == ix; }
};
template<typename T>
struct Crosser {
+ virtual ~Crosser() {}
virtual Crossings crossings(T const &a, T const &b) { return crossings(std::vector<T>(1,a), std::vector<T>(1,b))[0]; }
virtual CrossingSet crossings(std::vector<T> const &a, std::vector<T> const &b) {
CrossingSet results(a.size() + b.size(), Crossings());
diff --git a/src/2geom/d2.h b/src/2geom/d2.h
index 696ad0191411b04f5ddc5f2b7e1ef79cb61b7111..3a9e14bda8739cd614658123f672051534a6c55a 100644 (file)
--- a/src/2geom/d2.h
+++ b/src/2geom/d2.h
-/*\r
- * d2.h - Lifts one dimensional objects into 2d \r
- *\r
- * Copyright 2007 Michael Sloan <mgsloan@gmail.com>\r
- *\r
- * This library is free software; you can redistribute it and/or\r
- * modify it either under the terms of the GNU Lesser General Public\r
- * License version 2.1 as published by the Free Software Foundation\r
- * (the "LGPL") or, at your option, under the terms of the Mozilla\r
- * Public License Version 1.1 (the "MPL"). If you do not alter this\r
- * notice, a recipient may use your version of this file under either\r
- * the MPL or the LGPL.\r
- *\r
- * You should have received a copy of the LGPL along with this library\r
- * in the file COPYING-LGPL-2.1; if not, output to the Free Software\r
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA\r
- * You should have received a copy of the MPL along with this library\r
- * in the file COPYING-MPL-1.1\r
- *\r
- * The contents of this file are subject to the Mozilla Public License\r
- * Version 1.1 (the "License"); you may not use this file except in\r
- * compliance with the License. You may obtain a copy of the License at\r
- * http://www.mozilla.org/MPL/\r
- *\r
- * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY\r
- * OF ANY KIND, either express or implied. See the LGPL or the MPL for\r
- * the specific language governing rights and limitations.\r
- *\r
- */\r
-\r
-#ifndef _2GEOM_D2 //If this is change, change the guard in rect.h as well.\r
-#define _2GEOM_D2\r
-\r
-#include "point.h"\r
-#include "interval.h"\r
-#include "matrix.h"\r
-\r
-#include <boost/concept_check.hpp>\r
-#include "concepts.h"\r
-\r
-namespace Geom{\r
-\r
-template <class T>\r
-class D2{\r
- //BOOST_CLASS_REQUIRE(T, boost, AssignableConcept);\r
- private:\r
- T f[2];\r
-\r
- public:\r
- D2() {f[X] = f[Y] = T();}\r
- explicit D2(Point const &a) {\r
- f[X] = T(a[X]); f[Y] = T(a[Y]);\r
- }\r
-\r
- D2(T const &a, T const &b) {\r
- f[X] = a;\r
- f[Y] = b;\r
- }\r
-\r
- //TODO: ask mental about operator= as seen in Point\r
-\r
- T& operator[](unsigned i) { return f[i]; }\r
- T const & operator[](unsigned i) const { return f[i]; }\r
-\r
- //IMPL: FragmentConcept\r
- typedef Point output_type;\r
- bool isZero() const {\r
- boost::function_requires<FragmentConcept<T> >();\r
- return f[X].isZero() && f[Y].isZero();\r
- }\r
- bool isFinite() const {\r
- boost::function_requires<FragmentConcept<T> >();\r
- return f[X].isFinite() && f[Y].isFinite();\r
- }\r
- Point at0() const { \r
- boost::function_requires<FragmentConcept<T> >();\r
- return Point(f[X].at0(), f[Y].at0());\r
- }\r
- Point at1() const {\r
- boost::function_requires<FragmentConcept<T> >();\r
- return Point(f[X].at1(), f[Y].at1());\r
- }\r
- Point valueAt(double t) const {\r
- boost::function_requires<FragmentConcept<T> >();\r
- return (*this)(t);\r
+/*
+ * d2.h - Lifts one dimensional objects into 2d
+ *
+ * Copyright 2007 Michael Sloan <mgsloan@gmail.com>
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it either under the terms of the GNU Lesser General Public
+ * License version 2.1 as published by the Free Software Foundation
+ * (the "LGPL") or, at your option, under the terms of the Mozilla
+ * Public License Version 1.1 (the "MPL"). If you do not alter this
+ * notice, a recipient may use your version of this file under either
+ * the MPL or the LGPL.
+ *
+ * You should have received a copy of the LGPL along with this library
+ * in the file COPYING-LGPL-2.1; if not, output to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ * You should have received a copy of the MPL along with this library
+ * in the file COPYING-MPL-1.1
+ *
+ * The contents of this file are subject to the Mozilla Public License
+ * Version 1.1 (the "License"); you may not use this file except in
+ * compliance with the License. You may obtain a copy of the License at
+ * http://www.mozilla.org/MPL/
+ *
+ * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
+ * OF ANY KIND, either express or implied. See the LGPL or the MPL for
+ * the specific language governing rights and limitations.
+ *
+ */
+
+#ifndef _2GEOM_D2 //If this is change, change the guard in rect.h as well.
+#define _2GEOM_D2
+
+#include "point.h"
+#include "interval.h"
+#include "matrix.h"
+
+#include <boost/concept_check.hpp>
+#include "concepts.h"
+
+namespace Geom{
+
+template <class T>
+class D2{
+ //BOOST_CLASS_REQUIRE(T, boost, AssignableConcept);
+ private:
+ T f[2];
+
+ public:
+ D2() {f[X] = f[Y] = T();}
+ explicit D2(Point const &a) {
+ f[X] = T(a[X]); f[Y] = T(a[Y]);
+ }
+
+ D2(T const &a, T const &b) {
+ f[X] = a;
+ f[Y] = b;
+ }
+
+ //TODO: ask mental about operator= as seen in Point
+
+ T& operator[](unsigned i) { return f[i]; }
+ T const & operator[](unsigned i) const { return f[i]; }
+
+ //IMPL: FragmentConcept
+ typedef Point output_type;
+ bool isZero() const {
+ boost::function_requires<FragmentConcept<T> >();
+ return f[X].isZero() && f[Y].isZero();
+ }
+ bool isFinite() const {
+ boost::function_requires<FragmentConcept<T> >();
+ return f[X].isFinite() && f[Y].isFinite();
+ }
+ Point at0() const {
+ boost::function_requires<FragmentConcept<T> >();
+ return Point(f[X].at0(), f[Y].at0());
+ }
+ Point at1() const {
+ boost::function_requires<FragmentConcept<T> >();
+ return Point(f[X].at1(), f[Y].at1());
+ }
+ Point valueAt(double t) const {
+ boost::function_requires<FragmentConcept<T> >();
+ return (*this)(t);
}
std::vector<Point > valueAndDerivatives(double t, unsigned count) const {
std::vector<Coord> x = f[X].valueAndDerivatives(t, count),
res.push_back(Point(x[i], y[i]));
}
return res;
- }\r
- D2<SBasis> toSBasis() const {\r
- boost::function_requires<FragmentConcept<T> >();\r
- return D2<SBasis>(f[X].toSBasis(), f[Y].toSBasis());\r
- }\r
-\r
- Point operator()(double t) const;\r
- Point operator()(double x, double y) const;\r
-};\r\r
-template <typename T>\r
-inline D2<T> reverse(const D2<T> &a) {\r
- boost::function_requires<FragmentConcept<T> >();\r
- return D2<T>(reverse(a[X]), reverse(a[Y]));\r
-}\r
+ }
+ D2<SBasis> toSBasis() const {
+ boost::function_requires<FragmentConcept<T> >();
+ return D2<SBasis>(f[X].toSBasis(), f[Y].toSBasis());
+ }
+
+ Point operator()(double t) const;
+ Point operator()(double x, double y) const;
+};
+template <typename T>
+inline D2<T> reverse(const D2<T> &a) {
+ boost::function_requires<FragmentConcept<T> >();
+ return D2<T>(reverse(a[X]), reverse(a[Y]));
+}
template <typename T>
inline D2<T> portion(const D2<T> &a, Coord f, Coord t) {
boost::function_requires<FragmentConcept<T> >();
return D2<T>(portion(a[X], f, t), portion(a[Y], f, t));
}
-\r
-//IMPL: boost::EqualityComparableConcept\r
-template <typename T>\r
-inline bool\r
-operator==(D2<T> const &a, D2<T> const &b) {\r
- boost::function_requires<boost::EqualityComparableConcept<T> >();\r
- return a[0]==b[0] && a[1]==b[1];\r
-}\r
-template <typename T>\r
-inline bool\r
-operator!=(D2<T> const &a, D2<T> const &b) {\r
- boost::function_requires<boost::EqualityComparableConcept<T> >();\r
- return a[0]!=b[0] || a[1]!=b[1];\r
-}\r
-\r
-//IMPL: NearConcept\r
-template <typename T>\r
-inline bool\r
-near(D2<T> const &a, D2<T> const &b, double tol) {\r
- boost::function_requires<NearConcept<T> >();\r
- return near(a[0], b[0]) && near(a[1], b[1]);\r
-}\r
-\r
-//IMPL: AddableConcept\r
-template <typename T>\r
-inline D2<T>\r
-operator+(D2<T> const &a, D2<T> const &b) {\r
- boost::function_requires<AddableConcept<T> >();\r
-\r
- D2<T> r;\r
- for(unsigned i = 0; i < 2; i++)\r
- r[i] = a[i] + b[i];\r
- return r;\r
-}\r
-template <typename T>\r
-inline D2<T>\r
-operator-(D2<T> const &a, D2<T> const &b) {\r
- boost::function_requires<AddableConcept<T> >();\r
-\r
- D2<T> r;\r
- for(unsigned i = 0; i < 2; i++)\r
- r[i] = a[i] - b[i];\r
- return r;\r
-}\r
-template <typename T>\r
-inline D2<T>\r
-operator+=(D2<T> &a, D2<T> const &b) {\r
- boost::function_requires<AddableConcept<T> >();\r
-\r
- for(unsigned i = 0; i < 2; i++)\r
- a[i] += b[i];\r
- return a;\r
-}\r
-template <typename T>\r
-inline D2<T>\r
-operator-=(D2<T> &a, D2<T> const & b) {\r
- boost::function_requires<AddableConcept<T> >();\r
-\r
- for(unsigned i = 0; i < 2; i++)\r
- a[i] -= b[i];\r
- return a;\r
-}\r
-\r
-//IMPL: ScalableConcept\r
-template <typename T>\r
-inline D2<T>\r
-operator-(D2<T> const & a) {\r
- boost::function_requires<ScalableConcept<T> >();\r
- D2<T> r;\r
- for(unsigned i = 0; i < 2; i++)\r
- r[i] = -a[i];\r
- return r;\r
-}\r
-template <typename T>\r
-inline D2<T>\r
-operator*(D2<T> const & a, Point const & b) {\r
- boost::function_requires<ScalableConcept<T> >();\r
-\r
- D2<T> r;\r
- for(unsigned i = 0; i < 2; i++)\r
- r[i] = a[i] * b[i];\r
- return r;\r
-}\r
-template <typename T>\r
-inline D2<T>\r
-operator/(D2<T> const & a, Point const & b) {\r
- boost::function_requires<ScalableConcept<T> >();\r
- //TODO: b==0?\r
- D2<T> r;\r
- for(unsigned i = 0; i < 2; i++)\r
- r[i] = a[i] / b[i];\r
- return r;\r
-}\r
-template <typename T>\r
-inline D2<T>\r
-operator*=(D2<T> &a, Point const & b) {\r
- boost::function_requires<ScalableConcept<T> >();\r
-\r
- for(unsigned i = 0; i < 2; i++)\r
- a[i] *= b[i];\r
- return a;\r
-}\r
-template <typename T>\r
-inline D2<T>\r
-operator/=(D2<T> &a, Point const & b) {\r
- boost::function_requires<ScalableConcept<T> >();\r
- //TODO: b==0?\r
- for(unsigned i = 0; i < 2; i++)\r
- a[i] /= b[i];\r
- return a;\r
-}\r
-\r
-template <typename T>\r
-inline D2<T> operator*(D2<T> const & a, double b) { return D2<T>(a[0]*b, a[1]*b); }\r
-template <typename T> \r
-inline D2<T> operator*=(D2<T> & a, double b) { a[0] *= b; a[1] *= b; return a; }\r
-template <typename T>\r
-inline D2<T> operator/(D2<T> const & a, double b) { return D2<T>(a[0]/b, a[1]/b); }\r
-template <typename T> \r
-inline D2<T> operator/=(D2<T> & a, double b) { a[0] /= b; a[1] /= b; return a; }\r
-\r
-template<typename T>\r
-D2<T> operator*(D2<T> const &v, Matrix const &m) {\r
- boost::function_requires<AddableConcept<T> >();\r
- boost::function_requires<ScalableConcept<T> >();\r
- D2<T> ret;\r
- for(unsigned i = 0; i < 2; i++)\r
- ret[i] = v[X] * m[i] + v[Y] * m[i + 2] + m[i + 4];\r
- return ret;\r
-}\r
-\r
-//IMPL: OffsetableConcept\r
-template <typename T>\r
-inline D2<T>\r
-operator+(D2<T> const & a, Point b) {\r
- boost::function_requires<OffsetableConcept<T> >();\r
- D2<T> r;\r
- for(unsigned i = 0; i < 2; i++)\r
- r[i] = a[i] + b[i];\r
- return r;\r
-}\r
-template <typename T>\r
-inline D2<T>\r
-operator-(D2<T> const & a, Point b) {\r
- boost::function_requires<OffsetableConcept<T> >();\r
- D2<T> r;\r
- for(unsigned i = 0; i < 2; i++)\r
- r[i] = a[i] - b[i];\r
- return r;\r
-}\r
-template <typename T>\r
-inline D2<T>\r
-operator+=(D2<T> & a, Point b) {\r
- boost::function_requires<OffsetableConcept<T> >();\r
- for(unsigned i = 0; i < 2; i++)\r
- a[i] += b[i];\r
- return a;\r
-}\r
-template <typename T>\r
-inline D2<T>\r
-operator-=(D2<T> & a, Point b) {\r
- boost::function_requires<OffsetableConcept<T> >();\r
- for(unsigned i = 0; i < 2; i++)\r
- a[i] -= b[i];\r
- return a;\r
-}\r
-\r
-template <typename T>\r
-inline T\r
-dot(D2<T> const & a, D2<T> const & b) {\r
- boost::function_requires<AddableConcept<T> >();\r
- boost::function_requires<MultiplicableConcept<T> >();\r
-\r
- T r;\r
- for(unsigned i = 0; i < 2; i++)\r
- r += a[i] * b[i];\r
- return r;\r
-}\r
-\r
-template <typename T>\r
-inline T\r
-cross(D2<T> const & a, D2<T> const & b) {\r
- boost::function_requires<ScalableConcept<T> >();\r
- boost::function_requires<MultiplicableConcept<T> >();\r
-\r
- return a[1] * b[0] - a[0] * b[1];\r
-}\r
-\r
-\r
-//equivalent to cw/ccw, for use in situations where rotation direction doesn't matter.\r
-template <typename T>\r
-inline D2<T>\r
-rot90(D2<T> const & a) {\r
- boost::function_requires<ScalableConcept<T> >();\r
- return D2<T>(-a[Y], a[X]);\r
-}\r
-\r
-//TODO: concepterize the following functions\r
-template <typename T>\r
-inline D2<T>\r
-compose(D2<T> const & a, T const & b) {\r
- D2<T> r;\r
- for(unsigned i = 0; i < 2; i++)\r
- r[i] = compose(a[i],b);\r
- return r;\r
-}\r
-\r
-template <typename T>\r
-inline D2<T>\r
-compose_each(D2<T> const & a, D2<T> const & b) {\r
- D2<T> r;\r
- for(unsigned i = 0; i < 2; i++)\r
- r[i] = compose(a[i],b[i]);\r
- return r;\r
-}\r
-\r
-template <typename T>\r
-inline D2<T>\r
-compose_each(T const & a, D2<T> const & b) {\r
- D2<T> r;\r
- for(unsigned i = 0; i < 2; i++)\r
- r[i] = compose(a,b[i]);\r
- return r;\r
-}\r
-\r
-\r
-template<typename T>\r
-inline Point\r
-D2<T>::operator()(double t) const {\r
- Point p;\r
- for(unsigned i = 0; i < 2; i++)\r
- p[i] = (*this)[i](t);\r
- return p;\r
-}\r
-\r
-//TODO: we might want to have this take a Point as the parameter.\r
-template<typename T>\r
-inline Point\r
-D2<T>::operator()(double x, double y) const {\r
- Point p;\r
- for(unsigned i = 0; i < 2; i++)\r
- p[i] = (*this)[i](x, y);\r
- return p;\r
-}\r
-\r
-\r
-template<typename T>\r
-D2<T> derivative(D2<T> const & a) {\r
- return D2<T>(derivative(a[X]), derivative(a[Y]));\r
-}\r\r
-template<typename T>\r
-D2<T> integral(D2<T> const & a) {\r
- return D2<T>(integral(a[X]), integral(a[Y]));\r
-}
-\r
-} //end namespace Geom\r
-\r
-#include "rect.h"\r
-#include "d2-sbasis.h"\r
-\r
-namespace Geom{\r
-\r
-//Some D2 Fragment implementation which requires rect:\r
-template <typename T>\r
-Rect bounds_fast(const D2<T> &a) {\r
- boost::function_requires<FragmentConcept<T> >(); \r
- return Rect(bounds_fast(a[X]), bounds_fast(a[Y]));\r
-}\r
-template <typename T>\r
-Rect bounds_exact(const D2<T> &a) {\r
- boost::function_requires<FragmentConcept<T> >(); \r
- return Rect(bounds_exact(a[X]), bounds_exact(a[Y]));\r
-}\r
-template <typename T>\r
-Rect bounds_local(const D2<T> &a, const Interval &t) {\r
- boost::function_requires<FragmentConcept<T> >(); \r
- return Rect(bounds_local(a[X], t), bounds_local(a[Y], t));\r
-}\r\r
-};\r
-\r
-/*\r
- Local Variables:\r
- mode:c++\r
- c-file-style:"stroustrup"\r
- c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))\r
- indent-tabs-mode:nil\r
- fill-column:99\r
- End:\r
-*/\r
-// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:encoding=utf-8:textwidth=99 :\r
-#endif\r
+
+//IMPL: boost::EqualityComparableConcept
+template <typename T>
+inline bool
+operator==(D2<T> const &a, D2<T> const &b) {
+ boost::function_requires<boost::EqualityComparableConcept<T> >();
+ return a[0]==b[0] && a[1]==b[1];
+}
+template <typename T>
+inline bool
+operator!=(D2<T> const &a, D2<T> const &b) {
+ boost::function_requires<boost::EqualityComparableConcept<T> >();
+ return a[0]!=b[0] || a[1]!=b[1];
+}
+
+//IMPL: NearConcept
+template <typename T>
+inline bool
+near(D2<T> const &a, D2<T> const &b, double tol) {
+ boost::function_requires<NearConcept<T> >();
+ return near(a[0], b[0]) && near(a[1], b[1]);
+}
+
+//IMPL: AddableConcept
+template <typename T>
+inline D2<T>
+operator+(D2<T> const &a, D2<T> const &b) {
+ boost::function_requires<AddableConcept<T> >();
+
+ D2<T> r;
+ for(unsigned i = 0; i < 2; i++)
+ r[i] = a[i] + b[i];
+ return r;
+}
+template <typename T>
+inline D2<T>
+operator-(D2<T> const &a, D2<T> const &b) {
+ boost::function_requires<AddableConcept<T> >();
+
+ D2<T> r;
+ for(unsigned i = 0; i < 2; i++)
+ r[i] = a[i] - b[i];
+ return r;
+}
+template <typename T>
+inline D2<T>
+operator+=(D2<T> &a, D2<T> const &b) {
+ boost::function_requires<AddableConcept<T> >();
+
+ for(unsigned i = 0; i < 2; i++)
+ a[i] += b[i];
+ return a;
+}
+template <typename T>
+inline D2<T>
+operator-=(D2<T> &a, D2<T> const & b) {
+ boost::function_requires<AddableConcept<T> >();
+
+ for(unsigned i = 0; i < 2; i++)
+ a[i] -= b[i];
+ return a;
+}
+
+//IMPL: ScalableConcept
+template <typename T>
+inline D2<T>
+operator-(D2<T> const & a) {
+ boost::function_requires<ScalableConcept<T> >();
+ D2<T> r;
+ for(unsigned i = 0; i < 2; i++)
+ r[i] = -a[i];
+ return r;
+}
+template <typename T>
+inline D2<T>
+operator*(D2<T> const & a, Point const & b) {
+ boost::function_requires<ScalableConcept<T> >();
+
+ D2<T> r;
+ for(unsigned i = 0; i < 2; i++)
+ r[i] = a[i] * b[i];
+ return r;
+}
+template <typename T>
+inline D2<T>
+operator/(D2<T> const & a, Point const & b) {
+ boost::function_requires<ScalableConcept<T> >();
+ //TODO: b==0?
+ D2<T> r;
+ for(unsigned i = 0; i < 2; i++)
+ r[i] = a[i] / b[i];
+ return r;
+}
+template <typename T>
+inline D2<T>
+operator*=(D2<T> &a, Point const & b) {
+ boost::function_requires<ScalableConcept<T> >();
+
+ for(unsigned i = 0; i < 2; i++)
+ a[i] *= b[i];
+ return a;
+}
+template <typename T>
+inline D2<T>
+operator/=(D2<T> &a, Point const & b) {
+ boost::function_requires<ScalableConcept<T> >();
+ //TODO: b==0?
+ for(unsigned i = 0; i < 2; i++)
+ a[i] /= b[i];
+ return a;
+}
+
+template <typename T>
+inline D2<T> operator*(D2<T> const & a, double b) { return D2<T>(a[0]*b, a[1]*b); }
+template <typename T>
+inline D2<T> operator*=(D2<T> & a, double b) { a[0] *= b; a[1] *= b; return a; }
+template <typename T>
+inline D2<T> operator/(D2<T> const & a, double b) { return D2<T>(a[0]/b, a[1]/b); }
+template <typename T>
+inline D2<T> operator/=(D2<T> & a, double b) { a[0] /= b; a[1] /= b; return a; }
+
+template<typename T>
+D2<T> operator*(D2<T> const &v, Matrix const &m) {
+ boost::function_requires<AddableConcept<T> >();
+ boost::function_requires<ScalableConcept<T> >();
+ D2<T> ret;
+ for(unsigned i = 0; i < 2; i++)
+ ret[i] = v[X] * m[i] + v[Y] * m[i + 2] + m[i + 4];
+ return ret;
+}
+
+//IMPL: OffsetableConcept
+template <typename T>
+inline D2<T>
+operator+(D2<T> const & a, Point b) {
+ boost::function_requires<OffsetableConcept<T> >();
+ D2<T> r;
+ for(unsigned i = 0; i < 2; i++)
+ r[i] = a[i] + b[i];
+ return r;
+}
+template <typename T>
+inline D2<T>
+operator-(D2<T> const & a, Point b) {
+ boost::function_requires<OffsetableConcept<T> >();
+ D2<T> r;
+ for(unsigned i = 0; i < 2; i++)
+ r[i] = a[i] - b[i];
+ return r;
+}
+template <typename T>
+inline D2<T>
+operator+=(D2<T> & a, Point b) {
+ boost::function_requires<OffsetableConcept<T> >();
+ for(unsigned i = 0; i < 2; i++)
+ a[i] += b[i];
+ return a;
+}
+template <typename T>
+inline D2<T>
+operator-=(D2<T> & a, Point b) {
+ boost::function_requires<OffsetableConcept<T> >();
+ for(unsigned i = 0; i < 2; i++)
+ a[i] -= b[i];
+ return a;
+}
+
+template <typename T>
+inline T
+dot(D2<T> const & a, D2<T> const & b) {
+ boost::function_requires<AddableConcept<T> >();
+ boost::function_requires<MultiplicableConcept<T> >();
+
+ T r;
+ for(unsigned i = 0; i < 2; i++)
+ r += a[i] * b[i];
+ return r;
+}
+
+template <typename T>
+inline T
+cross(D2<T> const & a, D2<T> const & b) {
+ boost::function_requires<ScalableConcept<T> >();
+ boost::function_requires<MultiplicableConcept<T> >();
+
+ return a[1] * b[0] - a[0] * b[1];
+}
+
+
+//equivalent to cw/ccw, for use in situations where rotation direction doesn't matter.
+template <typename T>
+inline D2<T>
+rot90(D2<T> const & a) {
+ boost::function_requires<ScalableConcept<T> >();
+ return D2<T>(-a[Y], a[X]);
+}
+
+//TODO: concepterize the following functions
+template <typename T>
+inline D2<T>
+compose(D2<T> const & a, T const & b) {
+ D2<T> r;
+ for(unsigned i = 0; i < 2; i++)
+ r[i] = compose(a[i],b);
+ return r;
+}
+
+template <typename T>
+inline D2<T>
+compose_each(D2<T> const & a, D2<T> const & b) {
+ D2<T> r;
+ for(unsigned i = 0; i < 2; i++)
+ r[i] = compose(a[i],b[i]);
+ return r;
+}
+
+template <typename T>
+inline D2<T>
+compose_each(T const & a, D2<T> const & b) {
+ D2<T> r;
+ for(unsigned i = 0; i < 2; i++)
+ r[i] = compose(a,b[i]);
+ return r;
+}
+
+
+template<typename T>
+inline Point
+D2<T>::operator()(double t) const {
+ Point p;
+ for(unsigned i = 0; i < 2; i++)
+ p[i] = (*this)[i](t);
+ return p;
+}
+
+//TODO: we might want to have this take a Point as the parameter.
+template<typename T>
+inline Point
+D2<T>::operator()(double x, double y) const {
+ Point p;
+ for(unsigned i = 0; i < 2; i++)
+ p[i] = (*this)[i](x, y);
+ return p;
+}
+
+
+template<typename T>
+D2<T> derivative(D2<T> const & a) {
+ return D2<T>(derivative(a[X]), derivative(a[Y]));
+}
+template<typename T>
+D2<T> integral(D2<T> const & a) {
+ return D2<T>(integral(a[X]), integral(a[Y]));
+}
+
+} //end namespace Geom
+
+#include "rect.h"
+#include "d2-sbasis.h"
+
+namespace Geom{
+
+//Some D2 Fragment implementation which requires rect:
+template <typename T>
+Rect bounds_fast(const D2<T> &a) {
+ boost::function_requires<FragmentConcept<T> >();
+ return Rect(bounds_fast(a[X]), bounds_fast(a[Y]));
+}
+template <typename T>
+Rect bounds_exact(const D2<T> &a) {
+ boost::function_requires<FragmentConcept<T> >();
+ return Rect(bounds_exact(a[X]), bounds_exact(a[Y]));
+}
+template <typename T>
+Rect bounds_local(const D2<T> &a, const Interval &t) {
+ boost::function_requires<FragmentConcept<T> >();
+ return Rect(bounds_local(a[X], t), bounds_local(a[Y], t));
+}
+};
+
+/*
+ Local Variables:
+ mode:c++
+ c-file-style:"stroustrup"
+ c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
+ indent-tabs-mode:nil
+ fill-column:99
+ End:
+*/
+// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:encoding=utf-8:textwidth=99 :
+#endif
index d641fcc08a1af351e24173160304a31436e31c3f..2ad78e42f87a39465fb4719e27acd517ee725a6e 100644 (file)
* hole. Defaults to using the sign of area when it reaches funny cases.
*/
bool path_direction(Path const &p) {
+ if(p.empty()) return false;
//could probably be more efficient, but this is a quick job
double y = p.initialPoint()[Y];
double x = p.initialPoint()[X];
if(!Ar.intersects(Br)) return;
//Checks the general linearity of the function
- if((depth > 12) || (A.boundsLocal(Interval(Al, Ah), 1).maxExtent() < 0.1
- && B.boundsLocal(Interval(Bl, Bh), 1).maxExtent() < 0.1)) {
+ if((depth > 12)) { // || (A.boundsLocal(Interval(Al, Ah), 1).maxExtent() < 0.1
+ //&& B.boundsLocal(Interval(Bl, Bh), 1).maxExtent() < 0.1)) {
double tA, tB, c;
if(linear_intersect(A.pointAt(Al), A.pointAt(Ah),
B.pointAt(Bl), B.pointAt(Bh),
}
*/
+
Crossings curve_self_crossings(Curve const &a) {
Crossings res;
std::vector<double> spl;
@@ -493,7 +495,6 @@ std::vector<std::vector<Rect> > curves_split_bounds(Path const &p, std::vector<s
return ret;
}
-
Crossings path_self_crossings(Path const &p) {
Crossings ret;
std::vector<std::vector<unsigned> > cull = sweep_bounds(bounds(p));
}
*/
-Crossings path_self_crossings(Path const &p) {
+Crossings self_crossings(Path const &p) {
Crossings ret;
std::vector<std::vector<unsigned> > cull = sweep_bounds(bounds(p));
for(unsigned i = 0; i < cull.size(); i++) {
Crossings res2;
for(unsigned k = 0; k < res.size(); k++) {
if(res[k].ta != 0 && res[k].ta != 1 && res[k].tb != 0 && res[k].tb != 1) {
- res.push_back(res[k]);
+ res2.push_back(res[k]);
}
}
res = res2;
return ret;
}
+void flip_crossings(Crossings &crs) {
+ for(unsigned i = 0; i < crs.size(); i++)
+ crs[i] = Crossing(crs[i].tb, crs[i].ta, crs[i].b, crs[i].a, !crs[i].dir);
+}
+
CrossingSet crossings_among(std::vector<Path> const &p) {
CrossingSet results(p.size(), Crossings());
if(p.empty()) return results;
std::vector<std::vector<unsigned> > cull = sweep_bounds(bounds(p));
for(unsigned i = 0; i < cull.size(); i++) {
- Crossings res = path_self_crossings(p[i]);
+ Crossings res = self_crossings(p[i]);
for(unsigned k = 0; k < res.size(); k++) { res[k].a = res[k].b = i; }
merge_crossings(results[i], res, i);
+ flip_crossings(res);
+ merge_crossings(results[i], res, i);
for(unsigned jx = 0; jx < cull[i].size(); jx++) {
unsigned j = cull[i][jx];
merge_crossings(results[j], res, j);
}
}
+ return results;
}
}
index 3401386e0e5eb75947548180c1623b108a5dac0e..6be04ad333b9fcd5352ebc5d1a482ae48bea0977 100644 (file)
std::vector<double> path_mono_splits(Path const &p);
CrossingSet crossings_among(std::vector<Path> const & p);
-inline Crossings self_crossings(Path const & a) { return crossings_among(std::vector<Path>(1, a))[0]; }
+Crossings self_crossings(Path const & a);
inline Crossings crossings(Path const & a, Path const & b) {
DefaultCrosser c = DefaultCrosser();
diff --git a/src/2geom/path.cpp b/src/2geom/path.cpp
index f05d3b0cf7153c5d8c0cb5b81f0ca0199a4321d9..79dc0a5f4765faa4d25038ada4f0746b87a94fae 100644 (file)
--- a/src/2geom/path.cpp
+++ b/src/2geom/path.cpp
delete v;
return;
}
- const_iterator toi = inc(begin(), (unsigned)ti);
+ const_iterator toi = inc(begin(), (unsigned)ti);
if(ff != 1.) {
Curve *fromv = fromi->portion(ff, 1.);
//fromv->setInitial(ret.finalPoint());
ret.append(*fromv);
delete fromv;
}
- if(from > to) {
+ if(from >= to) {
const_iterator ender = end();
if(ender->initialPoint() == ender->finalPoint()) ender++;
ret.insert(ret.end(), ++fromi, ender);
diff --git a/src/2geom/path.h b/src/2geom/path.h
index 6f39eb7ef7c1b59437fbb3836260c522da74ac39..f4897fecc379cdcaccecc638a7e45fe8ed95abfe 100644 (file)
--- a/src/2geom/path.h
+++ b/src/2geom/path.h
template <unsigned order>
class BezierCurve : public Curve {
private:
- D2<Bezier<order> > inner;
+ D2<Bezier > inner;
public:
template <unsigned required_degree>
static void assert_degree(BezierCurve<required_degree> const *) {}
- BezierCurve() {}
+ BezierCurve() : inner(Bezier::Order(order), Bezier::Order(order)) {
+ }
- explicit BezierCurve(D2<Bezier<order> > const &x) : inner(x) {}
+ explicit BezierCurve(D2<Bezier > const &x) : inner(x) {}
- BezierCurve(Bezier<order> x, Bezier<order> y) : inner(x, y) {}
+ BezierCurve(Bezier x, Bezier y) : inner(x, y) {}
// default copy
// default assign
BezierCurve(Point c0, Point c1) {
assert_degree<1>(this);
for(unsigned d = 0; d < 2; d++)
- inner[d] = Bezier<order>(c0[d], c1[d]);
+ inner[d] = Bezier(c0[d], c1[d]);
}
BezierCurve(Point c0, Point c1, Point c2) {
assert_degree<2>(this);
for(unsigned d = 0; d < 2; d++)
- inner[d] = Bezier<order>(c0[d], c1[d], c2[d]);
+ inner[d] = Bezier(c0[d], c1[d], c2[d]);
}
BezierCurve(Point c0, Point c1, Point c2, Point c3) {
assert_degree<3>(this);
for(unsigned d = 0; d < 2; d++)
- inner[d] = Bezier<order>(c0[d], c1[d], c2[d], c3[d]);
+ inner[d] = Bezier(c0[d], c1[d], c2[d], c3[d]);
}
unsigned degree() const { return order; }
std::vector<Point> points() const { return bezier_points(inner); }
std::pair<BezierCurve<order>, BezierCurve<order> > subdivide(Coord t) const {
- std::pair<Bezier<order>, Bezier<order> > sx = inner[X].subdivide(t), sy = inner[Y].subdivide(t);
+ std::pair<Bezier, Bezier > sx = inner[X].subdivide(t), sy = inner[Y].subdivide(t);
return std::pair<BezierCurve<order>, BezierCurve<order> >(
BezierCurve<order>(sx.first, sy.first),
BezierCurve<order>(sx.second, sy.second));
for(unsigned i = 0; i <= order; i++) {
x[i] = c[i][X]; y[i] = c[i][Y];
}
- inner = Bezier<order>(x, y);
+ inner = Bezier(x, y);
}
};
// BezierCurve<0> is meaningless; specialize it out
-template<> class BezierCurve<0> : public BezierCurve<1> { public: BezierCurve(); BezierCurve(Bezier<0> x, Bezier<0> y); };
+template<> class BezierCurve<0> : public BezierCurve<1> { public: BezierCurve(); BezierCurve(Bezier x, Bezier y); };
typedef BezierCurve<1> LineSegment;
typedef BezierCurve<2> QuadraticBezier;
std::vector<double> roots(double v, Dim2 d) const {
std::vector<double> res;
- for(const_iterator it = begin(); it != end_closed(); ++it) {
- std::vector<double> temp = it->roots(v, d);
- res.insert(res.end(), temp.begin(), temp.end());
+ for(unsigned i = 0; i <= size(); i++) {
+ std::vector<double> temp = (*this)[i].roots(v, d);
+ for(unsigned j = 0; j < temp.size(); j++)
+ res.push_back(temp[j] + i);
}
return res;
}
diff --git a/src/2geom/rect.h b/src/2geom/rect.h
index f0811baf6f7359a238cf81c337c9b9147fdefe8b..6a6d979a4689b4ca1a2689b238f84fb07caecf6f 100644 (file)
--- a/src/2geom/rect.h
+++ b/src/2geom/rect.h
* (clockwise if +Y is up, anticlockwise if +Y is down) */
Point corner(unsigned i) const {
switch(i % 4) {
- case 0: return Point(f[X].min(), f[Y].min());
- case 1: return Point(f[X].max(), f[Y].min());
- case 2: return Point(f[X].max(), f[Y].max());
- case 3: return Point(f[X].min(), f[Y].max());
+ case 0: return Point(f[X].min(), f[Y].min());
+ case 1: return Point(f[X].max(), f[Y].min());
+ case 2: return Point(f[X].max(), f[Y].max());
+ default: return Point(f[X].min(), f[Y].max());
}
}
diff --git a/src/2geom/region.cpp b/src/2geom/region.cpp
index cfab3a35a5538c34a85620e636aea209cab691a8..116cc72fd4d293dc52c04a3b62bcb600b60a956b 100644 (file)
--- a/src/2geom/region.cpp
+++ b/src/2geom/region.cpp
namespace Geom {
-Regions sanitize_path(Path const &p) {
- Regions results;
- Crossings crs = self_crossings(p);
- for(unsigned i = 0; i < crs.size(); i++) {
-
- }
-}
-
Region Region::operator*(Matrix const &m) const {
Region r((m.flips() ? boundary.reverse() : boundary) * m, fill);
if(box && m.onlyScaleAndTranslation()) r.box = (*box) * m;
diff --git a/src/2geom/region.h b/src/2geom/region.h
index 4b434f1e5775662278963c4a1931b470a814ef45..e7eaa808b5d76a1a884cd5c0258d5c70ec74fe15 100644 (file)
--- a/src/2geom/region.h
+++ b/src/2geom/region.h
if(!box) box = boost::optional<Rect>(boundary.boundsFast());
return *box;
}
+
bool contains(Point const &p) const {
if(box && !box->contains(p)) return false;
return Geom::contains(boundary, p);
}
bool contains(Region const &other) const { return contains(other.boundary.initialPoint()); }
+ bool includes(Point const &p) const {
+ return logical_xor(!fill, contains(p));
+ }
+
Region inverse() const { return Region(boundary.reverse(), box, !fill); }
Region operator*(Matrix const &m) const;
index fde90785705c7bc13dc3c9f679614643fd32d744..b30c3a655c99b71f64920bb4be5c6289bce8d6c3 100644 (file)
*
* The functions defined in this header related to 2d geometric operations such as arc length,
* unit_vector, curvature, and centroid. Most are built on top of unit_vector, which takes an
- * arbitrary D2 and returns an D2 with unit length with the same direction.
+ * arbitrary D2 and returns a D2 with unit length with the same direction.
*
* Todo/think about:
* arclength D2 -> sbasis (giving arclength function)
r_eqn2 = Linear(1)-(a*a+b*b);
}
- //our candidat is:
+ //our candidate is:
D2<SBasis> unitV;
unitV[0] = b;
unitV[1] = -a;
//is it good?
- double rel_tol = max(1.,max(V_in[0].tailError(0),V_in[1].tailError(0)))*tol;
+ double rel_tol = std::max(1.,std::max(V_in[0].tailError(0),V_in[1].tailError(0)))*tol;
if (r_eqn1.tailError(order)>rel_tol || r_eqn2.tailError(order)>tol){
//if not: subdivide and concat results.
index db4cf5e08dee315c62eee2d354dbfe0a6f09d5f9..0140862b56ae51338141610c44d874237f7fe72a 100644 (file)
return absf;
}
-//-maxSb(x,y), minSb(x,y)--------------------------------------------------------
-Piecewise<SBasis> maxSb( SBasis const &f, SBasis const &g){
- return maxSb(Piecewise<SBasis>(f),Piecewise<SBasis>(g));
+//-max(x,y), min(x,y)--------------------------------------------------------
+Piecewise<SBasis> max( SBasis const &f, SBasis const &g){
+ return max(Piecewise<SBasis>(f),Piecewise<SBasis>(g));
}
-Piecewise<SBasis> maxSb(Piecewise<SBasis> const &f, SBasis const &g){
- return maxSb(f,Piecewise<SBasis>(g));
+Piecewise<SBasis> max(Piecewise<SBasis> const &f, SBasis const &g){
+ return max(f,Piecewise<SBasis>(g));
}
-Piecewise<SBasis> maxSb( SBasis const &f, Piecewise<SBasis> const &g){
- return maxSb(Piecewise<SBasis>(f),g);
+Piecewise<SBasis> max( SBasis const &f, Piecewise<SBasis> const &g){
+ return max(Piecewise<SBasis>(f),g);
}
-Piecewise<SBasis> maxSb(Piecewise<SBasis> const &f, Piecewise<SBasis> const &g){
- Piecewise<SBasis> maxSb=partition(f,roots(f-g));
- Piecewise<SBasis> gg =partition(g,maxSb.cuts);
- maxSb = partition(maxSb,gg.cuts);
- for (unsigned i=0; i<maxSb.size(); i++){
- if (maxSb.segs[i](.5)<gg.segs[i](.5)) maxSb.segs[i]=gg.segs[i];
+Piecewise<SBasis> max(Piecewise<SBasis> const &f, Piecewise<SBasis> const &g){
+ Piecewise<SBasis> max=partition(f,roots(f-g));
+ Piecewise<SBasis> gg =partition(g,max.cuts);
+ max = partition(max,gg.cuts);
+ for (unsigned i=0; i<max.size(); i++){
+ if (max.segs[i](.5)<gg.segs[i](.5)) max.segs[i]=gg.segs[i];
}
- return maxSb;
+ return max;
}
Piecewise<SBasis>
-minSb( SBasis const &f, SBasis const &g){ return -maxSb(-f,-g); }
+min( SBasis const &f, SBasis const &g){ return -max(-f,-g); }
Piecewise<SBasis>
-minSb(Piecewise<SBasis> const &f, SBasis const &g){ return -maxSb(-f,-g); }
+min(Piecewise<SBasis> const &f, SBasis const &g){ return -max(-f,-g); }
Piecewise<SBasis>
-minSb( SBasis const &f, Piecewise<SBasis> const &g){ return -maxSb(-f,-g); }
+min( SBasis const &f, Piecewise<SBasis> const &g){ return -max(-f,-g); }
Piecewise<SBasis>
-minSb(Piecewise<SBasis> const &f, Piecewise<SBasis> const &g){ return -maxSb(-f,-g); }
+min(Piecewise<SBasis> const &f, Piecewise<SBasis> const &g){ return -max(-f,-g); }
//-sign(x)---------------------------------------------------------------
}
Piecewise<SBasis> sqrt(SBasis const &f, double tol, int order){
- return sqrt(maxSb(f,Linear(tol*tol)),tol,order);
+ return sqrt(max(f,Linear(tol*tol)),tol,order);
}
Piecewise<SBasis> sqrt(Piecewise<SBasis> const &f, double tol, int order){
Piecewise<SBasis> result;
- Piecewise<SBasis> ff=maxSb(f,Linear(tol*tol));
+ Piecewise<SBasis> ff=max(f,Linear(tol*tol));
for (unsigned i=0; i<ff.size(); i++){
Piecewise<SBasis> sqrtfi = sqrt_internal(ff.segs[i],tol,order);
index 8f4e1612dacd02a6211e4d8f2cdae3443070375a..c20b09885fa724a9af239a9591ad3ea5897a99ce 100644 (file)
--- a/src/2geom/sbasis-math.h
+++ b/src/2geom/sbasis-math.h
Piecewise<SBasis> abs(Piecewise<SBasis>const &f);
//- max(f,g), min(f,g) ----------------------------------------------
-Piecewise<SBasis> maxSb( SBasis const &f, SBasis const &g);
-Piecewise<SBasis> maxSb(Piecewise<SBasis> const &f, SBasis const &g);
-Piecewise<SBasis> maxSb( SBasis const &f, Piecewise<SBasis> const &g);
-Piecewise<SBasis> maxSb(Piecewise<SBasis> const &f, Piecewise<SBasis> const &g);
-Piecewise<SBasis> minSb( SBasis const &f, SBasis const &g);
-Piecewise<SBasis> minSb(Piecewise<SBasis> const &f, SBasis const &g);
-Piecewise<SBasis> minSb( SBasis const &f, Piecewise<SBasis> const &g);
-Piecewise<SBasis> minSb(Piecewise<SBasis> const &f, Piecewise<SBasis> const &g);
+Piecewise<SBasis> max( SBasis const &f, SBasis const &g);
+Piecewise<SBasis> max(Piecewise<SBasis> const &f, SBasis const &g);
+Piecewise<SBasis> max( SBasis const &f, Piecewise<SBasis> const &g);
+Piecewise<SBasis> max(Piecewise<SBasis> const &f, Piecewise<SBasis> const &g);
+Piecewise<SBasis> min( SBasis const &f, SBasis const &g);
+Piecewise<SBasis> min(Piecewise<SBasis> const &f, SBasis const &g);
+Piecewise<SBasis> min( SBasis const &f, Piecewise<SBasis> const &g);
+Piecewise<SBasis> min(Piecewise<SBasis> const &f, Piecewise<SBasis> const &g);
//-sign(x)---------------------------------------------------------------
Piecewise<SBasis> signSb( SBasis const &f);
index c4ef3c16d921050b33ec83f7ec05289fce06e6af..52d3ef6a9dcc960526d5fba87a88b4e488f28bc8 100644 (file)
std::vector<double> roots(SBasis const & s) {
if(s.size() == 0) return std::vector<double>();
- std::vector<double> b = sbasis_to_bezier(s), r;
- find_bernstein_roots(&b[0], b.size()-1, r, 0, 0., 1.);
- return r;
+ return sbasis_to_bezier(s).roots();
}
};
index 206f18931430abdda1860f918419585919e08be6..2484af18d94e6026ab42e0b37b9165a0d0934230 100644 (file)
}
// this produces a degree 2q bezier from a degree k sbasis
-std::vector<double>
+Bezier
sbasis_to_bezier(SBasis const &B, unsigned q) {
- std::vector<double> result;
if(q == 0) {
q = B.size();
/*if(B.back()[0] == B.back()[1]) {
}*/
}
unsigned n = q*2;
- result.resize(n, 0);
+ Bezier result = Bezier(Bezier::Order(n-1));
if(q > B.size())
q = B.size();
n--;
index d9eaabe7e47cc6870e358c2ae0d9962e1770b198..e566d71561a37b8f5529af98b21c145a2737006b 100644 (file)
namespace Geom{
// this produces a degree k bezier from a degree k sbasis
-std::vector<double>
+Bezier
sbasis_to_bezier(SBasis const &B, unsigned q = 0);
std::vector<Geom::Point>
diff --git a/src/2geom/shape.cpp b/src/2geom/shape.cpp
index 670792521c07d5a56fc0a2c0db73675a75e75ce8..54218d4d99171e3ebe704681bb177feeec5e5bba 100644 (file)
--- a/src/2geom/shape.cpp
+++ b/src/2geom/shape.cpp
#include "shape.h"
#include "utils.h"
#include "sweep.h"
+#include "ord.h"
#include <iostream>
#include <algorithm>
+#include <cstdlib>
namespace Geom {
-// Utility funcs
-
-// Yes, xor is !=, but I'm pretty sure this is safer in the event of strange bools
-bool logical_xor (bool a, bool b) { return (a || b) && !(a && b); }
-
// A little sugar for appending a list to another
template<typename T>
void append(T &a, T const &b) {
a.insert(a.end(), b.begin(), b.end());
}
+//Orders a list of indices according to their containment within eachother.
+struct ContainmentOrder {
+ std::vector<Region> const *rs;
+ explicit ContainmentOrder(std::vector<Region> const *r) : rs(r) {}
+ bool operator()(unsigned a, unsigned b) const { return (*rs)[b].contains((*rs)[a]); }
+};
+
+//Returns the list of regions containing a particular point. Useful in tandem with ContainmentOrder
+std::vector<unsigned> Shape::containment_list(Point p) const {
+ std::vector<Rect> pnt;
+ pnt.push_back(Rect(p, p));
+ std::vector<std::vector<unsigned> > cull = sweep_bounds(pnt, bounds(*this));
+ std::vector<unsigned> containers;
+ if(cull[0].size() == 0) return containers;
+ for(unsigned i = 0; i < cull[0].size(); i++)
+ if(content[cull[0][i]].contains(p)) containers.push_back(cull[0][i]);
+ return containers;
+}
+
/* Used within shape_boolean and related functions, as the name describes, finds the
* first false within the list of lists of booleans.
*/
for(unsigned i = 0; i < crs.size(); i++)
visited.push_back(std::vector<bool>(crs[i].size(), false));
- //bool const exception =
-
//Traverse the crossings, creating chunks
Regions chunks;
while(true) {
@@ -115,35 +129,32 @@ Shape shape_boolean(bool rev, Shape const & a, Shape const & b, CrossingSet cons
//If true, then we are on the 'subtraction diagonal'
bool const on_sub = logical_xor(a.fill, b.fill);
- //If true, then the hole must be inside the other to be included
- bool const a_mode = logical_xor(logical_xor(!rev, a.fill), on_sub),
- b_mode = logical_xor(logical_xor(!rev, b.fill), on_sub);
+ //If true, outer paths are filled
+ bool const res_fill = rev ? (on_sub || (a.fill && b.fill)) : (a.fill && b.fill);
//Handle unintersecting portions
for(unsigned i = 0; i < crs.size(); i++) {
if(crs[i].size() == 0) {
- Region r(i < ac.size() ? ac[i] : bc[i - ac.size()]);
- bool mode(i < ac.size() ? a_mode : b_mode);
+ bool env;
+ bool on_a = i < ac.size();
+ Region const & r(on_a ? ac[i] : bc[i - ac.size()]);
+ Shape const & other(on_a ? b : a);
- if(logical_xor(r.fill, i < ac.size() ? a.fill : b.fill)) {
- //is an inner (fill is opposite the outside fill)
- Point exemplar = r.boundary.initialPoint();
- Regions const & others = i < ac.size() ? bc : ac;
- for(unsigned j = 0; j < others.size(); j++) {
- if(others[j].contains(exemplar)) {
- //contained in another
- if(mode) chunks.push_back(r);
- goto skip;
- }
- }
+ std::vector<unsigned> containers = other.containment_list(r.boundary.initialPoint());
+ if(containers.empty()) {
+ //not included in any container, the environment fill is the opposite of the outer fill
+ env = !res_fill;
+ if(on_sub && logical_xor(other.fill, res_fill)) env = !env; //If on the subtractor, invert the environment fill
+ } else {
+ //environment fill is the same as the inner-most container
+ std::vector<unsigned>::iterator cit = std::min_element(containers.begin(), containers.end(), ContainmentOrder(&other.content));
+ env = other[*cit].isFill();
}
- //disjoint
- if(!mode) chunks.push_back(r);
- skip: (void)0;
+ if(!logical_xor(rev, env)) chunks.push_back(r); //When unioning, environment must be hole for inclusion, when intersecting, it must be filled
}
}
- return Shape(chunks);
+ return Shape(chunks, res_fill);
}
// Just a convenience wrapper for shape_boolean, which handles the crossings
@@ -176,8 +187,11 @@ Shape shape_boolean_rb(bool rev, Shape const &a, Shape const &b, CrossingSet con
* to be specified as a logic table. This logic table is 4 bit-flags, which
* correspond to the elements of the 'truth table' for a particular operation.
* These flags are defined with the enums starting with BOOLOP_ .
+ *
+ * NOTE: currently doesn't work, as the CrossingSet reversal functions crash
*/
Shape boolop(Shape const &a, Shape const &b, unsigned flags, CrossingSet const &crs) {
+ throw NotImplemented();
flags &= 15;
if(flags <= BOOLOP_UNION) {
switch(flags) {
@@ -194,6 +208,7 @@ Shape boolop(Shape const &a, Shape const &b, unsigned flags, CrossingSet const &
case BOOLOP_UNION: return shape_boolean(false, a, b);
}
} else {
+ flags = ~flags & 15;
switch(flags - BOOLOP_NEITHER) {
case BOOLOP_SUBTRACT_A_B: return shape_boolean_ra(false, a, b, crs);
case BOOLOP_SUBTRACT_B_A: return shape_boolean_rb(false, a, b, crs);
@@ -203,7 +218,7 @@ Shape boolop(Shape const &a, Shape const &b, unsigned flags, CrossingSet const &
return res;
}
}
- return boolop(a, b, ~flags, crs).inverse();
+ return boolop(a, b, flags, crs).inverse();
}
return Shape();
}
case BOOLOP_UNION: return shape_boolean(false, a, b);
}
} else {
- switch(flags - BOOLOP_NEITHER) {
+ flags = ~flags & 15;
+ switch(flags) {
case BOOLOP_SUBTRACT_A_B: return shape_boolean(false, b, a.inverse());
case BOOLOP_SUBTRACT_B_A: return shape_boolean(false, a, b.inverse());
case BOOLOP_EXCLUSION: {
return res;
} //return boolop(a, b, flags, crossings_between(a, b));
}
- return boolop(a, b, ~flags).inverse();
+ return boolop(a, b, flags).inverse();
}
return Shape();
}
-
int paths_winding(std::vector<Path> const &ps, Point p) {
- int ret;
+ int ret = 0;
for(unsigned i = 0; i < ps.size(); i++)
ret += winding(ps[i], p);
return ret;
}
-std::vector<double> y_of_roots(std::vector<Path> const & ps, double x) {
- std::vector<double> res;
- for(unsigned i = 0; i < ps.size(); i++) {
- std::vector<double> temp = ps[i].roots(x, X);
- for(unsigned i = 0; i < temp.size(); i++)
- res.push_back(ps[i].valueAt(temp[i], Y));
- }
- std::sort(res.begin(), res.end());
- return res;
-}
-
-struct Edge {
- unsigned ix;
- double from, to;
- bool rev;
- int wind;
- Edge(unsigned i, double ft, double tt, bool r, unsigned w) : ix(i), from(ft), to(tt), rev(r), wind(w) {}
- Edge(unsigned i, double ft, double tt, bool r, std::vector<Path> const &ps) : ix(i), from(ft), to(tt), rev(r) {
- //TODO: get the edge wind data some other way
- Point p = ps[i].pointAt(ft);
- std::vector<double> rs = y_of_roots(ps, p[X]);
- unsigned interv = std::lower_bound(rs.begin(), rs.end(), p[Y]) - rs.begin();
- wind = interv % 2;
+void add_to_shape(Shape &s, Path const &p, bool fill) {
+ if(fill)
+ s.content.push_back(Region(p).asFill());
+ else
+ s.content.push_back(Region(p).asHole());
+}
+
+int inner_winding(Path const & p, std::vector<Path> const &ps) {
+ Point pnt = p.initialPoint();
+ return paths_winding(ps, pnt) - winding(p, pnt) + 1;
+}
+
+double fudgerize(double d, bool rev) {
+ double ret = rev ? d - 0.01 : d + 0.01;
+ if(ret < 0) ret = 0;
+ return ret;
+}
+
+unsigned pick_coincident(unsigned ix, unsigned jx, bool &rev, std::vector<Path> const &ps, CrossingSet const &crs) {
+ unsigned ex_jx = jx;
+ unsigned oix = crs[ix][jx].getOther(ix);
+ double otime = crs[ix][jx].getTime(oix);
+ Point cross_point = ps[oix].pointAt(otime),
+ along = ps[oix].pointAt(fudgerize(otime, rev)) - cross_point,
+ prev = -along;
+ bool ex_dir = rev;
+ for(unsigned k = jx; k < crs[ix].size(); k++) {
+ unsigned koix = crs[ix][k].getOther(ix);
+ if(koix == oix) {
+ if(!near(otime, crs[ix][k].getTime(oix))) break;
+ for(unsigned dir = 0; dir < 2; dir++) {
+ Point val = ps[ix].pointAt(fudgerize(crs[ix][k].getTime(ix), dir)) - cross_point;
+ Cmp to_prev = cmp(cross(val, prev), 0);
+ Cmp from_along = cmp(cross(along, val), 0);
+ Cmp c = cmp(from_along, to_prev);
+ if(c == EQUAL_TO && from_along == LESS_THAN) {
+ ex_jx = k;
+ prev = val;
+ ex_dir = dir;
+ }
+ }
+ }
}
- double initial() { return rev ? to : from; }
- double final() { return rev ? from : to; }
- void addTo(Path &res, std::vector<Path> const &ps) {
- if(rev) {
- Path p = ps[ix].portion(to, from).reverse();
- for(unsigned i = 0; i < p.size(); i++)
- res.append(p[i]);
- } else {
- ps[ix].appendPortionTo(res, from, to);
+ rev = ex_dir;
+ return ex_jx;
+}
+
+unsigned crossing_along(double t, unsigned ix, unsigned jx, bool dir, Crossings const & crs) {
+ Crossing cur = Crossing(t, t, ix, ix, false);
+ if(jx < crs.size()) {
+ double ct = crs[jx].getTime(ix);
+ if(t == ct) {
+ cur = crs[jx];
+ if(cur.a == cur.b) {
+ if(jx+1 <= crs.size() && crs[jx+1].getOther(ix) == ix) return jx+1;
+ if(jx > 0 && crs[jx-1].getOther(ix) == ix) return jx-1;
+ }
}
}
-};
+ if(!dir) {
+ jx = std::upper_bound(crs.begin(), crs.end(), cur, CrossingOrder(ix)) - crs.begin();
+ } else {
+ jx = std::lower_bound(crs.begin(), crs.end(), cur, CrossingOrder(ix)) - crs.begin();
+ if(jx == 0) jx = crs.size() - 1; else jx--;
+ jx = std::lower_bound(crs.begin(), crs.end(), crs[jx], CrossingOrder(ix)) - crs.begin();
+ }
+ if(jx >= crs.size()) jx = 0;
+ return jx;
+}
-typedef std::vector<Edge> Edges;
+void crossing_dual(unsigned &i, unsigned &j, CrossingSet const & crs) {
+ Crossing cur = crs[i][j];
+ i = cur.getOther(i);
+ std::cout << i << "\n";
+ if(crs[i].empty())
+ j = 0;
+ else
+ j = std::lower_bound(crs[i].begin(), crs[i].end(), cur, CrossingOrder(i)) - crs[i].begin();
+}
-double point_cosine(Point a, Point b, Point c) {
- Point db = b - a, dc = c - a;
- return cross(db, dc) / (db.length() * dc.length());
+//locate a crossing on the outside, by casting a ray through the middle of the bbox
+void outer_crossing(unsigned &ix, unsigned &jx, bool & dir, std::vector<Path> const & ps, CrossingSet const & crs) {
+ Rect bounds = ps[ix].boundsFast();
+ double ry = bounds[Y].middle();
+ double max_val = bounds.left(), max_t = 0;
+ ix = ps.size();
+ for(unsigned i = 0; i < ps.size(); i++) {
+ if(!crs[i].empty()) {
+ std::vector<double> rts = ps[i].roots(ry, Y);
+ for(unsigned j = 0; j < rts.size(); j++) {
+ double val = ps[i].valueAt(rts[j], X);
+ if(val > max_val) {
+ ix = i;
+ max_val = val;
+ max_t = rts[j];
+ }
+ }
+ }
+ }
+ if(ix != ps.size()) {
+ dir = ps[ix].valueAt(max_t + 0.01, Y) >
+ ps[ix].valueAt(max_t - 0.01, Y);
+ jx = crossing_along(max_t, ix, jx, dir, crs[ix]);
+ }
}
-//sanitize
-Regions regionize_paths(std::vector<Path> const &ps, bool evenodd) {
- CrossingSet crs = crossings_among(ps);
+std::vector<Path> inner_sanitize(std::vector<Path> const & ps) {
+ CrossingSet crs(crossings_among(ps));
- Edges es;
+ Regions chunks;
- for(unsigned i = 0; i < crs.size(); i++) {
- for(unsigned j = 0; j < crs[i].size(); j++) {
- Crossing cur = crs[i][j];
- int io = i, jo = j;
+ std::vector<bool> used_path(ps.size(), false);
+ std::vector<std::vector<bool> > visited;
+ for(unsigned i = 0; i < crs.size(); i++)
+ visited.push_back(std::vector<bool>(crs[i].size(), false));
+
+ std::vector<Path> result_paths;
+
+ while(true) {
+ unsigned ix = 0, jx = 0;
+ bool dir = false;
+
+ //find an outer crossing by trying various paths and checking if the crossings are used
+ for(; ix < crs.size(); ix++) {
+ //TODO: optimize so it doesn't unecessarily check stuff
+ bool cont = true;
+ for(unsigned j = 0; j < crs[ix].size(); j++) {
+ if(!visited[ix][j]) { cont = false; break; }
+ }
+ if(cont) continue;
+ unsigned rix = ix, rjx = jx;
+ outer_crossing(rix, rjx, dir, ps, crs);
+ if(rix >= crs.size() || visited[rix][rjx]) continue;
+ ix = rix; jx = rjx;
+ break;
+ }
+ if(ix == crs.size()) break;
+ crossing_dual(ix, jx, crs);
+
+ dir = !dir;
+
+ Path res;
+ do {
+ visited[ix][jx] = true;
+ //unsigned nix = ix, njx = jx;
+ //crossing_dual(nix, njx, crs);
+ //visited[nix][njx] = true;
+ unsigned fix = ix, fjx = jx;
- jo++;
- if(jo >= crs[io].size()) jo = 0;
- //std::cout << io << ", " << jo << "\n";
- if(cur.a == i)
- es.push_back(Edge(i, cur.ta, crs[io][jo].ta, false, ps));
- else
- es.push_back(Edge(i, cur.tb, crs[io][jo].tb, false, ps));
+ bool new_dir = dir;
- jo-=2;
- if(jo < 0) jo += crs[io].size();
- // std::cout << io << ", " << jo << "\n";
- if(cur.a == i)
- es.push_back(Edge(i, crs[io][jo].ta, cur.ta, true, ps));
- else
- es.push_back(Edge(i, crs[io][jo].tb, cur.tb, true, ps));
- }
+ jx = crossing_along(crs[ix][jx].getTime(ix), ix, jx, dir, crs[ix]);
+ if(crs[ix][jx].a != crs[ix][jx].b) crossing_dual(ix, jx, crs); else new_dir = !new_dir;
+ jx = pick_coincident(ix, jx, new_dir, ps, crs);
+
+ //unsigned nix = ix, njx = jx;
+ //crossing_dual(nix, njx, crs);
+
+ Crossing from = crs[fix][fjx],
+ to = crs[ix][jx];
+ if(dir) {
+ // backwards
+ std::cout << "r" << ix << "[" << from.getTime(ix) << ", " << to.getTime(ix) << "]\n";
+ Path p = ps[ix].portion(from.getTime(ix), to.getTime(ix)).reverse();
+ for(unsigned i = 0; i < p.size(); i++)
+ res.append(p[i]);
+ } else {
+ // forwards
+ std::cout << "f" << ix << "[" << from.getTime(ix) << ", " << to.getTime(ix) << "]\n";
+ ps[ix].appendPortionTo(res, from.getTime(ix), to.getTime(ix));
+ }
+ dir = new_dir;
+ } while(!visited[ix][jx]);
+ std::cout << "added " << res.size() << "\n";
+ result_paths.push_back(res);
}
- for(unsigned i = 0; i<crs.size(); i++) {
- if(crs[i].empty()) {
- es.push_back(Edge(i, 0, ps[i].size(), false, ps));
- es.push_back(Edge(i, ps[i].size(), 0, true, ps));
- }
+ for(unsigned i = 0; i < crs.size(); i++) {
+ if(crs[i].empty() && !used_path[i])
+ result_paths.push_back(ps[i]);
}
-
- Edges es2;
- //filter
- for(unsigned i = 0; i < es.size(); i++) {
- if(true) //(evenodd && es[i].wind % 2 == 0) || (!evenodd && es[i].wind == 0))
- es2.push_back(es[i]);
+ return result_paths;
+}
+
+Shape sanitize(std::vector<Path> const & ps) {
+ std::vector<Path> res;
+ for(unsigned i = 0; i < ps.size(); i++) {
+ append(res, inner_sanitize(std::vector<Path>(1, ps[i])));
+ }
+ return stopgap_cleaner(res);
+}
+
+/* WIP sanitizer:
+unsigned pick_coincident(unsigned ix, unsigned jx, bool pref, bool &rev, std::vector<Path> const &ps, CrossingSet const &crs) {
+ unsigned ex_jx = jx;
+ unsigned oix = crs[ix][jx].getOther(ix);
+ double otime = crs[ix][jx].getTime(oix);
+ Point cross_point = ps[oix].pointAt(otime),
+ along = ps[oix].pointAt(otime + (rev ? -0.01 : 0.01)) - cross_point,
+ prev = -along;
+ bool ex_dir = rev;
+ for(unsigned k = jx; k < crs[ix].size(); k++) {
+ unsigned koix = crs[ix][k].getOther(ix);
+ if(koix == oix) {
+ if(!near(otime, crs[ix][k].getTime(oix))) break;
+ for(unsigned dir = 0; dir < 2; dir++) {
+ Point val = ps[ix].pointAt(crs[ix][k].getTime(ix) + (dir ? -0.01 : 0.01)) - cross_point;
+ Cmp to_prev = cmp(cross(val, prev), 0);
+ Cmp from_along = cmp(cross(along, val), 0);
+ Cmp c = cmp(from_along, to_prev);
+ if(c == EQUAL_TO && (from_along == LESS_THAN) == pref) {
+ ex_jx = k;
+ prev = val;
+ ex_dir = dir;
+ }
+ }
+ }
}
- es = es2;
+ rev = ex_dir;
+ return ex_jx;
+}
+
+unsigned corner_index(unsigned &i) {
+ div_t div_res = div(i, 4);
+ i = div_res.quot;
+ return div_res.rem;
+}
+
+bool corner_direction(unsigned ix, unsigned jc, unsigned corner, CrossingSet const &crs) {
+ if(crs[ix][jc].a == ix) return corner > 1; else return corner %2 == 1;
+}
+
+Shape sanitize(std::vector<Path> const & ps) {
+ CrossingSet crs = crossings_among(ps);
- std::cout << es.size() << " edges\n";
+ //Keep track of which CORNERS we've hit.
+ // FF FR RF RR, first is A dir, second B dir
+ std::vector<std::vector<bool> > visited;
+ for(unsigned i = 0; i < crs.size(); i++)
+ visited.push_back(std::vector<bool>(crs[i].size()*4, false));
Regions chunks;
- for(unsigned i = 0; i < es.size(); i++) {
- Edge cur = es[i];
- if(cur.rev)
- chunks.push_back(Region(ps[cur.ix].portion(cur.from, cur.to).reverse(), cur.wind % 2 != 0));
- else
- chunks.push_back(Region(ps[cur.ix].portion(cur.from, cur.to), cur.wind % 2 != 0));
- }
- return chunks;
-
- //Regions chunks;
- std::vector<bool> used(es2.size(), false);
while(true) {
- unsigned i = std::find(used.begin(), used.end(), false) - used.begin();
- if(i == used.size()) break;
+ unsigned i, j;
+ first_false(visited, i, j);
+ unsigned corner = corner_index(j);
+
+ if(i == visited.size()) break;
+
+ bool dir = corner_direction(i, j, corner, crs);
+
+ //Figure out whether we hug the path cw or ccw, based on the orientation of the initial corner:
+ unsigned oix = crs[i][j].getOther(i);
+ double otime = crs[i][j].getTime(oix);
+ bool odir = (oix == crs[i][j].a) ? corner > 1 : corner % 2 == 1;
+ Point cross_point = ps[oix].pointAt(otime),
+ along = ps[oix].pointAt(otime + (odir ? -0.01 : 0.01)) - cross_point,
+ val = ps[i].pointAt(crs[i][j].getTime(i) + (dir ? -0.01 : 0.01)) - cross_point;
+
+ Cmp from_along = cmp(cross(along, val), 0);
+ bool cw = from_along == LESS_THAN;
+ std::cout << "cw = " << cw << "\n";
Path res;
do {
- es2[i].addTo(res, ps);
- Point pnt = res.finalPoint();
- std::vector<unsigned> poss;
- for(unsigned j = 0; j < es2.size(); j++)
- if(near(pnt, ps[es2[j].ix].pointAt(es2[j].initial()))) poss.push_back(j);
- if(poss.empty()) break;
- unsigned best = 0;
- if(poss.size() > 1) {
- double crossval = 10;
- Point along = ps[i].pointAt(es2[i].final()+0.1);
- for(unsigned j = 0; j < poss.size(); j++) {
- unsigned ix = poss[j];
- double val = point_cosine(pnt, along, ps[ix].pointAt(es2[ix].initial()+.01));
- if(val < crossval) {
- crossval = val;
- best = j;
- }
- }
+ Crossing cur = crs[i][j];
+ visited[i][j*4+corner] = true;
+
+ unsigned fix = i, fjx = j;
+ crossing_dual(i, j, crs);
+ visited[i][j*4+corner] = true;
+ i = fix; j = fjx;
+
+ j = crossing_along(crs[i][j].getTime(i), i, j, dir, crs[i]);
+
+ crossing_dual(i, j, crs);
+
+ bool new_dir = dir;
+ pick_coincident(i, j, cw, new_dir, ps, crs);
+
+ Crossing from = crs[fix][fjx],
+ to = crs[i][j];
+ if(dir) {
+ // backwards
+ std::cout << "r" << i << "[" << to.getTime(i) << ", " << from.getTime(i) << "]\n";
+ Path p = ps[i].portion(to.getTime(i) + 0.001, from.getTime(i)).reverse();
+ for(unsigned k = 0; k < p.size(); k++)
+ res.append(p[k]);
+ } else {
+ // forwards
+ std::cout << "f" << i << "[" << from.getTime(i) << ", " << to.getTime(i) << "]\n";
+ ps[i].appendPortionTo(res, from.getTime(i) + 0.001, to.getTime(i));
}
- i = poss[best];
- } while(!used[i]);
+ if(i == to.a)
+ corner = (new_dir ? 2 : 0) + (dir ? 1 : 0);
+ else
+ corner = (new_dir ? 1 : 0) + (dir ? 2 : 0);
+ dir = new_dir;
+ } while(!visited[i][j*4+corner]);
chunks.push_back(Region(res));
+// if(use) {
+// chunks.push_back(Region(res, true));
+// }
}
- return chunks;
-}
+ return Shape(chunks);
+// return ret;
+} */
/* This transforms a shape by a matrix. In the case that the matrix flips
* the shape, it reverses the paths in order to preserve the fill.
return ret;
}
-struct ContainmentOrder {
- std::vector<Region> const *rs;
- explicit ContainmentOrder(std::vector<Region> const *r) : rs(r) {}
- bool operator()(unsigned a, unsigned b) const { return (*rs)[b].contains((*rs)[a]); }
-};
-
bool Shape::contains(Point const &p) const {
- std::vector<Rect> pnt;
- pnt.push_back(Rect(p, p));
- std::vector<std::vector<unsigned> > cull = sweep_bounds(pnt, bounds(*this));
- if(cull[0].size() == 0) return !fill;
- return content[*min_element(cull[0].begin(), cull[0].end(), ContainmentOrder(&content))].isFill();
+ std::vector<unsigned> containers = containment_list(p);
+ if(containers.empty()) return !isFill();
+ unsigned ix = *min_element(containers.begin(), containers.end(), ContainmentOrder(&content));
+ return content[ix].isFill();
+}
+
+Shape stopgap_cleaner(std::vector<Path> const &ps) {
+ if(ps.empty()) return Shape(false);
+ Shape ret;
+ for(unsigned i = 0; i < ps.size(); i++)
+ add_to_shape(ret, ps[i], inner_winding(ps[i], ps) % 2 != 0);
+ return ret;
}
bool Shape::inside_invariants() const { //semi-slow & easy to violate
diff --git a/src/2geom/shape.h b/src/2geom/shape.h
index 3700e9e5a09b6ba82cee01dcad23296fed7ef4c5..b9194537cba6c9dc16081eaf3dab97bbbd6e94cd 100644 (file)
--- a/src/2geom/shape.h
+++ b/src/2geom/shape.h
friend Shape shape_boolean(bool rev, Shape const &, Shape const &, CrossingSet const &);
friend Shape boolop(Shape const &a, Shape const &b, unsigned);
friend Shape boolop(Shape const &a, Shape const &b, unsigned, CrossingSet const &);
-
+ friend void add_to_shape(Shape &s, Path const &p, bool);
public:
Shape() : fill(true) {}
explicit Shape(Region const & r) {
bool inside_invariants() const; //semi-slow & easy to violate : checks that the insides are inside, the outsides are outside
bool region_invariants() const; //semi-slow : checks for self crossing
bool cross_invariants() const; //slow : checks that everything is disjoint
- bool invariants() const; //vera slow (combo rombo, checks the above)
+ bool invariants() const; //vera slow (combo, checks the above)
- private:
+ private:
+ std::vector<unsigned> containment_list(Point p) const;
void update_fill() const {
unsigned ix = outer_index(content);
if(ix < size())
@@ -80,10 +81,21 @@ inline CrossingSet crossings_between(Shape const &a, Shape const &b) { return cr
Shape shape_boolean(bool rev, Shape const &, Shape const &, CrossingSet const &);
Shape shape_boolean(bool rev, Shape const &, Shape const &);
+//unsigned pick_coincident(unsigned ix, unsigned jx, bool &rev, std::vector<Path> const &ps, CrossingSet const &crs);
+//void outer_crossing(unsigned &ix, unsigned &jx, bool & dir, std::vector<Path> const & ps, CrossingSet const & crs);
+void crossing_dual(unsigned &i, unsigned &j, CrossingSet const & crs);
+unsigned crossing_along(double t, unsigned ix, unsigned jx, bool dir, Crossings const & crs);
+
Shape boolop(Shape const &, Shape const &, unsigned flags);
Shape boolop(Shape const &, Shape const &, unsigned flags, CrossingSet &);
-Regions regionize_paths(std::vector<Path> const &ps, bool evenodd=true);
+Shape sanitize(std::vector<Path> const &ps);
+
+Shape stopgap_cleaner(std::vector<Path> const &ps);
+
+inline std::vector<Path> desanitize(Shape const & s) {
+ return paths_from_regions(s.getContent());
+}
}
index 0bd15e8b9e55f94b0f0ae37279f152a3c0c88fea..ba0fbe7da0adedfb47bde1ee6bf60726174c0c55 100644 (file)
-#line 1 "/home/njh/svn/lib2geom/src/svg-path-parser.rl"
+#line 1 "/home/mental/trees/lib2geom/src/svg-path-parser.rl"
/*
* parse SVG path specifications
*
};
-#line 133 "/home/njh/svn/lib2geom/src/svg-path-parser.cpp"
+#line 133 "/home/mental/trees/lib2geom/src/svg-path-parser.cpp"
static const char _svg_path_actions[] = {
0, 1, 0, 1, 1, 1, 2, 1,
3, 1, 4, 1, 5, 1, 15, 1,
185, 187, 188, 189, 190, 191, 192, 193,
194, 195, 196, 197, 198, 199, 200, 201,
202, 203, 194, 179, 180, 205, 0, 575,
- 575, 576, 576, 577, 575, 578, 0, 769,
- 769, 770, 770, 771, 769, 772, 0, 781,
+ 575, 576, 576, 577, 575, 578, 0, 761,
+ 761, 762, 762, 763, 761, 764, 0, 781,
781, 782, 782, 783, 781, 784, 0, 750,
741, 0, 714, 0, 699, 699, 701, 702,
715, 715, 699, 700, 714, 0, 738, 738,
294, 295, 295, 297, 320, 300, 301, 303,
304, 305, 306, 307, 308, 309, 310, 311,
312, 313, 314, 315, 316, 317, 318, 319,
- 310, 295, 296, 321, 0, 765, 765, 766,
- 766, 767, 765, 768, 0, 777, 777, 778,
+ 310, 295, 296, 321, 0, 757, 757, 758,
+ 758, 759, 757, 760, 0, 777, 777, 778,
778, 779, 777, 780, 0, 749, 740, 0,
712, 0, 694, 694, 696, 697, 713, 713,
694, 695, 712, 0, 737, 737, 728, 730,
123, 125, 148, 128, 129, 131, 132, 133,
134, 135, 136, 137, 138, 139, 140, 141,
142, 143, 144, 145, 146, 147, 138, 123,
- 124, 149, 0, 761, 761, 762, 762, 763,
- 761, 764, 0, 757, 757, 758, 758, 759,
- 757, 760, 0, 599, 599, 600, 600, 601,
+ 124, 149, 0, 769, 769, 770, 770, 771,
+ 769, 772, 0, 765, 765, 766, 766, 767,
+ 765, 768, 0, 599, 599, 600, 600, 601,
599, 602, 0, 607, 607, 608, 608, 609,
607, 610, 0, 208, 209, 209, 211, 629,
214, 215, 628, 217, 218, 219, 220, 221,
0, 1, 1, 1, 0, 1, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 3,
- 17, 3, 17, 0, 0, 11, 62, 62,
- 62, 11, 62, 62, 62, 9, 59, 59,
- 59, 9, 59, 59, 59, 0, 1, 1,
+ 17, 3, 17, 0, 0, 9, 59, 59,
+ 59, 9, 59, 59, 59, 11, 62, 62,
+ 62, 11, 62, 62, 62, 0, 1, 1,
1, 0, 1, 1, 1, 0, 1, 1,
1, 0, 0, 0, 0, 0, 0, 0
};
static const int svg_path_first_final = 326;
-#line 133 "/home/njh/svn/lib2geom/src/svg-path-parser.rl"
+#line 133 "/home/mental/trees/lib2geom/src/svg-path-parser.rl"
void Parser::parse(char const *str)
_reset();
-#line 1373 "/home/njh/svn/lib2geom/src/svg-path-parser.cpp"
+#line 1373 "/home/mental/trees/lib2geom/src/svg-path-parser.cpp"
{
cs = svg_path_start;
}
switch ( *_acts++ )
{
case 0:
-#line 145 "/home/njh/svn/lib2geom/src/svg-path-parser.rl"
+#line 145 "/home/mental/trees/lib2geom/src/svg-path-parser.rl"
{
start = p;
}
break;
case 1:
-#line 149 "/home/njh/svn/lib2geom/src/svg-path-parser.rl"
+#line 149 "/home/mental/trees/lib2geom/src/svg-path-parser.rl"
{
char const *end=p;
std::string buf(start, end);
}
break;
case 2:
-#line 156 "/home/njh/svn/lib2geom/src/svg-path-parser.rl"
+#line 156 "/home/mental/trees/lib2geom/src/svg-path-parser.rl"
{
_push(1.0);
}
break;
case 3:
-#line 160 "/home/njh/svn/lib2geom/src/svg-path-parser.rl"
+#line 160 "/home/mental/trees/lib2geom/src/svg-path-parser.rl"
{
_push(0.0);
}
break;
case 4:
-#line 164 "/home/njh/svn/lib2geom/src/svg-path-parser.rl"
+#line 164 "/home/mental/trees/lib2geom/src/svg-path-parser.rl"
{
_absolute = true;
}
break;
case 5:
-#line 168 "/home/njh/svn/lib2geom/src/svg-path-parser.rl"
+#line 168 "/home/mental/trees/lib2geom/src/svg-path-parser.rl"
{
_absolute = false;
}
break;
case 6:
-#line 172 "/home/njh/svn/lib2geom/src/svg-path-parser.rl"
+#line 172 "/home/mental/trees/lib2geom/src/svg-path-parser.rl"
{
_moveTo(_pop_point());
}
break;
case 7:
-#line 176 "/home/njh/svn/lib2geom/src/svg-path-parser.rl"
+#line 176 "/home/mental/trees/lib2geom/src/svg-path-parser.rl"
{
_lineTo(_pop_point());
}
break;
case 8:
-#line 180 "/home/njh/svn/lib2geom/src/svg-path-parser.rl"
+#line 180 "/home/mental/trees/lib2geom/src/svg-path-parser.rl"
{
_lineTo(Point(_pop_coord(X), _current[Y]));
}
break;
case 9:
-#line 184 "/home/njh/svn/lib2geom/src/svg-path-parser.rl"
+#line 184 "/home/mental/trees/lib2geom/src/svg-path-parser.rl"
{
_lineTo(Point(_current[X], _pop_coord(Y)));
}
break;
case 10:
-#line 188 "/home/njh/svn/lib2geom/src/svg-path-parser.rl"
+#line 188 "/home/mental/trees/lib2geom/src/svg-path-parser.rl"
{
Point p = _pop_point();
Point c1 = _pop_point();
}
break;
case 11:
-#line 195 "/home/njh/svn/lib2geom/src/svg-path-parser.rl"
+#line 195 "/home/mental/trees/lib2geom/src/svg-path-parser.rl"
{
Point p = _pop_point();
Point c1 = _pop_point();
}
break;
case 12:
-#line 201 "/home/njh/svn/lib2geom/src/svg-path-parser.rl"
+#line 201 "/home/mental/trees/lib2geom/src/svg-path-parser.rl"
{
Point p = _pop_point();
Point c = _pop_point();
}
break;
case 13:
-#line 207 "/home/njh/svn/lib2geom/src/svg-path-parser.rl"
+#line 207 "/home/mental/trees/lib2geom/src/svg-path-parser.rl"
{
Point p = _pop_point();
_quadTo(_quad_tangent, p);
}
break;
case 14:
-#line 212 "/home/njh/svn/lib2geom/src/svg-path-parser.rl"
+#line 212 "/home/mental/trees/lib2geom/src/svg-path-parser.rl"
{
Point point = _pop_point();
bool sweep = _pop_flag();
}
break;
case 15:
-#line 223 "/home/njh/svn/lib2geom/src/svg-path-parser.rl"
+#line 223 "/home/mental/trees/lib2geom/src/svg-path-parser.rl"
{
_closePath();
}
break;
case 16:
-#line 360 "/home/njh/svn/lib2geom/src/svg-path-parser.rl"
+#line 360 "/home/mental/trees/lib2geom/src/svg-path-parser.rl"
{goto _out;}
break;
-#line 1566 "/home/njh/svn/lib2geom/src/svg-path-parser.cpp"
+#line 1566 "/home/mental/trees/lib2geom/src/svg-path-parser.cpp"
}
}
goto _resume;
_out: {}
}
-#line 370 "/home/njh/svn/lib2geom/src/svg-path-parser.rl"
+#line 370 "/home/mental/trees/lib2geom/src/svg-path-parser.rl"
if ( cs < svg_path_first_final ) {
diff --git a/src/2geom/utils.h b/src/2geom/utils.h
index ca880640d49d41e588891fe57a61066e8f579d81..2be995248b57db8c48d8110befcbe8d20cff430b 100644 (file)
--- a/src/2geom/utils.h
+++ b/src/2geom/utils.h
-#ifndef MATH_UTILS_HEADER
-#define MATH_UTILS_HEADER
+#ifndef UTILS_HEADER
+#define UTILS_HEADER
/** Various utility functions.
*