summary | shortlog | log | commit | commitdiff | tree
raw | patch | inline | side by side (parent: c3fd872)
raw | patch | inline | side by side (parent: c3fd872)
author | acspike <acspike@users.sourceforge.net> | |
Thu, 23 Nov 2006 01:50:31 +0000 (01:50 +0000) | ||
committer | acspike <acspike@users.sourceforge.net> | |
Thu, 23 Nov 2006 01:50:31 +0000 (01:50 +0000) |
share/extensions/cubicsuperpath.py | patch | blob | history |
index 0f34ec841285bad330f9ed21c94e253012409dbe..cc59905abc03fd7a9e74db0b4a629474dc182c75 100755 (executable)
"""
import simplepath
+from math import *
+def matprod(mlist):
+ prod=mlist[0]
+ for m in mlist[1:]:
+ a00=prod[0][0]*m[0][0]+prod[0][1]*m[1][0]
+ a01=prod[0][0]*m[0][1]+prod[0][1]*m[1][1]
+ a10=prod[1][0]*m[0][0]+prod[1][1]*m[1][0]
+ a11=prod[1][0]*m[0][1]+prod[1][1]*m[1][1]
+ prod=[[a00,a01],[a10,a11]]
+ return prod
+def rotmat(teta):
+ return [[cos(teta),-sin(teta)],[sin(teta),cos(teta)]]
+def applymat(mat, pt):
+ x=mat[0][0]*pt[0]+mat[0][1]*pt[1]
+ y=mat[1][0]*pt[0]+mat[1][1]*pt[1]
+ pt[0]=x
+ pt[1]=y
+def norm(pt):
+ return sqrt(pt[0]*pt[0]+pt[1]*pt[1])
+
+def ArcToPath(p1,params):
+ A=p1[:]
+ rx,ry,teta,longflag,sweepflag,x2,y2=params[:]
+ B=[x2,y2]
+ if rx==0 or ry==0:
+ return([[A,A,A],[B,B,B]])
+ mat=matprod((rotmat(teta),[[1/rx,0],[0,1/ry]],rotmat(-teta)))
+ applymat(mat, A)
+ applymat(mat, B)
+ k=[-(B[1]-A[1]),B[0]-A[0]]
+ d=k[0]*k[0]+k[1]*k[1]
+ k[0]/=sqrt(d)
+ k[1]/=sqrt(d)
+ d=sqrt(max(0,1-d/4))
+ if longflag==sweepflag:
+ d*=-1
+ O=[(B[0]+A[0])/2+d*k[0],(B[1]+A[1])/2+d*k[1]]
+ OA=[A[0]-O[0],A[1]-O[1]]
+ OB=[B[0]-O[0],B[1]-O[1]]
+ start=acos(OA[0]/norm(OA))
+ if OA[1]<0:
+ start*=-1
+ end=acos(OB[0]/norm(OB))
+ if OB[1]<0:
+ end*=-1
+
+ if sweepflag and start>end:
+ end +=2*pi
+ if (not sweepflag) and start<end:
+ end -=2*pi
+
+ NbSectors=int(abs(start-end)*2/pi)+1
+ dTeta=(end-start)/NbSectors
+ #v=dTeta*2/pi*0.552
+ v=dTeta*2/pi*4*(sqrt(2)-1)/3
+ #if not sweepflag:
+ # v*=-1
+ p=[]
+ for i in range(0,NbSectors+1,1):
+ angle=start+i*dTeta
+ v1=[O[0]+cos(angle)-(-v)*sin(angle),O[1]+sin(angle)+(-v)*cos(angle)]
+ pt=[O[0]+cos(angle) ,O[1]+sin(angle) ]
+ v2=[O[0]+cos(angle)- v *sin(angle),O[1]+sin(angle)+ v *cos(angle)]
+ p.append([v1,pt,v2])
+ p[ 0][0]=p[ 0][1][:]
+ p[-1][2]=p[-1][1][:]
+
+ mat=matprod((rotmat(teta),[[rx,0],[0,ry]],rotmat(-teta)))
+ for pts in p:
+ applymat(mat, pts[0])
+ applymat(mat, pts[1])
+ applymat(mat, pts[2])
+ return(p)
+
def CubicSuperPath(simplepath):
csp = []
subpath = -1
last = params[-2:]
lastctrl = params[2:4]
elif cmd == 'Q':
- #TODO: convert to cubic
- csp[subpath].append([lastctrl[:],last[:],last[:]])
- last = params[-2:]
- lastctrl = params[-2:]
+ q0=last[:]
+ q1=params[0:1]
+ q2=params[2:3]
+ x0= q0[0]
+ x1=1/3*q0[0]+2/3*q1[0]
+ x2= 2/3*q1[0]+1/3*q2[0]
+ x3= q2[0]
+ y0= q0[1]
+ y1=1/3*q0[1]+2/3*q1[1]
+ y2= 2/3*q1[1]+1/3*q2[1]
+ y3= q2[1]
+ csp[subpath].append([lastctrl[:][x0,y0][x1,y1]])
+ last = [x3,y3]
+ lastctrl = [x2,y2]
elif cmd == 'A':
- #TODO: convert to cubics
- csp[subpath].append([lastctrl[:],last[:],last[:]])
- last = params[-2:]
- lastctrl = params[-2:]
+ arcp=ArcToPath(last[:],params[:])
+ arcp[ 0][0]=lastctrl[:]
+ last=arcp[-1][1]
+ lastctrl = arcp[-1][0]
+ csp[subpath]+=arcp[:-1]
elif cmd == 'Z':
csp[subpath].append([lastctrl[:],last[:],last[:]])
last = subpathstart[:]