Code

compat/regex: use the regex engine from gawk for compat
authorÆvar Arnfjörð Bjarmason <avarab@gmail.com>
Tue, 17 Aug 2010 09:24:38 +0000 (09:24 +0000)
committerJunio C Hamano <gitster@pobox.com>
Wed, 18 Aug 2010 21:06:48 +0000 (14:06 -0700)
Change the regex engine in compat to use the gawk engine from the
gawk-devel module in gawk CVS. This engine supports the REG_STARTEND
flag, which was optionally available in Git since v1.7.2-rc0~77^2~1.

The source was grabbed from cvs.savannah.gnu.org:/sources/gawk, and
these are the upstream versions of the files being included:

    regcomp.c               1.4
    regex.h                 1.3
    regex.h                 1.3
    regex_internal.c        1.3
    regex_internal.h        1.3
    regexec.c               1.3

Signed-off-by: Ævar Arnfjörð Bjarmason <avarab@gmail.com>
Acked-by: Jonathan Nieder <jrnieder@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
compat/regex/regcomp.c [new file with mode: 0644]
compat/regex/regex.c
compat/regex/regex.h
compat/regex/regex_internal.c [new file with mode: 0644]
compat/regex/regex_internal.h [new file with mode: 0644]
compat/regex/regexec.c [new file with mode: 0644]

diff --git a/compat/regex/regcomp.c b/compat/regex/regcomp.c
new file mode 100644 (file)
index 0000000..5115d7a
--- /dev/null
@@ -0,0 +1,3892 @@
+/* Extended regular expression matching and search library.
+   Copyright (C) 2002-2007,2009,2010 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Lesser General Public
+   License as published by the Free Software Foundation; either
+   version 2.1 of the License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Lesser General Public License for more details.
+
+   You should have received a copy of the GNU Lesser General Public
+   License along with the GNU C Library; if not, write to the Free
+   Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+   02110-1301 USA.  */
+
+static reg_errcode_t re_compile_internal (regex_t *preg, const char * pattern,
+                                         size_t length, reg_syntax_t syntax);
+static void re_compile_fastmap_iter (regex_t *bufp,
+                                    const re_dfastate_t *init_state,
+                                    char *fastmap);
+static reg_errcode_t init_dfa (re_dfa_t *dfa, size_t pat_len);
+#ifdef RE_ENABLE_I18N
+static void free_charset (re_charset_t *cset);
+#endif /* RE_ENABLE_I18N */
+static void free_workarea_compile (regex_t *preg);
+static reg_errcode_t create_initial_state (re_dfa_t *dfa);
+#ifdef RE_ENABLE_I18N
+static void optimize_utf8 (re_dfa_t *dfa);
+#endif
+static reg_errcode_t analyze (regex_t *preg);
+static reg_errcode_t preorder (bin_tree_t *root,
+                              reg_errcode_t (fn (void *, bin_tree_t *)),
+                              void *extra);
+static reg_errcode_t postorder (bin_tree_t *root,
+                               reg_errcode_t (fn (void *, bin_tree_t *)),
+                               void *extra);
+static reg_errcode_t optimize_subexps (void *extra, bin_tree_t *node);
+static reg_errcode_t lower_subexps (void *extra, bin_tree_t *node);
+static bin_tree_t *lower_subexp (reg_errcode_t *err, regex_t *preg,
+                                bin_tree_t *node);
+static reg_errcode_t calc_first (void *extra, bin_tree_t *node);
+static reg_errcode_t calc_next (void *extra, bin_tree_t *node);
+static reg_errcode_t link_nfa_nodes (void *extra, bin_tree_t *node);
+static int duplicate_node (re_dfa_t *dfa, int org_idx, unsigned int constraint);
+static int search_duplicated_node (const re_dfa_t *dfa, int org_node,
+                                  unsigned int constraint);
+static reg_errcode_t calc_eclosure (re_dfa_t *dfa);
+static reg_errcode_t calc_eclosure_iter (re_node_set *new_set, re_dfa_t *dfa,
+                                        int node, int root);
+static reg_errcode_t calc_inveclosure (re_dfa_t *dfa);
+static int fetch_number (re_string_t *input, re_token_t *token,
+                        reg_syntax_t syntax);
+static int peek_token (re_token_t *token, re_string_t *input,
+                       reg_syntax_t syntax) internal_function;
+static bin_tree_t *parse (re_string_t *regexp, regex_t *preg,
+                         reg_syntax_t syntax, reg_errcode_t *err);
+static bin_tree_t *parse_reg_exp (re_string_t *regexp, regex_t *preg,
+                                 re_token_t *token, reg_syntax_t syntax,
+                                 int nest, reg_errcode_t *err);
+static bin_tree_t *parse_branch (re_string_t *regexp, regex_t *preg,
+                                re_token_t *token, reg_syntax_t syntax,
+                                int nest, reg_errcode_t *err);
+static bin_tree_t *parse_expression (re_string_t *regexp, regex_t *preg,
+                                    re_token_t *token, reg_syntax_t syntax,
+                                    int nest, reg_errcode_t *err);
+static bin_tree_t *parse_sub_exp (re_string_t *regexp, regex_t *preg,
+                                 re_token_t *token, reg_syntax_t syntax,
+                                 int nest, reg_errcode_t *err);
+static bin_tree_t *parse_dup_op (bin_tree_t *dup_elem, re_string_t *regexp,
+                                re_dfa_t *dfa, re_token_t *token,
+                                reg_syntax_t syntax, reg_errcode_t *err);
+static bin_tree_t *parse_bracket_exp (re_string_t *regexp, re_dfa_t *dfa,
+                                     re_token_t *token, reg_syntax_t syntax,
+                                     reg_errcode_t *err);
+static reg_errcode_t parse_bracket_element (bracket_elem_t *elem,
+                                           re_string_t *regexp,
+                                           re_token_t *token, int token_len,
+                                           re_dfa_t *dfa,
+                                           reg_syntax_t syntax,
+                                           int accept_hyphen);
+static reg_errcode_t parse_bracket_symbol (bracket_elem_t *elem,
+                                         re_string_t *regexp,
+                                         re_token_t *token);
+#ifdef RE_ENABLE_I18N
+static reg_errcode_t build_equiv_class (bitset_t sbcset,
+                                       re_charset_t *mbcset,
+                                       int *equiv_class_alloc,
+                                       const unsigned char *name);
+static reg_errcode_t build_charclass (RE_TRANSLATE_TYPE trans,
+                                     bitset_t sbcset,
+                                     re_charset_t *mbcset,
+                                     int *char_class_alloc,
+                                     const char *class_name,
+                                     reg_syntax_t syntax);
+#else  /* not RE_ENABLE_I18N */
+static reg_errcode_t build_equiv_class (bitset_t sbcset,
+                                       const unsigned char *name);
+static reg_errcode_t build_charclass (RE_TRANSLATE_TYPE trans,
+                                     bitset_t sbcset,
+                                     const char *class_name,
+                                     reg_syntax_t syntax);
+#endif /* not RE_ENABLE_I18N */
+static bin_tree_t *build_charclass_op (re_dfa_t *dfa,
+                                      RE_TRANSLATE_TYPE trans,
+                                      const char *class_name,
+                                      const char *extra,
+                                      int non_match, reg_errcode_t *err);
+static bin_tree_t *create_tree (re_dfa_t *dfa,
+                               bin_tree_t *left, bin_tree_t *right,
+                               re_token_type_t type);
+static bin_tree_t *create_token_tree (re_dfa_t *dfa,
+                                     bin_tree_t *left, bin_tree_t *right,
+                                     const re_token_t *token);
+static bin_tree_t *duplicate_tree (const bin_tree_t *src, re_dfa_t *dfa);
+static void free_token (re_token_t *node);
+static reg_errcode_t free_tree (void *extra, bin_tree_t *node);
+static reg_errcode_t mark_opt_subexp (void *extra, bin_tree_t *node);
+\f
+/* This table gives an error message for each of the error codes listed
+   in regex.h.  Obviously the order here has to be same as there.
+   POSIX doesn't require that we do anything for REG_NOERROR,
+   but why not be nice?  */
+
+const char __re_error_msgid[] attribute_hidden =
+  {
+#define REG_NOERROR_IDX        0
+    gettext_noop ("Success")   /* REG_NOERROR */
+    "\0"
+#define REG_NOMATCH_IDX (REG_NOERROR_IDX + sizeof "Success")
+    gettext_noop ("No match")  /* REG_NOMATCH */
+    "\0"
+#define REG_BADPAT_IDX (REG_NOMATCH_IDX + sizeof "No match")
+    gettext_noop ("Invalid regular expression") /* REG_BADPAT */
+    "\0"
+#define REG_ECOLLATE_IDX (REG_BADPAT_IDX + sizeof "Invalid regular expression")
+    gettext_noop ("Invalid collation character") /* REG_ECOLLATE */
+    "\0"
+#define REG_ECTYPE_IDX (REG_ECOLLATE_IDX + sizeof "Invalid collation character")
+    gettext_noop ("Invalid character class name") /* REG_ECTYPE */
+    "\0"
+#define REG_EESCAPE_IDX        (REG_ECTYPE_IDX + sizeof "Invalid character class name")
+    gettext_noop ("Trailing backslash") /* REG_EESCAPE */
+    "\0"
+#define REG_ESUBREG_IDX        (REG_EESCAPE_IDX + sizeof "Trailing backslash")
+    gettext_noop ("Invalid back reference") /* REG_ESUBREG */
+    "\0"
+#define REG_EBRACK_IDX (REG_ESUBREG_IDX + sizeof "Invalid back reference")
+    gettext_noop ("Unmatched [ or [^") /* REG_EBRACK */
+    "\0"
+#define REG_EPAREN_IDX (REG_EBRACK_IDX + sizeof "Unmatched [ or [^")
+    gettext_noop ("Unmatched ( or \\(") /* REG_EPAREN */
+    "\0"
+#define REG_EBRACE_IDX (REG_EPAREN_IDX + sizeof "Unmatched ( or \\(")
+    gettext_noop ("Unmatched \\{") /* REG_EBRACE */
+    "\0"
+#define REG_BADBR_IDX  (REG_EBRACE_IDX + sizeof "Unmatched \\{")
+    gettext_noop ("Invalid content of \\{\\}") /* REG_BADBR */
+    "\0"
+#define REG_ERANGE_IDX (REG_BADBR_IDX + sizeof "Invalid content of \\{\\}")
+    gettext_noop ("Invalid range end") /* REG_ERANGE */
+    "\0"
+#define REG_ESPACE_IDX (REG_ERANGE_IDX + sizeof "Invalid range end")
+    gettext_noop ("Memory exhausted") /* REG_ESPACE */
+    "\0"
+#define REG_BADRPT_IDX (REG_ESPACE_IDX + sizeof "Memory exhausted")
+    gettext_noop ("Invalid preceding regular expression") /* REG_BADRPT */
+    "\0"
+#define REG_EEND_IDX   (REG_BADRPT_IDX + sizeof "Invalid preceding regular expression")
+    gettext_noop ("Premature end of regular expression") /* REG_EEND */
+    "\0"
+#define REG_ESIZE_IDX  (REG_EEND_IDX + sizeof "Premature end of regular expression")
+    gettext_noop ("Regular expression too big") /* REG_ESIZE */
+    "\0"
+#define REG_ERPAREN_IDX        (REG_ESIZE_IDX + sizeof "Regular expression too big")
+    gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */
+  };
+
+const size_t __re_error_msgid_idx[] attribute_hidden =
+  {
+    REG_NOERROR_IDX,
+    REG_NOMATCH_IDX,
+    REG_BADPAT_IDX,
+    REG_ECOLLATE_IDX,
+    REG_ECTYPE_IDX,
+    REG_EESCAPE_IDX,
+    REG_ESUBREG_IDX,
+    REG_EBRACK_IDX,
+    REG_EPAREN_IDX,
+    REG_EBRACE_IDX,
+    REG_BADBR_IDX,
+    REG_ERANGE_IDX,
+    REG_ESPACE_IDX,
+    REG_BADRPT_IDX,
+    REG_EEND_IDX,
+    REG_ESIZE_IDX,
+    REG_ERPAREN_IDX
+  };
+\f
+/* Entry points for GNU code.  */
+
+
+#ifdef ZOS_USS
+
+/* For ZOS USS we must define btowc */
+
+wchar_t 
+btowc (int c)
+{
+   wchar_t wtmp[2];
+   char tmp[2];
+
+   tmp[0] = c;
+   tmp[1] = 0;
+
+   mbtowc (wtmp, tmp, 1);
+   return wtmp[0];
+}
+#endif
+
+/* re_compile_pattern is the GNU regular expression compiler: it
+   compiles PATTERN (of length LENGTH) and puts the result in BUFP.
+   Returns 0 if the pattern was valid, otherwise an error string.
+
+   Assumes the `allocated' (and perhaps `buffer') and `translate' fields
+   are set in BUFP on entry.  */
+
+const char *
+re_compile_pattern (pattern, length, bufp)
+    const char *pattern;
+    size_t length;
+    struct re_pattern_buffer *bufp;
+{
+  reg_errcode_t ret;
+
+  /* And GNU code determines whether or not to get register information
+     by passing null for the REGS argument to re_match, etc., not by
+     setting no_sub, unless RE_NO_SUB is set.  */
+  bufp->no_sub = !!(re_syntax_options & RE_NO_SUB);
+
+  /* Match anchors at newline.  */
+  bufp->newline_anchor = 1;
+
+  ret = re_compile_internal (bufp, pattern, length, re_syntax_options);
+
+  if (!ret)
+    return NULL;
+  return gettext (__re_error_msgid + __re_error_msgid_idx[(int) ret]);
+}
+#ifdef _LIBC
+weak_alias (__re_compile_pattern, re_compile_pattern)
+#endif
+
+/* Set by `re_set_syntax' to the current regexp syntax to recognize.  Can
+   also be assigned to arbitrarily: each pattern buffer stores its own
+   syntax, so it can be changed between regex compilations.  */
+/* This has no initializer because initialized variables in Emacs
+   become read-only after dumping.  */
+reg_syntax_t re_syntax_options;
+
+
+/* Specify the precise syntax of regexps for compilation.  This provides
+   for compatibility for various utilities which historically have
+   different, incompatible syntaxes.
+
+   The argument SYNTAX is a bit mask comprised of the various bits
+   defined in regex.h.  We return the old syntax.  */
+
+reg_syntax_t
+re_set_syntax (syntax)
+    reg_syntax_t syntax;
+{
+  reg_syntax_t ret = re_syntax_options;
+
+  re_syntax_options = syntax;
+  return ret;
+}
+#ifdef _LIBC
+weak_alias (__re_set_syntax, re_set_syntax)
+#endif
+
+int
+re_compile_fastmap (bufp)
+    struct re_pattern_buffer *bufp;
+{
+  re_dfa_t *dfa = (re_dfa_t *) bufp->buffer;
+  char *fastmap = bufp->fastmap;
+
+  memset (fastmap, '\0', sizeof (char) * SBC_MAX);
+  re_compile_fastmap_iter (bufp, dfa->init_state, fastmap);
+  if (dfa->init_state != dfa->init_state_word)
+    re_compile_fastmap_iter (bufp, dfa->init_state_word, fastmap);
+  if (dfa->init_state != dfa->init_state_nl)
+    re_compile_fastmap_iter (bufp, dfa->init_state_nl, fastmap);
+  if (dfa->init_state != dfa->init_state_begbuf)
+    re_compile_fastmap_iter (bufp, dfa->init_state_begbuf, fastmap);
+  bufp->fastmap_accurate = 1;
+  return 0;
+}
+#ifdef _LIBC
+weak_alias (__re_compile_fastmap, re_compile_fastmap)
+#endif
+
+static inline void
+__attribute ((always_inline))
+re_set_fastmap (char *fastmap, int icase, int ch)
+{
+  fastmap[ch] = 1;
+  if (icase)
+    fastmap[tolower (ch)] = 1;
+}
+
+/* Helper function for re_compile_fastmap.
+   Compile fastmap for the initial_state INIT_STATE.  */
+
+static void
+re_compile_fastmap_iter (regex_t *bufp, const re_dfastate_t *init_state,
+                        char *fastmap)
+{
+  volatile re_dfa_t *dfa = (re_dfa_t *) bufp->buffer;
+  int node_cnt;
+  int icase = (dfa->mb_cur_max == 1 && (bufp->syntax & RE_ICASE));
+  for (node_cnt = 0; node_cnt < init_state->nodes.nelem; ++node_cnt)
+    {
+      int node = init_state->nodes.elems[node_cnt];
+      re_token_type_t type = dfa->nodes[node].type;
+
+      if (type == CHARACTER)
+       {
+         re_set_fastmap (fastmap, icase, dfa->nodes[node].opr.c);
+#ifdef RE_ENABLE_I18N
+         if ((bufp->syntax & RE_ICASE) && dfa->mb_cur_max > 1)
+           {
+             unsigned char *buf = re_malloc (unsigned char, dfa->mb_cur_max), *p;
+             wchar_t wc;
+             mbstate_t state;
+
+             p = buf;
+             *p++ = dfa->nodes[node].opr.c;
+             while (++node < dfa->nodes_len
+                    && dfa->nodes[node].type == CHARACTER
+                    && dfa->nodes[node].mb_partial)
+               *p++ = dfa->nodes[node].opr.c;
+             memset (&state, '\0', sizeof (state));
+             if (__mbrtowc (&wc, (const char *) buf, p - buf,
+                            &state) == p - buf
+                 && (__wcrtomb ((char *) buf, towlower (wc), &state)
+                     != (size_t) -1))
+               re_set_fastmap (fastmap, 0, buf[0]);
+             re_free (buf);
+           }
+#endif
+       }
+      else if (type == SIMPLE_BRACKET)
+       {
+         int i, ch;
+         for (i = 0, ch = 0; i < BITSET_WORDS; ++i)
+           {
+             int j;
+             bitset_word_t w = dfa->nodes[node].opr.sbcset[i];
+             for (j = 0; j < BITSET_WORD_BITS; ++j, ++ch)
+               if (w & ((bitset_word_t) 1 << j))
+                 re_set_fastmap (fastmap, icase, ch);
+           }
+       }
+#ifdef RE_ENABLE_I18N
+      else if (type == COMPLEX_BRACKET)
+       {
+         re_charset_t *cset = dfa->nodes[node].opr.mbcset;
+         int i;
+
+# ifdef _LIBC
+         /* See if we have to try all bytes which start multiple collation
+            elements.
+            e.g. In da_DK, we want to catch 'a' since "aa" is a valid
+                 collation element, and don't catch 'b' since 'b' is
+                 the only collation element which starts from 'b' (and
+                 it is caught by SIMPLE_BRACKET).  */
+             if (_NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES) != 0
+                 && (cset->ncoll_syms || cset->nranges))
+               {
+                 const int32_t *table = (const int32_t *)
+                   _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
+                 for (i = 0; i < SBC_MAX; ++i)
+                   if (table[i] < 0)
+                     re_set_fastmap (fastmap, icase, i);
+               }
+# endif /* _LIBC */
+
+         /* See if we have to start the match at all multibyte characters,
+            i.e. where we would not find an invalid sequence.  This only
+            applies to multibyte character sets; for single byte character
+            sets, the SIMPLE_BRACKET again suffices.  */
+         if (dfa->mb_cur_max > 1
+             && (cset->nchar_classes || cset->non_match || cset->nranges
+# ifdef _LIBC
+                 || cset->nequiv_classes
+# endif /* _LIBC */
+                ))
+           {
+             unsigned char c = 0;
+             do
+               {
+                 mbstate_t mbs;
+                 memset (&mbs, 0, sizeof (mbs));
+                 if (__mbrtowc (NULL, (char *) &c, 1, &mbs) == (size_t) -2)
+                   re_set_fastmap (fastmap, false, (int) c);
+               }
+             while (++c != 0);
+           }
+
+         else
+           {
+             /* ... Else catch all bytes which can start the mbchars.  */
+             for (i = 0; i < cset->nmbchars; ++i)
+               {
+                 char buf[256];
+                 mbstate_t state;
+                 memset (&state, '\0', sizeof (state));
+                 if (__wcrtomb (buf, cset->mbchars[i], &state) != (size_t) -1)
+                   re_set_fastmap (fastmap, icase, *(unsigned char *) buf);
+                 if ((bufp->syntax & RE_ICASE) && dfa->mb_cur_max > 1)
+                   {
+                     if (__wcrtomb (buf, towlower (cset->mbchars[i]), &state)
+                         != (size_t) -1)
+                       re_set_fastmap (fastmap, false, *(unsigned char *) buf);
+                   }
+               }
+           }
+       }
+#endif /* RE_ENABLE_I18N */
+      else if (type == OP_PERIOD
+#ifdef RE_ENABLE_I18N
+              || type == OP_UTF8_PERIOD
+#endif /* RE_ENABLE_I18N */
+              || type == END_OF_RE)
+       {
+         memset (fastmap, '\1', sizeof (char) * SBC_MAX);
+         if (type == END_OF_RE)
+           bufp->can_be_null = 1;
+         return;
+       }
+    }
+}
+\f
+/* Entry point for POSIX code.  */
+/* regcomp takes a regular expression as a string and compiles it.
+
+   PREG is a regex_t *.  We do not expect any fields to be initialized,
+   since POSIX says we shouldn't.  Thus, we set
+
+     `buffer' to the compiled pattern;
+     `used' to the length of the compiled pattern;
+     `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
+       REG_EXTENDED bit in CFLAGS is set; otherwise, to
+       RE_SYNTAX_POSIX_BASIC;
+     `newline_anchor' to REG_NEWLINE being set in CFLAGS;
+     `fastmap' to an allocated space for the fastmap;
+     `fastmap_accurate' to zero;
+     `re_nsub' to the number of subexpressions in PATTERN.
+
+   PATTERN is the address of the pattern string.
+
+   CFLAGS is a series of bits which affect compilation.
+
+     If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
+     use POSIX basic syntax.
+
+     If REG_NEWLINE is set, then . and [^...] don't match newline.
+     Also, regexec will try a match beginning after every newline.
+
+     If REG_ICASE is set, then we considers upper- and lowercase
+     versions of letters to be equivalent when matching.
+
+     If REG_NOSUB is set, then when PREG is passed to regexec, that
+     routine will report only success or failure, and nothing about the
+     registers.
+
+   It returns 0 if it succeeds, nonzero if it doesn't.  (See regex.h for
+   the return codes and their meanings.)  */
+
+int
+regcomp (preg, pattern, cflags)
+    regex_t *__restrict preg;
+    const char *__restrict pattern;
+    int cflags;
+{
+  reg_errcode_t ret;
+  reg_syntax_t syntax = ((cflags & REG_EXTENDED) ? RE_SYNTAX_POSIX_EXTENDED
+                        : RE_SYNTAX_POSIX_BASIC);
+
+  preg->buffer = NULL;
+  preg->allocated = 0;
+  preg->used = 0;
+
+  /* Try to allocate space for the fastmap.  */
+  preg->fastmap = re_malloc (char, SBC_MAX);
+  if (BE (preg->fastmap == NULL, 0))
+    return REG_ESPACE;
+
+  syntax |= (cflags & REG_ICASE) ? RE_ICASE : 0;
+
+  /* If REG_NEWLINE is set, newlines are treated differently.  */
+  if (cflags & REG_NEWLINE)
+    { /* REG_NEWLINE implies neither . nor [^...] match newline.  */
+      syntax &= ~RE_DOT_NEWLINE;
+      syntax |= RE_HAT_LISTS_NOT_NEWLINE;
+      /* It also changes the matching behavior.  */
+      preg->newline_anchor = 1;
+    }
+  else
+    preg->newline_anchor = 0;
+  preg->no_sub = !!(cflags & REG_NOSUB);
+  preg->translate = NULL;
+
+  ret = re_compile_internal (preg, pattern, strlen (pattern), syntax);
+
+  /* POSIX doesn't distinguish between an unmatched open-group and an
+     unmatched close-group: both are REG_EPAREN.  */
+  if (ret == REG_ERPAREN)
+    ret = REG_EPAREN;
+
+  /* We have already checked preg->fastmap != NULL.  */
+  if (BE (ret == REG_NOERROR, 1))
+    /* Compute the fastmap now, since regexec cannot modify the pattern
+       buffer.  This function never fails in this implementation.  */
+    (void) re_compile_fastmap (preg);
+  else
+    {
+      /* Some error occurred while compiling the expression.  */
+      re_free (preg->fastmap);
+      preg->fastmap = NULL;
+    }
+
+  return (int) ret;
+}
+#ifdef _LIBC
+weak_alias (__regcomp, regcomp)
+#endif
+
+/* Returns a message corresponding to an error code, ERRCODE, returned
+   from either regcomp or regexec.   We don't use PREG here.  */
+
+size_t
+regerror (errcode, preg, errbuf, errbuf_size)
+    int errcode;
+    const regex_t *__restrict preg;
+    char *__restrict errbuf;
+    size_t errbuf_size;
+{
+  const char *msg;
+  size_t msg_size;
+
+  if (BE (errcode < 0
+         || errcode >= (int) (sizeof (__re_error_msgid_idx)
+                              / sizeof (__re_error_msgid_idx[0])), 0))
+    /* Only error codes returned by the rest of the code should be passed
+       to this routine.  If we are given anything else, or if other regex
+       code generates an invalid error code, then the program has a bug.
+       Dump core so we can fix it.  */
+    abort ();
+
+  msg = gettext (__re_error_msgid + __re_error_msgid_idx[errcode]);
+
+  msg_size = strlen (msg) + 1; /* Includes the null.  */
+
+  if (BE (errbuf_size != 0, 1))
+    {
+      if (BE (msg_size > errbuf_size, 0))
+       {
+         memcpy (errbuf, msg, errbuf_size - 1);
+         errbuf[errbuf_size - 1] = 0;
+       }
+      else
+       memcpy (errbuf, msg, msg_size);
+    }
+
+  return msg_size;
+}
+#ifdef _LIBC
+weak_alias (__regerror, regerror)
+#endif
+
+
+#ifdef RE_ENABLE_I18N
+/* This static array is used for the map to single-byte characters when
+   UTF-8 is used.  Otherwise we would allocate memory just to initialize
+   it the same all the time.  UTF-8 is the preferred encoding so this is
+   a worthwhile optimization.  */
+#if __GNUC__ >= 3
+static const bitset_t utf8_sb_map = {
+  /* Set the first 128 bits.  */
+  [0 ... 0x80 / BITSET_WORD_BITS - 1] = BITSET_WORD_MAX
+};
+#else /* ! (__GNUC__ >= 3) */
+static bitset_t utf8_sb_map;
+#endif /* __GNUC__ >= 3 */
+#endif /* RE_ENABLE_I18N */
+
+
+static void
+free_dfa_content (re_dfa_t *dfa)
+{
+  int i, j;
+
+  if (dfa->nodes)
+    for (i = 0; i < dfa->nodes_len; ++i)
+      free_token (dfa->nodes + i);
+  re_free (dfa->nexts);
+  for (i = 0; i < dfa->nodes_len; ++i)
+    {
+      if (dfa->eclosures != NULL)
+       re_node_set_free (dfa->eclosures + i);
+      if (dfa->inveclosures != NULL)
+       re_node_set_free (dfa->inveclosures + i);
+      if (dfa->edests != NULL)
+       re_node_set_free (dfa->edests + i);
+    }
+  re_free (dfa->edests);
+  re_free (dfa->eclosures);
+  re_free (dfa->inveclosures);
+  re_free (dfa->nodes);
+
+  if (dfa->state_table)
+    for (i = 0; i <= dfa->state_hash_mask; ++i)
+      {
+       struct re_state_table_entry *entry = dfa->state_table + i;
+       for (j = 0; j < entry->num; ++j)
+         {
+           re_dfastate_t *state = entry->array[j];
+           free_state (state);
+         }
+       re_free (entry->array);
+      }
+  re_free (dfa->state_table);
+#ifdef RE_ENABLE_I18N
+  if (dfa->sb_char != utf8_sb_map)
+    re_free (dfa->sb_char);
+#endif
+  re_free (dfa->subexp_map);
+#ifdef DEBUG
+  re_free (dfa->re_str);
+#endif
+
+  re_free (dfa);
+}
+
+
+/* Free dynamically allocated space used by PREG.  */
+
+void
+regfree (preg)
+    regex_t *preg;
+{
+  re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
+  if (BE (dfa != NULL, 1))
+    free_dfa_content (dfa);
+  preg->buffer = NULL;
+  preg->allocated = 0;
+
+  re_free (preg->fastmap);
+  preg->fastmap = NULL;
+
+  re_free (preg->translate);
+  preg->translate = NULL;
+}
+#ifdef _LIBC
+weak_alias (__regfree, regfree)
+#endif
+\f
+/* Entry points compatible with 4.2 BSD regex library.  We don't define
+   them unless specifically requested.  */
+
+#if defined _REGEX_RE_COMP || defined _LIBC
+
+/* BSD has one and only one pattern buffer.  */
+static struct re_pattern_buffer re_comp_buf;
+
+char *
+# ifdef _LIBC
+/* Make these definitions weak in libc, so POSIX programs can redefine
+   these names if they don't use our functions, and still use
+   regcomp/regexec above without link errors.  */
+weak_function
+# endif
+re_comp (s)
+     const char *s;
+{
+  reg_errcode_t ret;
+  char *fastmap;
+
+  if (!s)
+    {
+      if (!re_comp_buf.buffer)
+       return gettext ("No previous regular expression");
+      return 0;
+    }
+
+  if (re_comp_buf.buffer)
+    {
+      fastmap = re_comp_buf.fastmap;
+      re_comp_buf.fastmap = NULL;
+      __regfree (&re_comp_buf);
+      memset (&re_comp_buf, '\0', sizeof (re_comp_buf));
+      re_comp_buf.fastmap = fastmap;
+    }
+
+  if (re_comp_buf.fastmap == NULL)
+    {
+      re_comp_buf.fastmap = (char *) malloc (SBC_MAX);
+      if (re_comp_buf.fastmap == NULL)
+       return (char *) gettext (__re_error_msgid
+                                + __re_error_msgid_idx[(int) REG_ESPACE]);
+    }
+
+  /* Since `re_exec' always passes NULL for the `regs' argument, we
+     don't need to initialize the pattern buffer fields which affect it.  */
+
+  /* Match anchors at newlines.  */
+  re_comp_buf.newline_anchor = 1;
+
+  ret = re_compile_internal (&re_comp_buf, s, strlen (s), re_syntax_options);
+
+  if (!ret)
+    return NULL;
+
+  /* Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
+  return (char *) gettext (__re_error_msgid + __re_error_msgid_idx[(int) ret]);
+}
+
+#ifdef _LIBC
+libc_freeres_fn (free_mem)
+{
+  __regfree (&re_comp_buf);
+}
+#endif
+
+#endif /* _REGEX_RE_COMP */
+\f
+/* Internal entry point.
+   Compile the regular expression PATTERN, whose length is LENGTH.
+   SYNTAX indicate regular expression's syntax.  */
+
+static reg_errcode_t
+re_compile_internal (regex_t *preg, const char * pattern, size_t length,
+                    reg_syntax_t syntax)
+{
+  reg_errcode_t err = REG_NOERROR;
+  re_dfa_t *dfa;
+  re_string_t regexp;
+
+  /* Initialize the pattern buffer.  */
+  preg->fastmap_accurate = 0;
+  preg->syntax = syntax;
+  preg->not_bol = preg->not_eol = 0;
+  preg->used = 0;
+  preg->re_nsub = 0;
+  preg->can_be_null = 0;
+  preg->regs_allocated = REGS_UNALLOCATED;
+
+  /* Initialize the dfa.  */
+  dfa = (re_dfa_t *) preg->buffer;
+  if (BE (preg->allocated < sizeof (re_dfa_t), 0))
+    {
+      /* If zero allocated, but buffer is non-null, try to realloc
+        enough space.  This loses if buffer's address is bogus, but
+        that is the user's responsibility.  If ->buffer is NULL this
+        is a simple allocation.  */
+      dfa = re_realloc (preg->buffer, re_dfa_t, 1);
+      if (dfa == NULL)
+       return REG_ESPACE;
+      preg->allocated = sizeof (re_dfa_t);
+      preg->buffer = (unsigned char *) dfa;
+    }
+  preg->used = sizeof (re_dfa_t);
+
+  err = init_dfa (dfa, length);
+  if (BE (err != REG_NOERROR, 0))
+    {
+      free_dfa_content (dfa);
+      preg->buffer = NULL;
+      preg->allocated = 0;
+      return err;
+    }
+#ifdef DEBUG
+  /* Note: length+1 will not overflow since it is checked in init_dfa.  */
+  dfa->re_str = re_malloc (char, length + 1);
+  strncpy (dfa->re_str, pattern, length + 1);
+#endif
+
+  __libc_lock_init (dfa->lock);
+
+  err = re_string_construct (&regexp, pattern, length, preg->translate,
+                            syntax & RE_ICASE, dfa);
+  if (BE (err != REG_NOERROR, 0))
+    {
+    re_compile_internal_free_return:
+      free_workarea_compile (preg);
+      re_string_destruct (&regexp);
+      free_dfa_content (dfa);
+      preg->buffer = NULL;
+      preg->allocated = 0;
+      return err;
+    }
+
+  /* Parse the regular expression, and build a structure tree.  */
+  preg->re_nsub = 0;
+  dfa->str_tree = parse (&regexp, preg, syntax, &err);
+  if (BE (dfa->str_tree == NULL, 0))
+    goto re_compile_internal_free_return;
+
+  /* Analyze the tree and create the nfa.  */
+  err = analyze (preg);
+  if (BE (err != REG_NOERROR, 0))
+    goto re_compile_internal_free_return;
+
+#ifdef RE_ENABLE_I18N
+  /* If possible, do searching in single byte encoding to speed things up.  */
+  if (dfa->is_utf8 && !(syntax & RE_ICASE) && preg->translate == NULL)
+    optimize_utf8 (dfa);
+#endif
+
+  /* Then create the initial state of the dfa.  */
+  err = create_initial_state (dfa);
+
+  /* Release work areas.  */
+  free_workarea_compile (preg);
+  re_string_destruct (&regexp);
+
+  if (BE (err != REG_NOERROR, 0))
+    {
+      free_dfa_content (dfa);
+      preg->buffer = NULL;
+      preg->allocated = 0;
+    }
+
+  return err;
+}
+
+/* Initialize DFA.  We use the length of the regular expression PAT_LEN
+   as the initial length of some arrays.  */
+
+static reg_errcode_t
+init_dfa (re_dfa_t *dfa, size_t pat_len)
+{
+  unsigned int table_size;
+#ifndef _LIBC
+  char *codeset_name;
+#endif
+
+  memset (dfa, '\0', sizeof (re_dfa_t));
+
+  /* Force allocation of str_tree_storage the first time.  */
+  dfa->str_tree_storage_idx = BIN_TREE_STORAGE_SIZE;
+
+  /* Avoid overflows.  */
+  if (pat_len == SIZE_MAX)
+    return REG_ESPACE;
+
+  dfa->nodes_alloc = pat_len + 1;
+  dfa->nodes = re_malloc (re_token_t, dfa->nodes_alloc);
+
+  /*  table_size = 2 ^ ceil(log pat_len) */
+  for (table_size = 1; ; table_size <<= 1)
+    if (table_size > pat_len)
+      break;
+
+  dfa->state_table = calloc (sizeof (struct re_state_table_entry), table_size);
+  dfa->state_hash_mask = table_size - 1;
+
+  dfa->mb_cur_max = MB_CUR_MAX;
+#ifdef _LIBC
+  if (dfa->mb_cur_max == 6
+      && strcmp (_NL_CURRENT (LC_CTYPE, _NL_CTYPE_CODESET_NAME), "UTF-8") == 0)
+    dfa->is_utf8 = 1;
+  dfa->map_notascii = (_NL_CURRENT_WORD (LC_CTYPE, _NL_CTYPE_MAP_TO_NONASCII)
+                      != 0);
+#else
+# ifdef HAVE_LANGINFO_CODESET
+  codeset_name = nl_langinfo (CODESET);
+# else
+  codeset_name = getenv ("LC_ALL");
+  if (codeset_name == NULL || codeset_name[0] == '\0')
+    codeset_name = getenv ("LC_CTYPE");
+  if (codeset_name == NULL || codeset_name[0] == '\0')
+    codeset_name = getenv ("LANG");
+  if (codeset_name == NULL)
+    codeset_name = "";
+  else if (strchr (codeset_name, '.') !=  NULL)
+    codeset_name = strchr (codeset_name, '.') + 1;
+# endif
+
+  /* strcasecmp isn't a standard interface. brute force check */
+#if 0
+  if (strcasecmp (codeset_name, "UTF-8") == 0
+      || strcasecmp (codeset_name, "UTF8") == 0)
+    dfa->is_utf8 = 1;
+#else
+  if (   (codeset_name[0] == 'U' || codeset_name[0] == 'u')
+      && (codeset_name[1] == 'T' || codeset_name[1] == 't')
+      && (codeset_name[2] == 'F' || codeset_name[2] == 'f')
+      && (codeset_name[3] == '-'
+          ? codeset_name[4] == '8' && codeset_name[5] == '\0'
+          : codeset_name[3] == '8' && codeset_name[4] == '\0'))
+    dfa->is_utf8 = 1;
+#endif
+
+  /* We check exhaustively in the loop below if this charset is a
+     superset of ASCII.  */
+  dfa->map_notascii = 0;
+#endif
+
+#ifdef RE_ENABLE_I18N
+  if (dfa->mb_cur_max > 1)
+    {
+      if (dfa->is_utf8)
+        {
+#if !defined(__GNUC__) || __GNUC__ < 3
+         static short utf8_sb_map_inited = 0;
+
+         if (! utf8_sb_map_inited)
+           {
+               int i;
+
+               utf8_sb_map_inited = 0;
+               for (i = 0; i <= 0x80 / BITSET_WORD_BITS - 1; i++)
+                 utf8_sb_map[i] = BITSET_WORD_MAX;
+           }
+#endif
+         dfa->sb_char = (re_bitset_ptr_t) utf8_sb_map;
+       }
+      else
+       {
+         int i, j, ch;
+
+         dfa->sb_char = (re_bitset_ptr_t) calloc (sizeof (bitset_t), 1);
+         if (BE (dfa->sb_char == NULL, 0))
+           return REG_ESPACE;
+
+         /* Set the bits corresponding to single byte chars.  */
+         for (i = 0, ch = 0; i < BITSET_WORDS; ++i)
+           for (j = 0; j < BITSET_WORD_BITS; ++j, ++ch)
+             {
+               wint_t wch = __btowc (ch);
+               if (wch != WEOF)
+                 dfa->sb_char[i] |= (bitset_word_t) 1 << j;
+# ifndef _LIBC
+               if (isascii (ch) && wch != ch)
+                 dfa->map_notascii = 1;
+# endif
+             }
+       }
+    }
+#endif
+
+  if (BE (dfa->nodes == NULL || dfa->state_table == NULL, 0))
+    return REG_ESPACE;
+  return REG_NOERROR;
+}
+
+/* Initialize WORD_CHAR table, which indicate which character is
+   "word".  In this case "word" means that it is the word construction
+   character used by some operators like "\<", "\>", etc.  */
+
+static void
+internal_function
+init_word_char (re_dfa_t *dfa)
+{
+  int i, j, ch;
+  dfa->word_ops_used = 1;
+  for (i = 0, ch = 0; i < BITSET_WORDS; ++i)
+    for (j = 0; j < BITSET_WORD_BITS; ++j, ++ch)
+      if (isalnum (ch) || ch == '_')
+       dfa->word_char[i] |= (bitset_word_t) 1 << j;
+}
+
+/* Free the work area which are only used while compiling.  */
+
+static void
+free_workarea_compile (regex_t *preg)
+{
+  re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
+  bin_tree_storage_t *storage, *next;
+  for (storage = dfa->str_tree_storage; storage; storage = next)
+    {
+      next = storage->next;
+      re_free (storage);
+    }
+  dfa->str_tree_storage = NULL;
+  dfa->str_tree_storage_idx = BIN_TREE_STORAGE_SIZE;
+  dfa->str_tree = NULL;
+  re_free (dfa->org_indices);
+  dfa->org_indices = NULL;
+}
+
+/* Create initial states for all contexts.  */
+
+static reg_errcode_t
+create_initial_state (re_dfa_t *dfa)
+{
+  int first, i;
+  reg_errcode_t err;
+  re_node_set init_nodes;
+
+  /* Initial states have the epsilon closure of the node which is
+     the first node of the regular expression.  */
+  first = dfa->str_tree->first->node_idx;
+  dfa->init_node = first;
+  err = re_node_set_init_copy (&init_nodes, dfa->eclosures + first);
+  if (BE (err != REG_NOERROR, 0))
+    return err;
+
+  /* The back-references which are in initial states can epsilon transit,
+     since in this case all of the subexpressions can be null.
+     Then we add epsilon closures of the nodes which are the next nodes of
+     the back-references.  */
+  if (dfa->nbackref > 0)
+    for (i = 0; i < init_nodes.nelem; ++i)
+      {
+       int node_idx = init_nodes.elems[i];
+       re_token_type_t type = dfa->nodes[node_idx].type;
+
+       int clexp_idx;
+       if (type != OP_BACK_REF)
+         continue;
+       for (clexp_idx = 0; clexp_idx < init_nodes.nelem; ++clexp_idx)
+         {
+           re_token_t *clexp_node;
+           clexp_node = dfa->nodes + init_nodes.elems[clexp_idx];
+           if (clexp_node->type == OP_CLOSE_SUBEXP
+               && clexp_node->opr.idx == dfa->nodes[node_idx].opr.idx)
+             break;
+         }
+       if (clexp_idx == init_nodes.nelem)
+         continue;
+
+       if (type == OP_BACK_REF)
+         {
+           int dest_idx = dfa->edests[node_idx].elems[0];
+           if (!re_node_set_contains (&init_nodes, dest_idx))
+             {
+               reg_errcode_t err = re_node_set_merge (&init_nodes,
+                                                      dfa->eclosures
+                                                      + dest_idx);
+               if (err != REG_NOERROR)
+                 return err;
+               i = 0;
+             }
+         }
+      }
+
+  /* It must be the first time to invoke acquire_state.  */
+  dfa->init_state = re_acquire_state_context (&err, dfa, &init_nodes, 0);
+  /* We don't check ERR here, since the initial state must not be NULL.  */
+  if (BE (dfa->init_state == NULL, 0))
+    return err;
+  if (dfa->init_state->has_constraint)
+    {
+      dfa->init_state_word = re_acquire_state_context (&err, dfa, &init_nodes,
+                                                      CONTEXT_WORD);
+      dfa->init_state_nl = re_acquire_state_context (&err, dfa, &init_nodes,
+                                                    CONTEXT_NEWLINE);
+      dfa->init_state_begbuf = re_acquire_state_context (&err, dfa,
+                                                        &init_nodes,
+                                                        CONTEXT_NEWLINE
+                                                        | CONTEXT_BEGBUF);
+      if (BE (dfa->init_state_word == NULL || dfa->init_state_nl == NULL
+             || dfa->init_state_begbuf == NULL, 0))
+       return err;
+    }
+  else
+    dfa->init_state_word = dfa->init_state_nl
+      = dfa->init_state_begbuf = dfa->init_state;
+
+  re_node_set_free (&init_nodes);
+  return REG_NOERROR;
+}
+\f
+#ifdef RE_ENABLE_I18N
+/* If it is possible to do searching in single byte encoding instead of UTF-8
+   to speed things up, set dfa->mb_cur_max to 1, clear is_utf8 and change
+   DFA nodes where needed.  */
+
+static void
+optimize_utf8 (re_dfa_t *dfa)
+{
+  int node, i, mb_chars = 0, has_period = 0;
+
+  for (node = 0; node < dfa->nodes_len; ++node)
+    switch (dfa->nodes[node].type)
+      {
+      case CHARACTER:
+       if (dfa->nodes[node].opr.c >= 0x80)
+         mb_chars = 1;
+       break;
+      case ANCHOR:
+       switch (dfa->nodes[node].opr.ctx_type)
+         {
+         case LINE_FIRST:
+         case LINE_LAST:
+         case BUF_FIRST:
+         case BUF_LAST:
+           break;
+         default:
+           /* Word anchors etc. cannot be handled.  It's okay to test
+              opr.ctx_type since constraints (for all DFA nodes) are
+              created by ORing one or more opr.ctx_type values.  */
+           return;
+         }
+       break;
+      case OP_PERIOD:
+       has_period = 1;
+       break;
+      case OP_BACK_REF:
+      case OP_ALT:
+      case END_OF_RE:
+      case OP_DUP_ASTERISK:
+      case OP_OPEN_SUBEXP:
+      case OP_CLOSE_SUBEXP:
+       break;
+      case COMPLEX_BRACKET:
+       return;
+      case SIMPLE_BRACKET:
+       /* Just double check.  The non-ASCII range starts at 0x80.  */
+       assert (0x80 % BITSET_WORD_BITS == 0);
+       for (i = 0x80 / BITSET_WORD_BITS; i < BITSET_WORDS; ++i)
+         if (dfa->nodes[node].opr.sbcset[i])
+           return;
+       break;
+      default:
+       abort ();
+      }
+
+  if (mb_chars || has_period)
+    for (node = 0; node < dfa->nodes_len; ++node)
+      {
+       if (dfa->nodes[node].type == CHARACTER
+           && dfa->nodes[node].opr.c >= 0x80)
+         dfa->nodes[node].mb_partial = 0;
+       else if (dfa->nodes[node].type == OP_PERIOD)
+         dfa->nodes[node].type = OP_UTF8_PERIOD;
+      }
+
+  /* The search can be in single byte locale.  */
+  dfa->mb_cur_max = 1;
+  dfa->is_utf8 = 0;
+  dfa->has_mb_node = dfa->nbackref > 0 || has_period;
+}
+#endif
+\f
+/* Analyze the structure tree, and calculate "first", "next", "edest",
+   "eclosure", and "inveclosure".  */
+
+static reg_errcode_t
+analyze (regex_t *preg)
+{
+  re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
+  reg_errcode_t ret;
+
+  /* Allocate arrays.  */
+  dfa->nexts = re_malloc (int, dfa->nodes_alloc);
+  dfa->org_indices = re_malloc (int, dfa->nodes_alloc);
+  dfa->edests = re_malloc (re_node_set, dfa->nodes_alloc);
+  dfa->eclosures = re_malloc (re_node_set, dfa->nodes_alloc);
+  if (BE (dfa->nexts == NULL || dfa->org_indices == NULL || dfa->edests == NULL
+         || dfa->eclosures == NULL, 0))
+    return REG_ESPACE;
+
+  dfa->subexp_map = re_malloc (int, preg->re_nsub);
+  if (dfa->subexp_map != NULL)
+    {
+      int i;
+      for (i = 0; i < preg->re_nsub; i++)
+       dfa->subexp_map[i] = i;
+      preorder (dfa->str_tree, optimize_subexps, dfa);
+      for (i = 0; i < preg->re_nsub; i++)
+       if (dfa->subexp_map[i] != i)
+         break;
+      if (i == preg->re_nsub)
+       {
+         free (dfa->subexp_map);
+         dfa->subexp_map = NULL;
+       }
+    }
+
+  ret = postorder (dfa->str_tree, lower_subexps, preg);
+  if (BE (ret != REG_NOERROR, 0))
+    return ret;
+  ret = postorder (dfa->str_tree, calc_first, dfa);
+  if (BE (ret != REG_NOERROR, 0))
+    return ret;
+  preorder (dfa->str_tree, calc_next, dfa);
+  ret = preorder (dfa->str_tree, link_nfa_nodes, dfa);
+  if (BE (ret != REG_NOERROR, 0))
+    return ret;
+  ret = calc_eclosure (dfa);
+  if (BE (ret != REG_NOERROR, 0))
+    return ret;
+
+  /* We only need this during the prune_impossible_nodes pass in regexec.c;
+     skip it if p_i_n will not run, as calc_inveclosure can be quadratic.  */
+  if ((!preg->no_sub && preg->re_nsub > 0 && dfa->has_plural_match)
+      || dfa->nbackref)
+    {
+      dfa->inveclosures = re_malloc (re_node_set, dfa->nodes_len);
+      if (BE (dfa->inveclosures == NULL, 0))
+       return REG_ESPACE;
+      ret = calc_inveclosure (dfa);
+    }
+
+  return ret;
+}
+
+/* Our parse trees are very unbalanced, so we cannot use a stack to
+   implement parse tree visits.  Instead, we use parent pointers and
+   some hairy code in these two functions.  */
+static reg_errcode_t
+postorder (bin_tree_t *root, reg_errcode_t (fn (void *, bin_tree_t *)),
+          void *extra)
+{
+  bin_tree_t *node, *prev;
+
+  for (node = root; ; )
+    {
+      /* Descend down the tree, preferably to the left (or to the right
+        if that's the only child).  */
+      while (node->left || node->right)
+       if (node->left)
+         node = node->left;
+       else
+         node = node->right;
+
+      do
+       {
+         reg_errcode_t err = fn (extra, node);
+         if (BE (err != REG_NOERROR, 0))
+           return err;
+         if (node->parent == NULL)
+           return REG_NOERROR;
+         prev = node;
+         node = node->parent;
+       }
+      /* Go up while we have a node that is reached from the right.  */
+      while (node->right == prev || node->right == NULL);
+      node = node->right;
+    }
+}
+
+static reg_errcode_t
+preorder (bin_tree_t *root, reg_errcode_t (fn (void *, bin_tree_t *)),
+         void *extra)
+{
+  bin_tree_t *node;
+
+  for (node = root; ; )
+    {
+      reg_errcode_t err = fn (extra, node);
+      if (BE (err != REG_NOERROR, 0))
+       return err;
+
+      /* Go to the left node, or up and to the right.  */
+      if (node->left)
+       node = node->left;
+      else
+       {
+         bin_tree_t *prev = NULL;
+         while (node->right == prev || node->right == NULL)
+           {
+             prev = node;
+             node = node->parent;
+             if (!node)
+               return REG_NOERROR;
+           }
+         node = node->right;
+       }
+    }
+}
+
+/* Optimization pass: if a SUBEXP is entirely contained, strip it and tell
+   re_search_internal to map the inner one's opr.idx to this one's.  Adjust
+   backreferences as well.  Requires a preorder visit.  */
+static reg_errcode_t
+optimize_subexps (void *extra, bin_tree_t *node)
+{
+  re_dfa_t *dfa = (re_dfa_t *) extra;
+
+  if (node->token.type == OP_BACK_REF && dfa->subexp_map)
+    {
+      int idx = node->token.opr.idx;
+      node->token.opr.idx = dfa->subexp_map[idx];
+      dfa->used_bkref_map |= 1 << node->token.opr.idx;
+    }
+
+  else if (node->token.type == SUBEXP
+          && node->left && node->left->token.type == SUBEXP)
+    {
+      int other_idx = node->left->token.opr.idx;
+
+      node->left = node->left->left;
+      if (node->left)
+       node->left->parent = node;
+
+      dfa->subexp_map[other_idx] = dfa->subexp_map[node->token.opr.idx];
+      if (other_idx < BITSET_WORD_BITS)
+         dfa->used_bkref_map &= ~((bitset_word_t) 1 << other_idx);
+    }
+
+  return REG_NOERROR;
+}
+
+/* Lowering pass: Turn each SUBEXP node into the appropriate concatenation
+   of OP_OPEN_SUBEXP, the body of the SUBEXP (if any) and OP_CLOSE_SUBEXP.  */
+static reg_errcode_t
+lower_subexps (void *extra, bin_tree_t *node)
+{
+  regex_t *preg = (regex_t *) extra;
+  reg_errcode_t err = REG_NOERROR;
+
+  if (node->left && node->left->token.type == SUBEXP)
+    {
+      node->left = lower_subexp (&err, preg, node->left);
+      if (node->left)
+       node->left->parent = node;
+    }
+  if (node->right && node->right->token.type == SUBEXP)
+    {
+      node->right = lower_subexp (&err, preg, node->right);
+      if (node->right)
+       node->right->parent = node;
+    }
+
+  return err;
+}
+
+static bin_tree_t *
+lower_subexp (reg_errcode_t *err, regex_t *preg, bin_tree_t *node)
+{
+  re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
+  bin_tree_t *body = node->left;
+  bin_tree_t *op, *cls, *tree1, *tree;
+
+  if (preg->no_sub
+      /* We do not optimize empty subexpressions, because otherwise we may
+        have bad CONCAT nodes with NULL children.  This is obviously not
+        very common, so we do not lose much.  An example that triggers
+        this case is the sed "script" /\(\)/x.  */
+      && node->left != NULL
+      && (node->token.opr.idx >= BITSET_WORD_BITS
+         || !(dfa->used_bkref_map
+              & ((bitset_word_t) 1 << node->token.opr.idx))))
+    return node->left;
+
+  /* Convert the SUBEXP node to the concatenation of an
+     OP_OPEN_SUBEXP, the contents, and an OP_CLOSE_SUBEXP.  */
+  op = create_tree (dfa, NULL, NULL, OP_OPEN_SUBEXP);
+  cls = create_tree (dfa, NULL, NULL, OP_CLOSE_SUBEXP);
+  tree1 = body ? create_tree (dfa, body, cls, CONCAT) : cls;
+  tree = create_tree (dfa, op, tree1, CONCAT);
+  if (BE (tree == NULL || tree1 == NULL || op == NULL || cls == NULL, 0))
+    {
+      *err = REG_ESPACE;
+      return NULL;
+    }
+
+  op->token.opr.idx = cls->token.opr.idx = node->token.opr.idx;
+  op->token.opt_subexp = cls->token.opt_subexp = node->token.opt_subexp;
+  return tree;
+}
+
+/* Pass 1 in building the NFA: compute FIRST and create unlinked automaton
+   nodes.  Requires a postorder visit.  */
+static reg_errcode_t
+calc_first (void *extra, bin_tree_t *node)
+{
+  re_dfa_t *dfa = (re_dfa_t *) extra;
+  if (node->token.type == CONCAT)
+    {
+      node->first = node->left->first;
+      node->node_idx = node->left->node_idx;
+    }
+  else
+    {
+      node->first = node;
+      node->node_idx = re_dfa_add_node (dfa, node->token);
+      if (BE (node->node_idx == -1, 0))
+       return REG_ESPACE;
+      if (node->token.type == ANCHOR)
+       dfa->nodes[node->node_idx].constraint = node->token.opr.ctx_type;
+    }
+  return REG_NOERROR;
+}
+
+/* Pass 2: compute NEXT on the tree.  Preorder visit.  */
+static reg_errcode_t
+calc_next (void *extra, bin_tree_t *node)
+{
+  switch (node->token.type)
+    {
+    case OP_DUP_ASTERISK:
+      node->left->next = node;
+      break;
+    case CONCAT:
+      node->left->next = node->right->first;
+      node->right->next = node->next;
+      break;
+    default:
+      if (node->left)
+       node->left->next = node->next;
+      if (node->right)
+       node->right->next = node->next;
+      break;
+    }
+  return REG_NOERROR;
+}
+
+/* Pass 3: link all DFA nodes to their NEXT node (any order will do).  */
+static reg_errcode_t
+link_nfa_nodes (void *extra, bin_tree_t *node)
+{
+  re_dfa_t *dfa = (re_dfa_t *) extra;
+  int idx = node->node_idx;
+  reg_errcode_t err = REG_NOERROR;
+
+  switch (node->token.type)
+    {
+    case CONCAT:
+      break;
+
+    case END_OF_RE:
+      assert (node->next == NULL);
+      break;
+
+    case OP_DUP_ASTERISK:
+    case OP_ALT:
+      {
+       int left, right;
+       dfa->has_plural_match = 1;
+       if (node->left != NULL)
+         left = node->left->first->node_idx;
+       else
+         left = node->next->node_idx;
+       if (node->right != NULL)
+         right = node->right->first->node_idx;
+       else
+         right = node->next->node_idx;
+       assert (left > -1);
+       assert (right > -1);
+       err = re_node_set_init_2 (dfa->edests + idx, left, right);
+      }
+      break;
+
+    case ANCHOR:
+    case OP_OPEN_SUBEXP:
+    case OP_CLOSE_SUBEXP:
+      err = re_node_set_init_1 (dfa->edests + idx, node->next->node_idx);
+      break;
+
+    case OP_BACK_REF:
+      dfa->nexts[idx] = node->next->node_idx;
+      if (node->token.type == OP_BACK_REF)
+       err = re_node_set_init_1 (dfa->edests + idx, dfa->nexts[idx]);
+      break;
+
+    default:
+      assert (!IS_EPSILON_NODE (node->token.type));
+      dfa->nexts[idx] = node->next->node_idx;
+      break;
+    }
+
+  return err;
+}
+
+/* Duplicate the epsilon closure of the node ROOT_NODE.
+   Note that duplicated nodes have constraint INIT_CONSTRAINT in addition
+   to their own constraint.  */
+
+static reg_errcode_t
+internal_function
+duplicate_node_closure (re_dfa_t *dfa, int top_org_node, int top_clone_node,
+                       int root_node, unsigned int init_constraint)
+{
+  int org_node, clone_node, ret;
+  unsigned int constraint = init_constraint;
+  for (org_node = top_org_node, clone_node = top_clone_node;;)
+    {
+      int org_dest, clone_dest;
+      if (dfa->nodes[org_node].type == OP_BACK_REF)
+       {
+         /* If the back reference epsilon-transit, its destination must
+            also have the constraint.  Then duplicate the epsilon closure
+            of the destination of the back reference, and store it in
+            edests of the back reference.  */
+         org_dest = dfa->nexts[org_node];
+         re_node_set_empty (dfa->edests + clone_node);
+         clone_dest = duplicate_node (dfa, org_dest, constraint);
+         if (BE (clone_dest == -1, 0))
+           return REG_ESPACE;
+         dfa->nexts[clone_node] = dfa->nexts[org_node];
+         ret = re_node_set_insert (dfa->edests + clone_node, clone_dest);
+         if (BE (ret < 0, 0))
+           return REG_ESPACE;
+       }
+      else if (dfa->edests[org_node].nelem == 0)
+       {
+         /* In case of the node can't epsilon-transit, don't duplicate the
+            destination and store the original destination as the
+            destination of the node.  */
+         dfa->nexts[clone_node] = dfa->nexts[org_node];
+         break;
+       }
+      else if (dfa->edests[org_node].nelem == 1)
+       {
+         /* In case of the node can epsilon-transit, and it has only one
+            destination.  */
+         org_dest = dfa->edests[org_node].elems[0];
+         re_node_set_empty (dfa->edests + clone_node);
+         /* If the node is root_node itself, it means the epsilon clsoure
+            has a loop.   Then tie it to the destination of the root_node.  */
+         if (org_node == root_node && clone_node != org_node)
+           {
+             ret = re_node_set_insert (dfa->edests + clone_node, org_dest);
+             if (BE (ret < 0, 0))
+               return REG_ESPACE;
+             break;
+           }
+         /* In case of the node has another constraint, add it.  */
+         constraint |= dfa->nodes[org_node].constraint;
+         clone_dest = duplicate_node (dfa, org_dest, constraint);
+         if (BE (clone_dest == -1, 0))
+           return REG_ESPACE;
+         ret = re_node_set_insert (dfa->edests + clone_node, clone_dest);
+         if (BE (ret < 0, 0))
+           return REG_ESPACE;
+       }
+      else /* dfa->edests[org_node].nelem == 2 */
+       {
+         /* In case of the node can epsilon-transit, and it has two
+            destinations. In the bin_tree_t and DFA, that's '|' and '*'.   */
+         org_dest = dfa->edests[org_node].elems[0];
+         re_node_set_empty (dfa->edests + clone_node);
+         /* Search for a duplicated node which satisfies the constraint.  */
+         clone_dest = search_duplicated_node (dfa, org_dest, constraint);
+         if (clone_dest == -1)
+           {
+             /* There is no such duplicated node, create a new one.  */
+             reg_errcode_t err;
+             clone_dest = duplicate_node (dfa, org_dest, constraint);
+             if (BE (clone_dest == -1, 0))
+               return REG_ESPACE;
+             ret = re_node_set_insert (dfa->edests + clone_node, clone_dest);
+             if (BE (ret < 0, 0))
+               return REG_ESPACE;
+             err = duplicate_node_closure (dfa, org_dest, clone_dest,
+                                           root_node, constraint);
+             if (BE (err != REG_NOERROR, 0))
+               return err;
+           }
+         else
+           {
+             /* There is a duplicated node which satisfies the constraint,
+                use it to avoid infinite loop.  */
+             ret = re_node_set_insert (dfa->edests + clone_node, clone_dest);
+             if (BE (ret < 0, 0))
+               return REG_ESPACE;
+           }
+
+         org_dest = dfa->edests[org_node].elems[1];
+         clone_dest = duplicate_node (dfa, org_dest, constraint);
+         if (BE (clone_dest == -1, 0))
+           return REG_ESPACE;
+         ret = re_node_set_insert (dfa->edests + clone_node, clone_dest);
+         if (BE (ret < 0, 0))
+           return REG_ESPACE;
+       }
+      org_node = org_dest;
+      clone_node = clone_dest;
+    }
+  return REG_NOERROR;
+}
+
+/* Search for a node which is duplicated from the node ORG_NODE, and
+   satisfies the constraint CONSTRAINT.  */
+
+static int
+search_duplicated_node (const re_dfa_t *dfa, int org_node,
+                       unsigned int constraint)
+{
+  int idx;
+  for (idx = dfa->nodes_len - 1; dfa->nodes[idx].duplicated && idx > 0; --idx)
+    {
+      if (org_node == dfa->org_indices[idx]
+         && constraint == dfa->nodes[idx].constraint)
+       return idx; /* Found.  */
+    }
+  return -1; /* Not found.  */
+}
+
+/* Duplicate the node whose index is ORG_IDX and set the constraint CONSTRAINT.
+   Return the index of the new node, or -1 if insufficient storage is
+   available.  */
+
+static int
+duplicate_node (re_dfa_t *dfa, int org_idx, unsigned int constraint)
+{
+  int dup_idx = re_dfa_add_node (dfa, dfa->nodes[org_idx]);
+  if (BE (dup_idx != -1, 1))
+    {
+      dfa->nodes[dup_idx].constraint = constraint;
+      dfa->nodes[dup_idx].constraint |= dfa->nodes[org_idx].constraint;
+      dfa->nodes[dup_idx].duplicated = 1;
+
+      /* Store the index of the original node.  */
+      dfa->org_indices[dup_idx] = org_idx;
+    }
+  return dup_idx;
+}
+
+static reg_errcode_t
+calc_inveclosure (re_dfa_t *dfa)
+{
+  int src, idx, ret;
+  for (idx = 0; idx < dfa->nodes_len; ++idx)
+    re_node_set_init_empty (dfa->inveclosures + idx);
+
+  for (src = 0; src < dfa->nodes_len; ++src)
+    {
+      int *elems = dfa->eclosures[src].elems;
+      for (idx = 0; idx < dfa->eclosures[src].nelem; ++idx)
+       {
+         ret = re_node_set_insert_last (dfa->inveclosures + elems[idx], src);
+         if (BE (ret == -1, 0))
+           return REG_ESPACE;
+       }
+    }
+
+  return REG_NOERROR;
+}
+
+/* Calculate "eclosure" for all the node in DFA.  */
+
+static reg_errcode_t
+calc_eclosure (re_dfa_t *dfa)
+{
+  int node_idx, incomplete;
+#ifdef DEBUG
+  assert (dfa->nodes_len > 0);
+#endif
+  incomplete = 0;
+  /* For each nodes, calculate epsilon closure.  */
+  for (node_idx = 0; ; ++node_idx)
+    {
+      reg_errcode_t err;
+      re_node_set eclosure_elem;
+      if (node_idx == dfa->nodes_len)
+       {
+         if (!incomplete)
+           break;
+         incomplete = 0;
+         node_idx = 0;
+       }
+
+#ifdef DEBUG
+      assert (dfa->eclosures[node_idx].nelem != -1);
+#endif
+
+      /* If we have already calculated, skip it.  */
+      if (dfa->eclosures[node_idx].nelem != 0)
+       continue;
+      /* Calculate epsilon closure of `node_idx'.  */
+      err = calc_eclosure_iter (&eclosure_elem, dfa, node_idx, 1);
+      if (BE (err != REG_NOERROR, 0))
+       return err;
+
+      if (dfa->eclosures[node_idx].nelem == 0)
+       {
+         incomplete = 1;
+         re_node_set_free (&eclosure_elem);
+       }
+    }
+  return REG_NOERROR;
+}
+
+/* Calculate epsilon closure of NODE.  */
+
+static reg_errcode_t
+calc_eclosure_iter (re_node_set *new_set, re_dfa_t *dfa, int node, int root)
+{
+  reg_errcode_t err;
+  int i;
+  re_node_set eclosure;
+  int ret;
+  int incomplete = 0;
+  err = re_node_set_alloc (&eclosure, dfa->edests[node].nelem + 1);
+  if (BE (err != REG_NOERROR, 0))
+    return err;
+
+  /* This indicates that we are calculating this node now.
+     We reference this value to avoid infinite loop.  */
+  dfa->eclosures[node].nelem = -1;
+
+  /* If the current node has constraints, duplicate all nodes
+     since they must inherit the constraints.  */
+  if (dfa->nodes[node].constraint
+      && dfa->edests[node].nelem
+      && !dfa->nodes[dfa->edests[node].elems[0]].duplicated)
+    {
+      err = duplicate_node_closure (dfa, node, node, node,
+                                   dfa->nodes[node].constraint);
+      if (BE (err != REG_NOERROR, 0))
+       return err;
+    }
+
+  /* Expand each epsilon destination nodes.  */
+  if (IS_EPSILON_NODE(dfa->nodes[node].type))
+    for (i = 0; i < dfa->edests[node].nelem; ++i)
+      {
+       re_node_set eclosure_elem;
+       int edest = dfa->edests[node].elems[i];
+       /* If calculating the epsilon closure of `edest' is in progress,
+          return intermediate result.  */
+       if (dfa->eclosures[edest].nelem == -1)
+         {
+           incomplete = 1;
+           continue;
+         }
+       /* If we haven't calculated the epsilon closure of `edest' yet,
+          calculate now. Otherwise use calculated epsilon closure.  */
+       if (dfa->eclosures[edest].nelem == 0)
+         {
+           err = calc_eclosure_iter (&eclosure_elem, dfa, edest, 0);
+           if (BE (err != REG_NOERROR, 0))
+             return err;
+         }
+       else
+         eclosure_elem = dfa->eclosures[edest];
+       /* Merge the epsilon closure of `edest'.  */
+       err = re_node_set_merge (&eclosure, &eclosure_elem);
+       if (BE (err != REG_NOERROR, 0))
+         return err;
+       /* If the epsilon closure of `edest' is incomplete,
+          the epsilon closure of this node is also incomplete.  */
+       if (dfa->eclosures[edest].nelem == 0)
+         {
+           incomplete = 1;
+           re_node_set_free (&eclosure_elem);
+         }
+      }
+
+  /* An epsilon closure includes itself.  */
+  ret = re_node_set_insert (&eclosure, node);
+  if (BE (ret < 0, 0))
+    return REG_ESPACE;
+  if (incomplete && !root)
+    dfa->eclosures[node].nelem = 0;
+  else
+    dfa->eclosures[node] = eclosure;
+  *new_set = eclosure;
+  return REG_NOERROR;
+}
+\f
+/* Functions for token which are used in the parser.  */
+
+/* Fetch a token from INPUT.
+   We must not use this function inside bracket expressions.  */
+
+static void
+internal_function
+fetch_token (re_token_t *result, re_string_t *input, reg_syntax_t syntax)
+{
+  re_string_skip_bytes (input, peek_token (result, input, syntax));
+}
+
+/* Peek a token from INPUT, and return the length of the token.
+   We must not use this function inside bracket expressions.  */
+
+static int
+internal_function
+peek_token (re_token_t *token, re_string_t *input, reg_syntax_t syntax)
+{
+  unsigned char c;
+
+  if (re_string_eoi (input))
+    {
+      token->type = END_OF_RE;
+      return 0;
+    }
+
+  c = re_string_peek_byte (input, 0);
+  token->opr.c = c;
+
+  token->word_char = 0;
+#ifdef RE_ENABLE_I18N
+  token->mb_partial = 0;
+  if (input->mb_cur_max > 1 &&
+      !re_string_first_byte (input, re_string_cur_idx (input)))
+    {
+      token->type = CHARACTER;
+      token->mb_partial = 1;
+      return 1;
+    }
+#endif
+  if (c == '\\')
+    {
+      unsigned char c2;
+      if (re_string_cur_idx (input) + 1 >= re_string_length (input))
+       {
+         token->type = BACK_SLASH;
+         return 1;
+       }
+
+      c2 = re_string_peek_byte_case (input, 1);
+      token->opr.c = c2;
+      token->type = CHARACTER;
+#ifdef RE_ENABLE_I18N
+      if (input->mb_cur_max > 1)
+       {
+         wint_t wc = re_string_wchar_at (input,
+                                         re_string_cur_idx (input) + 1);
+         token->word_char = IS_WIDE_WORD_CHAR (wc) != 0;
+       }
+      else
+#endif
+       token->word_char = IS_WORD_CHAR (c2) != 0;
+
+      switch (c2)
+       {
+       case '|':
+         if (!(syntax & RE_LIMITED_OPS) && !(syntax & RE_NO_BK_VBAR))
+           token->type = OP_ALT;
+         break;
+       case '1': case '2': case '3': case '4': case '5':
+       case '6': case '7': case '8': case '9':
+         if (!(syntax & RE_NO_BK_REFS))
+           {
+             token->type = OP_BACK_REF;
+             token->opr.idx = c2 - '1';
+           }
+         break;
+       case '<':
+         if (!(syntax & RE_NO_GNU_OPS))
+           {
+             token->type = ANCHOR;
+             token->opr.ctx_type = WORD_FIRST;
+           }
+         break;
+       case '>':
+         if (!(syntax & RE_NO_GNU_OPS))
+           {
+             token->type = ANCHOR;
+             token->opr.ctx_type = WORD_LAST;
+           }
+         break;
+       case 'b':
+         if (!(syntax & RE_NO_GNU_OPS))
+           {
+             token->type = ANCHOR;
+             token->opr.ctx_type = WORD_DELIM;
+           }
+         break;
+       case 'B':
+         if (!(syntax & RE_NO_GNU_OPS))
+           {
+             token->type = ANCHOR;
+             token->opr.ctx_type = NOT_WORD_DELIM;
+           }
+         break;
+       case 'w':
+         if (!(syntax & RE_NO_GNU_OPS))
+           token->type = OP_WORD;
+         break;
+       case 'W':
+         if (!(syntax & RE_NO_GNU_OPS))
+           token->type = OP_NOTWORD;
+         break;
+       case 's':
+         if (!(syntax & RE_NO_GNU_OPS))
+           token->type = OP_SPACE;
+         break;
+       case 'S':
+         if (!(syntax & RE_NO_GNU_OPS))
+           token->type = OP_NOTSPACE;
+         break;
+       case '`':
+         if (!(syntax & RE_NO_GNU_OPS))
+           {
+             token->type = ANCHOR;
+             token->opr.ctx_type = BUF_FIRST;
+           }
+         break;
+       case '\'':
+         if (!(syntax & RE_NO_GNU_OPS))
+           {
+             token->type = ANCHOR;
+             token->opr.ctx_type = BUF_LAST;
+           }
+         break;
+       case '(':
+         if (!(syntax & RE_NO_BK_PARENS))
+           token->type = OP_OPEN_SUBEXP;
+         break;
+       case ')':
+         if (!(syntax & RE_NO_BK_PARENS))
+           token->type = OP_CLOSE_SUBEXP;
+         break;
+       case '+':
+         if (!(syntax & RE_LIMITED_OPS) && (syntax & RE_BK_PLUS_QM))
+           token->type = OP_DUP_PLUS;
+         break;
+       case '?':
+         if (!(syntax & RE_LIMITED_OPS) && (syntax & RE_BK_PLUS_QM))
+           token->type = OP_DUP_QUESTION;
+         break;
+       case '{':
+         if ((syntax & RE_INTERVALS) && (!(syntax & RE_NO_BK_BRACES)))
+           token->type = OP_OPEN_DUP_NUM;
+         break;
+       case '}':
+         if ((syntax & RE_INTERVALS) && (!(syntax & RE_NO_BK_BRACES)))
+           token->type = OP_CLOSE_DUP_NUM;
+         break;
+       default:
+         break;
+       }
+      return 2;
+    }
+
+  token->type = CHARACTER;
+#ifdef RE_ENABLE_I18N
+  if (input->mb_cur_max > 1)
+    {
+      wint_t wc = re_string_wchar_at (input, re_string_cur_idx (input));
+      token->word_char = IS_WIDE_WORD_CHAR (wc) != 0;
+    }
+  else
+#endif
+    token->word_char = IS_WORD_CHAR (token->opr.c);
+
+  switch (c)
+    {
+    case '\n':
+      if (syntax & RE_NEWLINE_ALT)
+       token->type = OP_ALT;
+      break;
+    case '|':
+      if (!(syntax & RE_LIMITED_OPS) && (syntax & RE_NO_BK_VBAR))
+       token->type = OP_ALT;
+      break;
+    case '*':
+      token->type = OP_DUP_ASTERISK;
+      break;
+    case '+':
+      if (!(syntax & RE_LIMITED_OPS) && !(syntax & RE_BK_PLUS_QM))
+       token->type = OP_DUP_PLUS;
+      break;
+    case '?':
+      if (!(syntax & RE_LIMITED_OPS) && !(syntax & RE_BK_PLUS_QM))
+       token->type = OP_DUP_QUESTION;
+      break;
+    case '{':
+      if ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
+       token->type = OP_OPEN_DUP_NUM;
+      break;
+    case '}':
+      if ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
+       token->type = OP_CLOSE_DUP_NUM;
+      break;
+    case '(':
+      if (syntax & RE_NO_BK_PARENS)
+       token->type = OP_OPEN_SUBEXP;
+      break;
+    case ')':
+      if (syntax & RE_NO_BK_PARENS)
+       token->type = OP_CLOSE_SUBEXP;
+      break;
+    case '[':
+      token->type = OP_OPEN_BRACKET;
+      break;
+    case '.':
+      token->type = OP_PERIOD;
+      break;
+    case '^':
+      if (!(syntax & (RE_CONTEXT_INDEP_ANCHORS | RE_CARET_ANCHORS_HERE)) &&
+         re_string_cur_idx (input) != 0)
+       {
+         char prev = re_string_peek_byte (input, -1);
+         if (!(syntax & RE_NEWLINE_ALT) || prev != '\n')
+           break;
+       }
+      token->type = ANCHOR;
+      token->opr.ctx_type = LINE_FIRST;
+      break;
+    case '$':
+      if (!(syntax & RE_CONTEXT_INDEP_ANCHORS) &&
+         re_string_cur_idx (input) + 1 != re_string_length (input))
+       {
+         re_token_t next;
+         re_string_skip_bytes (input, 1);
+         peek_token (&next, input, syntax);
+         re_string_skip_bytes (input, -1);
+         if (next.type != OP_ALT && next.type != OP_CLOSE_SUBEXP)
+           break;
+       }
+      token->type = ANCHOR;
+      token->opr.ctx_type = LINE_LAST;
+      break;
+    default:
+      break;
+    }
+  return 1;
+}
+
+/* Peek a token from INPUT, and return the length of the token.
+   We must not use this function out of bracket expressions.  */
+
+static int
+internal_function
+peek_token_bracket (re_token_t *token, re_string_t *input, reg_syntax_t syntax)
+{
+  unsigned char c;
+  if (re_string_eoi (input))
+    {
+      token->type = END_OF_RE;
+      return 0;
+    }
+  c = re_string_peek_byte (input, 0);
+  token->opr.c = c;
+
+#ifdef RE_ENABLE_I18N
+  if (input->mb_cur_max > 1 &&
+      !re_string_first_byte (input, re_string_cur_idx (input)))
+    {
+      token->type = CHARACTER;
+      return 1;
+    }
+#endif /* RE_ENABLE_I18N */
+
+  if (c == '\\' && (syntax & RE_BACKSLASH_ESCAPE_IN_LISTS)
+      && re_string_cur_idx (input) + 1 < re_string_length (input))
+    {
+      /* In this case, '\' escape a character.  */
+      unsigned char c2;
+      re_string_skip_bytes (input, 1);
+      c2 = re_string_peek_byte (input, 0);
+      token->opr.c = c2;
+      token->type = CHARACTER;
+      return 1;
+    }
+  if (c == '[') /* '[' is a special char in a bracket exps.  */
+    {
+      unsigned char c2;
+      int token_len;
+      if (re_string_cur_idx (input) + 1 < re_string_length (input))
+       c2 = re_string_peek_byte (input, 1);
+      else
+       c2 = 0;
+      token->opr.c = c2;
+      token_len = 2;
+      switch (c2)
+       {
+       case '.':
+         token->type = OP_OPEN_COLL_ELEM;
+         break;
+       case '=':
+         token->type = OP_OPEN_EQUIV_CLASS;
+         break;
+       case ':':
+         if (syntax & RE_CHAR_CLASSES)
+           {
+             token->type = OP_OPEN_CHAR_CLASS;
+             break;
+           }
+         /* else fall through.  */
+       default:
+         token->type = CHARACTER;
+         token->opr.c = c;
+         token_len = 1;
+         break;
+       }
+      return token_len;
+    }
+  switch (c)
+    {
+    case '-':
+      token->type = OP_CHARSET_RANGE;
+      break;
+    case ']':
+      token->type = OP_CLOSE_BRACKET;
+      break;
+    case '^':
+      token->type = OP_NON_MATCH_LIST;
+      break;
+    default:
+      token->type = CHARACTER;
+    }
+  return 1;
+}
+\f
+/* Functions for parser.  */
+
+/* Entry point of the parser.
+   Parse the regular expression REGEXP and return the structure tree.
+   If an error is occured, ERR is set by error code, and return NULL.
+   This function build the following tree, from regular expression <reg_exp>:
+          CAT
+          / \
+         /   \
+   <reg_exp>  EOR
+
+   CAT means concatenation.
+   EOR means end of regular expression.  */
+
+static bin_tree_t *
+parse (re_string_t *regexp, regex_t *preg, reg_syntax_t syntax,
+       reg_errcode_t *err)
+{
+  re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
+  bin_tree_t *tree, *eor, *root;
+  re_token_t current_token;
+  dfa->syntax = syntax;
+  fetch_token (&current_token, regexp, syntax | RE_CARET_ANCHORS_HERE);
+  tree = parse_reg_exp (regexp, preg, &current_token, syntax, 0, err);
+  if (BE (*err != REG_NOERROR && tree == NULL, 0))
+    return NULL;
+  eor = create_tree (dfa, NULL, NULL, END_OF_RE);
+  if (tree != NULL)
+    root = create_tree (dfa, tree, eor, CONCAT);
+  else
+    root = eor;
+  if (BE (eor == NULL || root == NULL, 0))
+    {
+      *err = REG_ESPACE;
+      return NULL;
+    }
+  return root;
+}
+
+/* This function build the following tree, from regular expression
+   <branch1>|<branch2>:
+          ALT
+          / \
+         /   \
+   <branch1> <branch2>
+
+   ALT means alternative, which represents the operator `|'.  */
+
+static bin_tree_t *
+parse_reg_exp (re_string_t *regexp, regex_t *preg, re_token_t *token,
+              reg_syntax_t syntax, int nest, reg_errcode_t *err)
+{
+  re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
+  bin_tree_t *tree, *branch = NULL;
+  tree = parse_branch (regexp, preg, token, syntax, nest, err);
+  if (BE (*err != REG_NOERROR && tree == NULL, 0))
+    return NULL;
+
+  while (token->type == OP_ALT)
+    {
+      fetch_token (token, regexp, syntax | RE_CARET_ANCHORS_HERE);
+      if (token->type != OP_ALT && token->type != END_OF_RE
+         && (nest == 0 || token->type != OP_CLOSE_SUBEXP))
+       {
+         branch = parse_branch (regexp, preg, token, syntax, nest, err);
+         if (BE (*err != REG_NOERROR && branch == NULL, 0))
+           return NULL;
+       }
+      else
+       branch = NULL;
+      tree = create_tree (dfa, tree, branch, OP_ALT);
+      if (BE (tree == NULL, 0))
+       {
+         *err = REG_ESPACE;
+         return NULL;
+       }
+    }
+  return tree;
+}
+
+/* This function build the following tree, from regular expression
+   <exp1><exp2>:
+       CAT
+       / \
+       /   \
+   <exp1> <exp2>
+
+   CAT means concatenation.  */
+
+static bin_tree_t *
+parse_branch (re_string_t *regexp, regex_t *preg, re_token_t *token,
+             reg_syntax_t syntax, int nest, reg_errcode_t *err)
+{
+  bin_tree_t *tree, *exp;
+  re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
+  tree = parse_expression (regexp, preg, token, syntax, nest, err);
+  if (BE (*err != REG_NOERROR && tree == NULL, 0))
+    return NULL;
+
+  while (token->type != OP_ALT && token->type != END_OF_RE
+        && (nest == 0 || token->type != OP_CLOSE_SUBEXP))
+    {
+      exp = parse_expression (regexp, preg, token, syntax, nest, err);
+      if (BE (*err != REG_NOERROR && exp == NULL, 0))
+       {
+         return NULL;
+       }
+      if (tree != NULL && exp != NULL)
+       {
+         tree = create_tree (dfa, tree, exp, CONCAT);
+         if (tree == NULL)
+           {
+             *err = REG_ESPACE;
+             return NULL;
+           }
+       }
+      else if (tree == NULL)
+       tree = exp;
+      /* Otherwise exp == NULL, we don't need to create new tree.  */
+    }
+  return tree;
+}
+
+/* This function build the following tree, from regular expression a*:
+        *
+        |
+        a
+*/
+
+static bin_tree_t *
+parse_expression (re_string_t *regexp, regex_t *preg, re_token_t *token,
+                 reg_syntax_t syntax, int nest, reg_errcode_t *err)
+{
+  re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
+  bin_tree_t *tree;
+  switch (token->type)
+    {
+    case CHARACTER:
+      tree = create_token_tree (dfa, NULL, NULL, token);
+      if (BE (tree == NULL, 0))
+       {
+         *err = REG_ESPACE;
+         return NULL;
+       }
+#ifdef RE_ENABLE_I18N
+      if (dfa->mb_cur_max > 1)
+       {
+         while (!re_string_eoi (regexp)
+                && !re_string_first_byte (regexp, re_string_cur_idx (regexp)))
+           {
+             bin_tree_t *mbc_remain;
+             fetch_token (token, regexp, syntax);
+             mbc_remain = create_token_tree (dfa, NULL, NULL, token);
+             tree = create_tree (dfa, tree, mbc_remain, CONCAT);
+             if (BE (mbc_remain == NULL || tree == NULL, 0))
+               {
+                 *err = REG_ESPACE;
+                 return NULL;
+               }
+           }
+       }
+#endif
+      break;
+    case OP_OPEN_SUBEXP:
+      tree = parse_sub_exp (regexp, preg, token, syntax, nest + 1, err);
+      if (BE (*err != REG_NOERROR && tree == NULL, 0))
+       return NULL;
+      break;
+    case OP_OPEN_BRACKET:
+      tree = parse_bracket_exp (regexp, dfa, token, syntax, err);
+      if (BE (*err != REG_NOERROR && tree == NULL, 0))
+       return NULL;
+      break;
+    case OP_BACK_REF:
+      if (!BE (dfa->completed_bkref_map & (1 << token->opr.idx), 1))
+       {
+         *err = REG_ESUBREG;
+         return NULL;
+       }
+      dfa->used_bkref_map |= 1 << token->opr.idx;
+      tree = create_token_tree (dfa, NULL, NULL, token);
+      if (BE (tree == NULL, 0))
+       {
+         *err = REG_ESPACE;
+         return NULL;
+       }
+      ++dfa->nbackref;
+      dfa->has_mb_node = 1;
+      break;
+    case OP_OPEN_DUP_NUM:
+      if (syntax & RE_CONTEXT_INVALID_DUP)
+       {
+         *err = REG_BADRPT;
+         return NULL;
+       }
+      /* FALLTHROUGH */
+    case OP_DUP_ASTERISK:
+    case OP_DUP_PLUS:
+    case OP_DUP_QUESTION:
+      if (syntax & RE_CONTEXT_INVALID_OPS)
+       {
+         *err = REG_BADRPT;
+         return NULL;
+       }
+      else if (syntax & RE_CONTEXT_INDEP_OPS)
+       {
+         fetch_token (token, regexp, syntax);
+         return parse_expression (regexp, preg, token, syntax, nest, err);
+       }
+      /* else fall through  */
+    case OP_CLOSE_SUBEXP:
+      if ((token->type == OP_CLOSE_SUBEXP) &&
+         !(syntax & RE_UNMATCHED_RIGHT_PAREN_ORD))
+       {
+         *err = REG_ERPAREN;
+         return NULL;
+       }
+      /* else fall through  */
+    case OP_CLOSE_DUP_NUM:
+      /* We treat it as a normal character.  */
+
+      /* Then we can these characters as normal characters.  */
+      token->type = CHARACTER;
+      /* mb_partial and word_char bits should be initialized already
+        by peek_token.  */
+      tree = create_token_tree (dfa, NULL, NULL, token);
+      if (BE (tree == NULL, 0))
+       {
+         *err = REG_ESPACE;
+         return NULL;
+       }
+      break;
+    case ANCHOR:
+      if ((token->opr.ctx_type
+          & (WORD_DELIM | NOT_WORD_DELIM | WORD_FIRST | WORD_LAST))
+         && dfa->word_ops_used == 0)
+       init_word_char (dfa);
+      if (token->opr.ctx_type == WORD_DELIM
+         || token->opr.ctx_type == NOT_WORD_DELIM)
+       {
+         bin_tree_t *tree_first, *tree_last;
+         if (token->opr.ctx_type == WORD_DELIM)
+           {
+             token->opr.ctx_type = WORD_FIRST;
+             tree_first = create_token_tree (dfa, NULL, NULL, token);
+             token->opr.ctx_type = WORD_LAST;
+           }
+         else
+           {
+             token->opr.ctx_type = INSIDE_WORD;
+             tree_first = create_token_tree (dfa, NULL, NULL, token);
+             token->opr.ctx_type = INSIDE_NOTWORD;
+           }
+         tree_last = create_token_tree (dfa, NULL, NULL, token);
+         tree = create_tree (dfa, tree_first, tree_last, OP_ALT);
+         if (BE (tree_first == NULL || tree_last == NULL || tree == NULL, 0))
+           {
+             *err = REG_ESPACE;
+             return NULL;
+           }
+       }
+      else
+       {
+         tree = create_token_tree (dfa, NULL, NULL, token);
+         if (BE (tree == NULL, 0))
+           {
+             *err = REG_ESPACE;
+             return NULL;
+           }
+       }
+      /* We must return here, since ANCHORs can't be followed
+        by repetition operators.
+        eg. RE"^*" is invalid or "<ANCHOR(^)><CHAR(*)>",
+            it must not be "<ANCHOR(^)><REPEAT(*)>".  */
+      fetch_token (token, regexp, syntax);
+      return tree;
+    case OP_PERIOD:
+      tree = create_token_tree (dfa, NULL, NULL, token);
+      if (BE (tree == NULL, 0))
+       {
+         *err = REG_ESPACE;
+         return NULL;
+       }
+      if (dfa->mb_cur_max > 1)
+       dfa->has_mb_node = 1;
+      break;
+    case OP_WORD:
+    case OP_NOTWORD:
+      tree = build_charclass_op (dfa, regexp->trans,
+                                "alnum",
+                                "_",
+                                token->type == OP_NOTWORD, err);
+      if (BE (*err != REG_NOERROR && tree == NULL, 0))
+       return NULL;
+      break;
+    case OP_SPACE:
+    case OP_NOTSPACE:
+      tree = build_charclass_op (dfa, regexp->trans,
+                                "space",
+                                "",
+                                token->type == OP_NOTSPACE, err);
+      if (BE (*err != REG_NOERROR && tree == NULL, 0))
+       return NULL;
+      break;
+    case OP_ALT:
+    case END_OF_RE:
+      return NULL;
+    case BACK_SLASH:
+      *err = REG_EESCAPE;
+      return NULL;
+    default:
+      /* Must not happen?  */
+#ifdef DEBUG
+      assert (0);
+#endif
+      return NULL;
+    }
+  fetch_token (token, regexp, syntax);
+
+  while (token->type == OP_DUP_ASTERISK || token->type == OP_DUP_PLUS
+        || token->type == OP_DUP_QUESTION || token->type == OP_OPEN_DUP_NUM)
+    {
+      tree = parse_dup_op (tree, regexp, dfa, token, syntax, err);
+      if (BE (*err != REG_NOERROR && tree == NULL, 0))
+       return NULL;
+      /* In BRE consecutive duplications are not allowed.  */
+      if ((syntax & RE_CONTEXT_INVALID_DUP)
+         && (token->type == OP_DUP_ASTERISK
+             || token->type == OP_OPEN_DUP_NUM))
+       {
+         *err = REG_BADRPT;
+         return NULL;
+       }
+    }
+
+  return tree;
+}
+
+/* This function build the following tree, from regular expression
+   (<reg_exp>):
+        SUBEXP
+           |
+       <reg_exp>
+*/
+
+static bin_tree_t *
+parse_sub_exp (re_string_t *regexp, regex_t *preg, re_token_t *token,
+              reg_syntax_t syntax, int nest, reg_errcode_t *err)
+{
+  re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
+  bin_tree_t *tree;
+  size_t cur_nsub;
+  cur_nsub = preg->re_nsub++;
+
+  fetch_token (token, regexp, syntax | RE_CARET_ANCHORS_HERE);
+
+  /* The subexpression may be a null string.  */
+  if (token->type == OP_CLOSE_SUBEXP)
+    tree = NULL;
+  else
+    {
+      tree = parse_reg_exp (regexp, preg, token, syntax, nest, err);
+      if (BE (*err == REG_NOERROR && token->type != OP_CLOSE_SUBEXP, 0))
+       *err = REG_EPAREN;
+      if (BE (*err != REG_NOERROR, 0))
+       return NULL;
+    }
+
+  if (cur_nsub <= '9' - '1')
+    dfa->completed_bkref_map |= 1 << cur_nsub;
+
+  tree = create_tree (dfa, tree, NULL, SUBEXP);
+  if (BE (tree == NULL, 0))
+    {
+      *err = REG_ESPACE;
+      return NULL;
+    }
+  tree->token.opr.idx = cur_nsub;
+  return tree;
+}
+
+/* This function parse repetition operators like "*", "+", "{1,3}" etc.  */
+
+static bin_tree_t *
+parse_dup_op (bin_tree_t *elem, re_string_t *regexp, re_dfa_t *dfa,
+             re_token_t *token, reg_syntax_t syntax, reg_errcode_t *err)
+{
+  bin_tree_t *tree = NULL, *old_tree = NULL;
+  int i, start, end, start_idx = re_string_cur_idx (regexp);
+#ifndef RE_TOKEN_INIT_BUG
+  re_token_t start_token = *token;
+#else
+  re_token_t start_token;
+
+  memcpy ((void *) &start_token, (void *) token, sizeof start_token);
+#endif
+
+  if (token->type == OP_OPEN_DUP_NUM)
+    {
+      end = 0;
+      start = fetch_number (regexp, token, syntax);
+      if (start == -1)
+       {
+         if (token->type == CHARACTER && token->opr.c == ',')
+           start = 0; /* We treat "{,m}" as "{0,m}".  */
+         else
+           {
+             *err = REG_BADBR; /* <re>{} is invalid.  */
+             return NULL;
+           }
+       }
+      if (BE (start != -2, 1))
+       {
+         /* We treat "{n}" as "{n,n}".  */
+         end = ((token->type == OP_CLOSE_DUP_NUM) ? start
+                : ((token->type == CHARACTER && token->opr.c == ',')
+                   ? fetch_number (regexp, token, syntax) : -2));
+       }
+      if (BE (start == -2 || end == -2, 0))
+       {
+         /* Invalid sequence.  */
+         if (BE (!(syntax & RE_INVALID_INTERVAL_ORD), 0))
+           {
+             if (token->type == END_OF_RE)
+               *err = REG_EBRACE;
+             else
+               *err = REG_BADBR;
+
+             return NULL;
+           }
+
+         /* If the syntax bit is set, rollback.  */
+         re_string_set_index (regexp, start_idx);
+         *token = start_token;
+         token->type = CHARACTER;
+         /* mb_partial and word_char bits should be already initialized by
+            peek_token.  */
+         return elem;
+       }
+
+      if (BE ((end != -1 && start > end) || token->type != OP_CLOSE_DUP_NUM, 0))
+       {
+         /* First number greater than second.  */
+         *err = REG_BADBR;
+         return NULL;
+       }
+    }
+  else
+    {
+      start = (token->type == OP_DUP_PLUS) ? 1 : 0;
+      end = (token->type == OP_DUP_QUESTION) ? 1 : -1;
+    }
+
+  fetch_token (token, regexp, syntax);
+
+  if (BE (elem == NULL, 0))
+    return NULL;
+  if (BE (start == 0 && end == 0, 0))
+    {
+      postorder (elem, free_tree, NULL);
+      return NULL;
+    }
+
+  /* Extract "<re>{n,m}" to "<re><re>...<re><re>{0,<m-n>}".  */
+  if (BE (start > 0, 0))
+    {
+      tree = elem;
+      for (i = 2; i <= start; ++i)
+       {
+         elem = duplicate_tree (elem, dfa);
+         tree = create_tree (dfa, tree, elem, CONCAT);
+         if (BE (elem == NULL || tree == NULL, 0))
+           goto parse_dup_op_espace;
+       }
+
+      if (start == end)
+       return tree;
+
+      /* Duplicate ELEM before it is marked optional.  */
+      elem = duplicate_tree (elem, dfa);
+      old_tree = tree;
+    }
+  else
+    old_tree = NULL;
+
+  if (elem->token.type == SUBEXP)
+    postorder (elem, mark_opt_subexp, (void *) (long) elem->token.opr.idx);
+
+  tree = create_tree (dfa, elem, NULL, (end == -1 ? OP_DUP_ASTERISK : OP_ALT));
+  if (BE (tree == NULL, 0))
+    goto parse_dup_op_espace;
+
+  /* This loop is actually executed only when end != -1,
+     to rewrite <re>{0,n} as (<re>(<re>...<re>?)?)?...  We have
+     already created the start+1-th copy.  */
+  for (i = start + 2; i <= end; ++i)
+    {
+      elem = duplicate_tree (elem, dfa);
+      tree = create_tree (dfa, tree, elem, CONCAT);
+      if (BE (elem == NULL || tree == NULL, 0))
+       goto parse_dup_op_espace;
+
+      tree = create_tree (dfa, tree, NULL, OP_ALT);
+      if (BE (tree == NULL, 0))
+       goto parse_dup_op_espace;
+    }
+
+  if (old_tree)
+    tree = create_tree (dfa, old_tree, tree, CONCAT);
+
+  return tree;
+
+ parse_dup_op_espace:
+  *err = REG_ESPACE;
+  return NULL;
+}
+
+/* Size of the names for collating symbol/equivalence_class/character_class.
+   I'm not sure, but maybe enough.  */
+#define BRACKET_NAME_BUF_SIZE 32
+
+#ifndef _LIBC
+  /* Local function for parse_bracket_exp only used in case of NOT _LIBC.
+     Build the range expression which starts from START_ELEM, and ends
+     at END_ELEM.  The result are written to MBCSET and SBCSET.
+     RANGE_ALLOC is the allocated size of mbcset->range_starts, and
+     mbcset->range_ends, is a pointer argument sinse we may
+     update it.  */
+
+static reg_errcode_t
+internal_function
+# ifdef RE_ENABLE_I18N
+build_range_exp (bitset_t sbcset, re_charset_t *mbcset, int *range_alloc,
+                bracket_elem_t *start_elem, bracket_elem_t *end_elem)
+# else /* not RE_ENABLE_I18N */
+build_range_exp (bitset_t sbcset, bracket_elem_t *start_elem,
+                bracket_elem_t *end_elem)
+# endif /* not RE_ENABLE_I18N */
+{
+  unsigned int start_ch, end_ch;
+  /* Equivalence Classes and Character Classes can't be a range start/end.  */
+  if (BE (start_elem->type == EQUIV_CLASS || start_elem->type == CHAR_CLASS
+         || end_elem->type == EQUIV_CLASS || end_elem->type == CHAR_CLASS,
+         0))
+    return REG_ERANGE;
+
+  /* We can handle no multi character collating elements without libc
+     support.  */
+  if (BE ((start_elem->type == COLL_SYM
+          && strlen ((char *) start_elem->opr.name) > 1)
+         || (end_elem->type == COLL_SYM
+             && strlen ((char *) end_elem->opr.name) > 1), 0))
+    return REG_ECOLLATE;
+
+# ifdef RE_ENABLE_I18N
+  {
+    wchar_t wc;
+    wint_t start_wc;
+    wint_t end_wc;
+    wchar_t cmp_buf[6] = {L'\0', L'\0', L'\0', L'\0', L'\0', L'\0'};
+
+    start_ch = ((start_elem->type == SB_CHAR) ? start_elem->opr.ch
+               : ((start_elem->type == COLL_SYM) ? start_elem->opr.name[0]
+                  : 0));
+    end_ch = ((end_elem->type == SB_CHAR) ? end_elem->opr.ch
+             : ((end_elem->type == COLL_SYM) ? end_elem->opr.name[0]
+                : 0));
+#ifdef GAWK
+    /*
+     * Fedora Core 2, maybe others, have broken `btowc' that returns -1
+     * for any value > 127. Sigh. Note that `start_ch' and `end_ch' are
+     * unsigned, so we don't have sign extension problems.
+     */
+    start_wc = ((start_elem->type == SB_CHAR || start_elem->type == COLL_SYM)
+               ? start_ch : start_elem->opr.wch);
+    end_wc = ((end_elem->type == SB_CHAR || end_elem->type == COLL_SYM)
+             ? end_ch : end_elem->opr.wch);
+#else
+    start_wc = ((start_elem->type == SB_CHAR || start_elem->type == COLL_SYM)
+               ? __btowc (start_ch) : start_elem->opr.wch);
+    end_wc = ((end_elem->type == SB_CHAR || end_elem->type == COLL_SYM)
+             ? __btowc (end_ch) : end_elem->opr.wch);
+#endif
+    if (start_wc == WEOF || end_wc == WEOF)
+      return REG_ECOLLATE;
+    cmp_buf[0] = start_wc;
+    cmp_buf[4] = end_wc;
+    if (wcscoll (cmp_buf, cmp_buf + 4) > 0)
+      return REG_ERANGE;
+
+    /* Got valid collation sequence values, add them as a new entry.
+       However, for !_LIBC we have no collation elements: if the
+       character set is single byte, the single byte character set
+       that we build below suffices.  parse_bracket_exp passes
+       no MBCSET if dfa->mb_cur_max == 1.  */
+    if (mbcset)
+      {
+       /* Check the space of the arrays.  */
+       if (BE (*range_alloc == mbcset->nranges, 0))
+         {
+           /* There is not enough space, need realloc.  */
+           wchar_t *new_array_start, *new_array_end;
+           int new_nranges;
+
+           /* +1 in case of mbcset->nranges is 0.  */
+           new_nranges = 2 * mbcset->nranges + 1;
+           /* Use realloc since mbcset->range_starts and mbcset->range_ends
+              are NULL if *range_alloc == 0.  */
+           new_array_start = re_realloc (mbcset->range_starts, wchar_t,
+                                         new_nranges);
+           new_array_end = re_realloc (mbcset->range_ends, wchar_t,
+                                       new_nranges);
+
+           if (BE (new_array_start == NULL || new_array_end == NULL, 0))
+             return REG_ESPACE;
+
+           mbcset->range_starts = new_array_start;
+           mbcset->range_ends = new_array_end;
+           *range_alloc = new_nranges;
+         }
+
+       mbcset->range_starts[mbcset->nranges] = start_wc;
+       mbcset->range_ends[mbcset->nranges++] = end_wc;
+      }
+
+    /* Build the table for single byte characters.  */
+    for (wc = 0; wc < SBC_MAX; ++wc)
+      {
+       cmp_buf[2] = wc;
+       if (wcscoll (cmp_buf, cmp_buf + 2) <= 0
+           && wcscoll (cmp_buf + 2, cmp_buf + 4) <= 0)
+         bitset_set (sbcset, wc);
+      }
+  }
+# else /* not RE_ENABLE_I18N */
+  {
+    unsigned int ch;
+    start_ch = ((start_elem->type == SB_CHAR ) ? start_elem->opr.ch
+               : ((start_elem->type == COLL_SYM) ? start_elem->opr.name[0]
+                  : 0));
+    end_ch = ((end_elem->type == SB_CHAR ) ? end_elem->opr.ch
+             : ((end_elem->type == COLL_SYM) ? end_elem->opr.name[0]
+                : 0));
+    if (start_ch > end_ch)
+      return REG_ERANGE;
+    /* Build the table for single byte characters.  */
+    for (ch = 0; ch < SBC_MAX; ++ch)
+      if (start_ch <= ch  && ch <= end_ch)
+       bitset_set (sbcset, ch);
+  }
+# endif /* not RE_ENABLE_I18N */
+  return REG_NOERROR;
+}
+#endif /* not _LIBC */
+
+#ifndef _LIBC
+/* Helper function for parse_bracket_exp only used in case of NOT _LIBC..
+   Build the collating element which is represented by NAME.
+   The result are written to MBCSET and SBCSET.
+   COLL_SYM_ALLOC is the allocated size of mbcset->coll_sym, is a
+   pointer argument since we may update it.  */
+
+static reg_errcode_t
+internal_function
+# ifdef RE_ENABLE_I18N
+build_collating_symbol (bitset_t sbcset, re_charset_t *mbcset,
+                       int *coll_sym_alloc, const unsigned char *name)
+# else /* not RE_ENABLE_I18N */
+build_collating_symbol (bitset_t sbcset, const unsigned char *name)
+# endif /* not RE_ENABLE_I18N */
+{
+  size_t name_len = strlen ((const char *) name);
+  if (BE (name_len != 1, 0))
+    return REG_ECOLLATE;
+  else
+    {
+      bitset_set (sbcset, name[0]);
+      return REG_NOERROR;
+    }
+}
+#endif /* not _LIBC */
+
+/* This function parse bracket expression like "[abc]", "[a-c]",
+   "[[.a-a.]]" etc.  */
+
+static bin_tree_t *
+parse_bracket_exp (re_string_t *regexp, re_dfa_t *dfa, re_token_t *token,
+                  reg_syntax_t syntax, reg_errcode_t *err)
+{
+#ifdef _LIBC
+  const unsigned char *collseqmb;
+  const char *collseqwc;
+  uint32_t nrules;
+  int32_t table_size;
+  const int32_t *symb_table;
+  const unsigned char *extra;
+
+  /* Local function for parse_bracket_exp used in _LIBC environement.
+     Seek the collating symbol entry correspondings to NAME.
+     Return the index of the symbol in the SYMB_TABLE.  */
+
+  auto inline int32_t
+  __attribute ((always_inline))
+  seek_collating_symbol_entry (name, name_len)
+        const unsigned char *name;
+        size_t name_len;
+    {
+      int32_t hash = elem_hash ((const char *) name, name_len);
+      int32_t elem = hash % table_size;
+      if (symb_table[2 * elem] != 0)
+       {
+         int32_t second = hash % (table_size - 2) + 1;
+
+         do
+           {
+             /* First compare the hashing value.  */
+             if (symb_table[2 * elem] == hash
+                 /* Compare the length of the name.  */
+                 && name_len == extra[symb_table[2 * elem + 1]]
+                 /* Compare the name.  */
+                 && memcmp (name, &extra[symb_table[2 * elem + 1] + 1],
+                            name_len) == 0)
+               {
+                 /* Yep, this is the entry.  */
+                 break;
+               }
+
+             /* Next entry.  */
+             elem += second;
+           }
+         while (symb_table[2 * elem] != 0);
+       }
+      return elem;
+    }
+
+  /* Local function for parse_bracket_exp used in _LIBC environment.
+     Look up the collation sequence value of BR_ELEM.
+     Return the value if succeeded, UINT_MAX otherwise.  */
+
+  auto inline unsigned int
+  __attribute ((always_inline))
+  lookup_collation_sequence_value (br_elem)
+        bracket_elem_t *br_elem;
+    {
+      if (br_elem->type == SB_CHAR)
+       {
+         /*
+         if (MB_CUR_MAX == 1)
+         */
+         if (nrules == 0)
+           return collseqmb[br_elem->opr.ch];
+         else
+           {
+             wint_t wc = __btowc (br_elem->opr.ch);
+             return __collseq_table_lookup (collseqwc, wc);
+           }
+       }
+      else if (br_elem->type == MB_CHAR)
+       {
+         if (nrules != 0)
+           return __collseq_table_lookup (collseqwc, br_elem->opr.wch);
+       }
+      else if (br_elem->type == COLL_SYM)
+       {
+         size_t sym_name_len = strlen ((char *) br_elem->opr.name);
+         if (nrules != 0)
+           {
+             int32_t elem, idx;
+             elem = seek_collating_symbol_entry (br_elem->opr.name,
+                                                 sym_name_len);
+             if (symb_table[2 * elem] != 0)
+               {
+                 /* We found the entry.  */
+                 idx = symb_table[2 * elem + 1];
+                 /* Skip the name of collating element name.  */
+                 idx += 1 + extra[idx];
+                 /* Skip the byte sequence of the collating element.  */
+                 idx += 1 + extra[idx];
+                 /* Adjust for the alignment.  */
+                 idx = (idx + 3) & ~3;
+                 /* Skip the multibyte collation sequence value.  */
+                 idx += sizeof (unsigned int);
+                 /* Skip the wide char sequence of the collating element.  */
+                 idx += sizeof (unsigned int) *
+                   (1 + *(unsigned int *) (extra + idx));
+                 /* Return the collation sequence value.  */
+                 return *(unsigned int *) (extra + idx);
+               }
+             else if (symb_table[2 * elem] == 0 && sym_name_len == 1)
+               {
+                 /* No valid character.  Match it as a single byte
+                    character.  */
+                 return collseqmb[br_elem->opr.name[0]];
+               }
+           }
+         else if (sym_name_len == 1)
+           return collseqmb[br_elem->opr.name[0]];
+       }
+      return UINT_MAX;
+    }
+
+  /* Local function for parse_bracket_exp used in _LIBC environement.
+     Build the range expression which starts from START_ELEM, and ends
+     at END_ELEM.  The result are written to MBCSET and SBCSET.
+     RANGE_ALLOC is the allocated size of mbcset->range_starts, and
+     mbcset->range_ends, is a pointer argument sinse we may
+     update it.  */
+
+  auto inline reg_errcode_t
+  __attribute ((always_inline))
+  build_range_exp (sbcset, mbcset, range_alloc, start_elem, end_elem)
+        re_charset_t *mbcset;
+        int *range_alloc;
+        bitset_t sbcset;
+        bracket_elem_t *start_elem, *end_elem;
+    {
+      unsigned int ch;
+      uint32_t start_collseq;
+      uint32_t end_collseq;
+
+      /* Equivalence Classes and Character Classes can't be a range
+        start/end.  */
+      if (BE (start_elem->type == EQUIV_CLASS || start_elem->type == CHAR_CLASS
+             || end_elem->type == EQUIV_CLASS || end_elem->type == CHAR_CLASS,
+             0))
+       return REG_ERANGE;
+
+      start_collseq = lookup_collation_sequence_value (start_elem);
+      end_collseq = lookup_collation_sequence_value (end_elem);
+      /* Check start/end collation sequence values.  */
+      if (BE (start_collseq == UINT_MAX || end_collseq == UINT_MAX, 0))
+       return REG_ECOLLATE;
+      if (BE ((syntax & RE_NO_EMPTY_RANGES) && start_collseq > end_collseq, 0))
+       return REG_ERANGE;
+
+      /* Got valid collation sequence values, add them as a new entry.
+        However, if we have no collation elements, and the character set
+        is single byte, the single byte character set that we
+        build below suffices. */
+      if (nrules > 0 || dfa->mb_cur_max > 1)
+       {
+         /* Check the space of the arrays.  */
+         if (BE (*range_alloc == mbcset->nranges, 0))
+           {
+             /* There is not enough space, need realloc.  */
+             uint32_t *new_array_start;
+             uint32_t *new_array_end;
+             int new_nranges;
+
+             /* +1 in case of mbcset->nranges is 0.  */
+             new_nranges = 2 * mbcset->nranges + 1;
+             new_array_start = re_realloc (mbcset->range_starts, uint32_t,
+                                           new_nranges);
+             new_array_end = re_realloc (mbcset->range_ends, uint32_t,
+                                         new_nranges);
+
+             if (BE (new_array_start == NULL || new_array_end == NULL, 0))
+               return REG_ESPACE;
+
+             mbcset->range_starts = new_array_start;
+             mbcset->range_ends = new_array_end;
+             *range_alloc = new_nranges;
+           }
+
+         mbcset->range_starts[mbcset->nranges] = start_collseq;
+         mbcset->range_ends[mbcset->nranges++] = end_collseq;
+       }
+
+      /* Build the table for single byte characters.  */
+      for (ch = 0; ch < SBC_MAX; ch++)
+       {
+         uint32_t ch_collseq;
+         /*
+         if (MB_CUR_MAX == 1)
+         */
+         if (nrules == 0)
+           ch_collseq = collseqmb[ch];
+         else
+           ch_collseq = __collseq_table_lookup (collseqwc, __btowc (ch));
+         if (start_collseq <= ch_collseq && ch_collseq <= end_collseq)
+           bitset_set (sbcset, ch);
+       }
+      return REG_NOERROR;
+    }
+
+  /* Local function for parse_bracket_exp used in _LIBC environement.
+     Build the collating element which is represented by NAME.
+     The result are written to MBCSET and SBCSET.
+     COLL_SYM_ALLOC is the allocated size of mbcset->coll_sym, is a
+     pointer argument sinse we may update it.  */
+
+  auto inline reg_errcode_t
+  __attribute ((always_inline))
+  build_collating_symbol (sbcset, mbcset, coll_sym_alloc, name)
+        re_charset_t *mbcset;
+        int *coll_sym_alloc;
+        bitset_t sbcset;
+        const unsigned char *name;
+    {
+      int32_t elem, idx;
+      size_t name_len = strlen ((const char *) name);
+      if (nrules != 0)
+       {
+         elem = seek_collating_symbol_entry (name, name_len);
+         if (symb_table[2 * elem] != 0)
+           {
+             /* We found the entry.  */
+             idx = symb_table[2 * elem + 1];
+             /* Skip the name of collating element name.  */
+             idx += 1 + extra[idx];
+           }
+         else if (symb_table[2 * elem] == 0 && name_len == 1)
+           {
+             /* No valid character, treat it as a normal
+                character.  */
+             bitset_set (sbcset, name[0]);
+             return REG_NOERROR;
+           }
+         else
+           return REG_ECOLLATE;
+
+         /* Got valid collation sequence, add it as a new entry.  */
+         /* Check the space of the arrays.  */
+         if (BE (*coll_sym_alloc == mbcset->ncoll_syms, 0))
+           {
+             /* Not enough, realloc it.  */
+             /* +1 in case of mbcset->ncoll_syms is 0.  */
+             int new_coll_sym_alloc = 2 * mbcset->ncoll_syms + 1;
+             /* Use realloc since mbcset->coll_syms is NULL
+                if *alloc == 0.  */
+             int32_t *new_coll_syms = re_realloc (mbcset->coll_syms, int32_t,
+                                                  new_coll_sym_alloc);
+             if (BE (new_coll_syms == NULL, 0))
+               return REG_ESPACE;
+             mbcset->coll_syms = new_coll_syms;
+             *coll_sym_alloc = new_coll_sym_alloc;
+           }
+         mbcset->coll_syms[mbcset->ncoll_syms++] = idx;
+         return REG_NOERROR;
+       }
+      else
+       {
+         if (BE (name_len != 1, 0))
+           return REG_ECOLLATE;
+         else
+           {
+             bitset_set (sbcset, name[0]);
+             return REG_NOERROR;
+           }
+       }
+    }
+#endif
+
+  re_token_t br_token;
+  re_bitset_ptr_t sbcset;
+#ifdef RE_ENABLE_I18N
+  re_charset_t *mbcset;
+  int coll_sym_alloc = 0, range_alloc = 0, mbchar_alloc = 0;
+  int equiv_class_alloc = 0, char_class_alloc = 0;
+#endif /* not RE_ENABLE_I18N */
+  int non_match = 0;
+  bin_tree_t *work_tree;
+  int token_len;
+  int first_round = 1;
+#ifdef _LIBC
+  collseqmb = (const unsigned char *)
+    _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQMB);
+  nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
+  if (nrules)
+    {
+      /*
+      if (MB_CUR_MAX > 1)
+      */
+      collseqwc = _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQWC);
+      table_size = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_SYMB_HASH_SIZEMB);
+      symb_table = (const int32_t *) _NL_CURRENT (LC_COLLATE,
+                                                 _NL_COLLATE_SYMB_TABLEMB);
+      extra = (const unsigned char *) _NL_CURRENT (LC_COLLATE,
+                                                  _NL_COLLATE_SYMB_EXTRAMB);
+    }
+#endif
+  sbcset = (re_bitset_ptr_t) calloc (sizeof (bitset_t), 1);
+#ifdef RE_ENABLE_I18N
+  mbcset = (re_charset_t *) calloc (sizeof (re_charset_t), 1);
+#endif /* RE_ENABLE_I18N */
+#ifdef RE_ENABLE_I18N
+  if (BE (sbcset == NULL || mbcset == NULL, 0))
+#else
+  if (BE (sbcset == NULL, 0))
+#endif /* RE_ENABLE_I18N */
+    {
+      *err = REG_ESPACE;
+      return NULL;
+    }
+
+  token_len = peek_token_bracket (token, regexp, syntax);
+  if (BE (token->type == END_OF_RE, 0))
+    {
+      *err = REG_BADPAT;
+      goto parse_bracket_exp_free_return;
+    }
+  if (token->type == OP_NON_MATCH_LIST)
+    {
+#ifdef RE_ENABLE_I18N
+      mbcset->non_match = 1;
+#endif /* not RE_ENABLE_I18N */
+      non_match = 1;
+      if (syntax & RE_HAT_LISTS_NOT_NEWLINE)
+       bitset_set (sbcset, '\n');
+      re_string_skip_bytes (regexp, token_len); /* Skip a token.  */
+      token_len = peek_token_bracket (token, regexp, syntax);
+      if (BE (token->type == END_OF_RE, 0))
+       {
+         *err = REG_BADPAT;
+         goto parse_bracket_exp_free_return;
+       }
+    }
+
+  /* We treat the first ']' as a normal character.  */
+  if (token->type == OP_CLOSE_BRACKET)
+    token->type = CHARACTER;
+
+  while (1)
+    {
+      bracket_elem_t start_elem, end_elem;
+      unsigned char start_name_buf[BRACKET_NAME_BUF_SIZE];
+      unsigned char end_name_buf[BRACKET_NAME_BUF_SIZE];
+      reg_errcode_t ret;
+      int token_len2 = 0, is_range_exp = 0;
+      re_token_t token2;
+
+      start_elem.opr.name = start_name_buf;
+      ret = parse_bracket_element (&start_elem, regexp, token, token_len, dfa,
+                                  syntax, first_round);
+      if (BE (ret != REG_NOERROR, 0))
+       {
+         *err = ret;
+         goto parse_bracket_exp_free_return;
+       }
+      first_round = 0;
+
+      /* Get information about the next token.  We need it in any case.  */
+      token_len = peek_token_bracket (token, regexp, syntax);
+
+      /* Do not check for ranges if we know they are not allowed.  */
+      if (start_elem.type != CHAR_CLASS && start_elem.type != EQUIV_CLASS)
+       {
+         if (BE (token->type == END_OF_RE, 0))
+           {
+             *err = REG_EBRACK;
+             goto parse_bracket_exp_free_return;
+           }
+         if (token->type == OP_CHARSET_RANGE)
+           {
+             re_string_skip_bytes (regexp, token_len); /* Skip '-'.  */
+             token_len2 = peek_token_bracket (&token2, regexp, syntax);
+             if (BE (token2.type == END_OF_RE, 0))
+               {
+                 *err = REG_EBRACK;
+                 goto parse_bracket_exp_free_return;
+               }
+             if (token2.type == OP_CLOSE_BRACKET)
+               {
+                 /* We treat the last '-' as a normal character.  */
+                 re_string_skip_bytes (regexp, -token_len);
+                 token->type = CHARACTER;
+               }
+             else
+               is_range_exp = 1;
+           }
+       }
+
+      if (is_range_exp == 1)
+       {
+         end_elem.opr.name = end_name_buf;
+         ret = parse_bracket_element (&end_elem, regexp, &token2, token_len2,
+                                      dfa, syntax, 1);
+         if (BE (ret != REG_NOERROR, 0))
+           {
+             *err = ret;
+             goto parse_bracket_exp_free_return;
+           }
+
+         token_len = peek_token_bracket (token, regexp, syntax);
+
+#ifdef _LIBC
+         *err = build_range_exp (sbcset, mbcset, &range_alloc,
+                                 &start_elem, &end_elem);
+#else
+# ifdef RE_ENABLE_I18N
+         *err = build_range_exp (sbcset,
+                                 dfa->mb_cur_max > 1 ? mbcset : NULL,
+                                 &range_alloc, &start_elem, &end_elem);
+# else
+         *err = build_range_exp (sbcset, &start_elem, &end_elem);
+# endif
+#endif /* RE_ENABLE_I18N */
+         if (BE (*err != REG_NOERROR, 0))
+           goto parse_bracket_exp_free_return;
+       }
+      else
+       {
+         switch (start_elem.type)
+           {
+           case SB_CHAR:
+             bitset_set (sbcset, start_elem.opr.ch);
+             break;
+#ifdef RE_ENABLE_I18N
+           case MB_CHAR:
+             /* Check whether the array has enough space.  */
+             if (BE (mbchar_alloc == mbcset->nmbchars, 0))
+               {
+                 wchar_t *new_mbchars;
+                 /* Not enough, realloc it.  */
+                 /* +1 in case of mbcset->nmbchars is 0.  */
+                 mbchar_alloc = 2 * mbcset->nmbchars + 1;
+                 /* Use realloc since array is NULL if *alloc == 0.  */
+                 new_mbchars = re_realloc (mbcset->mbchars, wchar_t,
+                                           mbchar_alloc);
+                 if (BE (new_mbchars == NULL, 0))
+                   goto parse_bracket_exp_espace;
+                 mbcset->mbchars = new_mbchars;
+               }
+             mbcset->mbchars[mbcset->nmbchars++] = start_elem.opr.wch;
+             break;
+#endif /* RE_ENABLE_I18N */
+           case EQUIV_CLASS:
+             *err = build_equiv_class (sbcset,
+#ifdef RE_ENABLE_I18N
+                                       mbcset, &equiv_class_alloc,
+#endif /* RE_ENABLE_I18N */
+                                       start_elem.opr.name);
+             if (BE (*err != REG_NOERROR, 0))
+               goto parse_bracket_exp_free_return;
+             break;
+           case COLL_SYM:
+             *err = build_collating_symbol (sbcset,
+#ifdef RE_ENABLE_I18N
+                                            mbcset, &coll_sym_alloc,
+#endif /* RE_ENABLE_I18N */
+                                            start_elem.opr.name);
+             if (BE (*err != REG_NOERROR, 0))
+               goto parse_bracket_exp_free_return;
+             break;
+           case CHAR_CLASS:
+             *err = build_charclass (regexp->trans, sbcset,
+#ifdef RE_ENABLE_I18N
+                                     mbcset, &char_class_alloc,
+#endif /* RE_ENABLE_I18N */
+                                     (const char *) start_elem.opr.name, syntax);
+             if (BE (*err != REG_NOERROR, 0))
+              goto parse_bracket_exp_free_return;
+             break;
+           default:
+             assert (0);
+             break;
+           }
+       }
+      if (BE (token->type == END_OF_RE, 0))
+       {
+         *err = REG_EBRACK;
+         goto parse_bracket_exp_free_return;
+       }
+      if (token->type == OP_CLOSE_BRACKET)
+       break;
+    }
+
+  re_string_skip_bytes (regexp, token_len); /* Skip a token.  */
+
+  /* If it is non-matching list.  */
+  if (non_match)
+    bitset_not (sbcset);
+
+#ifdef RE_ENABLE_I18N
+  /* Ensure only single byte characters are set.  */
+  if (dfa->mb_cur_max > 1)
+    bitset_mask (sbcset, dfa->sb_char);
+
+  if (mbcset->nmbchars || mbcset->ncoll_syms || mbcset->nequiv_classes
+      || mbcset->nranges || (dfa->mb_cur_max > 1 && (mbcset->nchar_classes
+                                                    || mbcset->non_match)))
+    {
+      bin_tree_t *mbc_tree;
+      int sbc_idx;
+      /* Build a tree for complex bracket.  */
+      dfa->has_mb_node = 1;
+      br_token.type = COMPLEX_BRACKET;
+      br_token.opr.mbcset = mbcset;
+      mbc_tree = create_token_tree (dfa, NULL, NULL, &br_token);
+      if (BE (mbc_tree == NULL, 0))
+       goto parse_bracket_exp_espace;
+      for (sbc_idx = 0; sbc_idx < BITSET_WORDS; ++sbc_idx)
+       if (sbcset[sbc_idx])
+         break;
+      /* If there are no bits set in sbcset, there is no point
+        of having both SIMPLE_BRACKET and COMPLEX_BRACKET.  */
+      if (sbc_idx < BITSET_WORDS)
+       {
+         /* Build a tree for simple bracket.  */
+         br_token.type = SIMPLE_BRACKET;
+         br_token.opr.sbcset = sbcset;
+         work_tree = create_token_tree (dfa, NULL, NULL, &br_token);
+         if (BE (work_tree == NULL, 0))
+           goto parse_bracket_exp_espace;
+
+         /* Then join them by ALT node.  */
+         work_tree = create_tree (dfa, work_tree, mbc_tree, OP_ALT);
+         if (BE (work_tree == NULL, 0))
+           goto parse_bracket_exp_espace;
+       }
+      else
+       {
+         re_free (sbcset);
+         work_tree = mbc_tree;
+       }
+    }
+  else
+#endif /* not RE_ENABLE_I18N */
+    {
+#ifdef RE_ENABLE_I18N
+      free_charset (mbcset);
+#endif
+      /* Build a tree for simple bracket.  */
+      br_token.type = SIMPLE_BRACKET;
+      br_token.opr.sbcset = sbcset;
+      work_tree = create_token_tree (dfa, NULL, NULL, &br_token);
+      if (BE (work_tree == NULL, 0))
+       goto parse_bracket_exp_espace;
+    }
+  return work_tree;
+
+ parse_bracket_exp_espace:
+  *err = REG_ESPACE;
+ parse_bracket_exp_free_return:
+  re_free (sbcset);
+#ifdef RE_ENABLE_I18N
+  free_charset (mbcset);
+#endif /* RE_ENABLE_I18N */
+  return NULL;
+}
+
+/* Parse an element in the bracket expression.  */
+
+static reg_errcode_t
+parse_bracket_element (bracket_elem_t *elem, re_string_t *regexp,
+                      re_token_t *token, int token_len, re_dfa_t *dfa,
+                      reg_syntax_t syntax, int accept_hyphen)
+{
+#ifdef RE_ENABLE_I18N
+  int cur_char_size;
+  cur_char_size = re_string_char_size_at (regexp, re_string_cur_idx (regexp));
+  if (cur_char_size > 1)
+    {
+      elem->type = MB_CHAR;
+      elem->opr.wch = re_string_wchar_at (regexp, re_string_cur_idx (regexp));
+      re_string_skip_bytes (regexp, cur_char_size);
+      return REG_NOERROR;
+    }
+#endif /* RE_ENABLE_I18N */
+  re_string_skip_bytes (regexp, token_len); /* Skip a token.  */
+  if (token->type == OP_OPEN_COLL_ELEM || token->type == OP_OPEN_CHAR_CLASS
+      || token->type == OP_OPEN_EQUIV_CLASS)
+    return parse_bracket_symbol (elem, regexp, token);
+  if (BE (token->type == OP_CHARSET_RANGE, 0) && !accept_hyphen)
+    {
+      /* A '-' must only appear as anything but a range indicator before
+        the closing bracket.  Everything else is an error.  */
+      re_token_t token2;
+      (void) peek_token_bracket (&token2, regexp, syntax);
+      if (token2.type != OP_CLOSE_BRACKET)
+       /* The actual error value is not standardized since this whole
+          case is undefined.  But ERANGE makes good sense.  */
+       return REG_ERANGE;
+    }
+  elem->type = SB_CHAR;
+  elem->opr.ch = token->opr.c;
+  return REG_NOERROR;
+}
+
+/* Parse a bracket symbol in the bracket expression.  Bracket symbols are
+   such as [:<character_class>:], [.<collating_element>.], and
+   [=<equivalent_class>=].  */
+
+static reg_errcode_t
+parse_bracket_symbol (bracket_elem_t *elem, re_string_t *regexp,
+                     re_token_t *token)
+{
+  unsigned char ch, delim = token->opr.c;
+  int i = 0;
+  if (re_string_eoi(regexp))
+    return REG_EBRACK;
+  for (;; ++i)
+    {
+      if (i >= BRACKET_NAME_BUF_SIZE)
+       return REG_EBRACK;
+      if (token->type == OP_OPEN_CHAR_CLASS)
+       ch = re_string_fetch_byte_case (regexp);
+      else
+       ch = re_string_fetch_byte (regexp);
+      if (re_string_eoi(regexp))
+       return REG_EBRACK;
+      if (ch == delim && re_string_peek_byte (regexp, 0) == ']')
+       break;
+      elem->opr.name[i] = ch;
+    }
+  re_string_skip_bytes (regexp, 1);
+  elem->opr.name[i] = '\0';
+  switch (token->type)
+    {
+    case OP_OPEN_COLL_ELEM:
+      elem->type = COLL_SYM;
+      break;
+    case OP_OPEN_EQUIV_CLASS:
+      elem->type = EQUIV_CLASS;
+      break;
+    case OP_OPEN_CHAR_CLASS:
+      elem->type = CHAR_CLASS;
+      break;
+    default:
+      break;
+    }
+  return REG_NOERROR;
+}
+
+  /* Helper function for parse_bracket_exp.
+     Build the equivalence class which is represented by NAME.
+     The result are written to MBCSET and SBCSET.
+     EQUIV_CLASS_ALLOC is the allocated size of mbcset->equiv_classes,
+     is a pointer argument sinse we may update it.  */
+
+static reg_errcode_t
+#ifdef RE_ENABLE_I18N
+build_equiv_class (bitset_t sbcset, re_charset_t *mbcset,
+                  int *equiv_class_alloc, const unsigned char *name)
+#else /* not RE_ENABLE_I18N */
+build_equiv_class (bitset_t sbcset, const unsigned char *name)
+#endif /* not RE_ENABLE_I18N */
+{
+#ifdef _LIBC
+  uint32_t nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
+  if (nrules != 0)
+    {
+      const int32_t *table, *indirect;
+      const unsigned char *weights, *extra, *cp;
+      unsigned char char_buf[2];
+      int32_t idx1, idx2;
+      unsigned int ch;
+      size_t len;
+      /* This #include defines a local function!  */
+# include <locale/weight.h>
+      /* Calculate the index for equivalence class.  */
+      cp = name;
+      table = (const int32_t *) _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
+      weights = (const unsigned char *) _NL_CURRENT (LC_COLLATE,
+                                              _NL_COLLATE_WEIGHTMB);
+      extra = (const unsigned char *) _NL_CURRENT (LC_COLLATE,
+                                                  _NL_COLLATE_EXTRAMB);
+      indirect = (const int32_t *) _NL_CURRENT (LC_COLLATE,
+                                               _NL_COLLATE_INDIRECTMB);
+      idx1 = findidx (&cp);
+      if (BE (idx1 == 0 || cp < name + strlen ((const char *) name), 0))
+       /* This isn't a valid character.  */
+       return REG_ECOLLATE;
+
+      /* Build single byte matcing table for this equivalence class.  */
+      char_buf[1] = (unsigned char) '\0';
+      len = weights[idx1 & 0xffffff];
+      for (ch = 0; ch < SBC_MAX; ++ch)
+       {
+         char_buf[0] = ch;
+         cp = char_buf;
+         idx2 = findidx (&cp);
+/*
+         idx2 = table[ch];
+*/
+         if (idx2 == 0)
+           /* This isn't a valid character.  */
+           continue;
+         /* Compare only if the length matches and the collation rule
+            index is the same.  */
+         if (len == weights[idx2 & 0xffffff] && (idx1 >> 24) == (idx2 >> 24))
+           {
+             int cnt = 0;
+
+             while (cnt <= len &&
+                    weights[(idx1 & 0xffffff) + 1 + cnt]
+                    == weights[(idx2 & 0xffffff) + 1 + cnt])
+               ++cnt;
+
+             if (cnt > len)
+               bitset_set (sbcset, ch);
+           }
+       }
+      /* Check whether the array has enough space.  */
+      if (BE (*equiv_class_alloc == mbcset->nequiv_classes, 0))
+       {
+         /* Not enough, realloc it.  */
+         /* +1 in case of mbcset->nequiv_classes is 0.  */
+         int new_equiv_class_alloc = 2 * mbcset->nequiv_classes + 1;
+         /* Use realloc since the array is NULL if *alloc == 0.  */
+         int32_t *new_equiv_classes = re_realloc (mbcset->equiv_classes,
+                                                  int32_t,
+                                                  new_equiv_class_alloc);
+         if (BE (new_equiv_classes == NULL, 0))
+           return REG_ESPACE;
+         mbcset->equiv_classes = new_equiv_classes;
+         *equiv_class_alloc = new_equiv_class_alloc;
+       }
+      mbcset->equiv_classes[mbcset->nequiv_classes++] = idx1;
+    }
+  else
+#endif /* _LIBC */
+    {
+      if (BE (strlen ((const char *) name) != 1, 0))
+       return REG_ECOLLATE;
+      bitset_set (sbcset, *name);
+    }
+  return REG_NOERROR;
+}
+
+  /* Helper function for parse_bracket_exp.
+     Build the character class which is represented by NAME.
+     The result are written to MBCSET and SBCSET.
+     CHAR_CLASS_ALLOC is the allocated size of mbcset->char_classes,
+     is a pointer argument sinse we may update it.  */
+
+static reg_errcode_t
+#ifdef RE_ENABLE_I18N
+build_charclass (RE_TRANSLATE_TYPE trans, bitset_t sbcset,
+                re_charset_t *mbcset, int *char_class_alloc,
+                const char *class_name, reg_syntax_t syntax)
+#else /* not RE_ENABLE_I18N */
+build_charclass (RE_TRANSLATE_TYPE trans, bitset_t sbcset,
+                const char *class_name, reg_syntax_t syntax)
+#endif /* not RE_ENABLE_I18N */
+{
+  int i;
+
+  /* In case of REG_ICASE "upper" and "lower" match the both of
+     upper and lower cases.  */
+  if ((syntax & RE_ICASE)
+      && (strcmp (class_name, "upper") == 0 || strcmp (class_name, "lower") == 0))
+    class_name = "alpha";
+
+#ifdef RE_ENABLE_I18N
+  /* Check the space of the arrays.  */
+  if (BE (*char_class_alloc == mbcset->nchar_classes, 0))
+    {
+      /* Not enough, realloc it.  */
+      /* +1 in case of mbcset->nchar_classes is 0.  */
+      int new_char_class_alloc = 2 * mbcset->nchar_classes + 1;
+      /* Use realloc since array is NULL if *alloc == 0.  */
+      wctype_t *new_char_classes = re_realloc (mbcset->char_classes, wctype_t,
+                                              new_char_class_alloc);
+      if (BE (new_char_classes == NULL, 0))
+       return REG_ESPACE;
+      mbcset->char_classes = new_char_classes;
+      *char_class_alloc = new_char_class_alloc;
+    }
+  mbcset->char_classes[mbcset->nchar_classes++] = __wctype (class_name);
+#endif /* RE_ENABLE_I18N */
+
+#define BUILD_CHARCLASS_LOOP(ctype_func)       \
+  do {                                         \
+    if (BE (trans != NULL, 0))                 \
+      {                                                \
+       for (i = 0; i < SBC_MAX; ++i)           \
+         if (ctype_func (i))                   \
+           bitset_set (sbcset, trans[i]);      \
+      }                                                \
+    else                                       \
+      {                                                \
+       for (i = 0; i < SBC_MAX; ++i)           \
+         if (ctype_func (i))                   \
+           bitset_set (sbcset, i);             \
+      }                                                \
+  } while (0)
+
+  if (strcmp (class_name, "alnum") == 0)
+    BUILD_CHARCLASS_LOOP (isalnum);
+  else if (strcmp (class_name, "cntrl") == 0)
+    BUILD_CHARCLASS_LOOP (iscntrl);
+  else if (strcmp (class_name, "lower") == 0)
+    BUILD_CHARCLASS_LOOP (islower);
+  else if (strcmp (class_name, "space") == 0)
+    BUILD_CHARCLASS_LOOP (isspace);
+  else if (strcmp (class_name, "alpha") == 0)
+    BUILD_CHARCLASS_LOOP (isalpha);
+  else if (strcmp (class_name, "digit") == 0)
+    BUILD_CHARCLASS_LOOP (isdigit);
+  else if (strcmp (class_name, "print") == 0)
+    BUILD_CHARCLASS_LOOP (isprint);
+  else if (strcmp (class_name, "upper") == 0)
+    BUILD_CHARCLASS_LOOP (isupper);
+  else if (strcmp (class_name, "blank") == 0)
+#ifndef GAWK
+    BUILD_CHARCLASS_LOOP (isblank);
+#else
+    /* see comments above */
+    BUILD_CHARCLASS_LOOP (is_blank);
+#endif
+  else if (strcmp (class_name, "graph") == 0)
+    BUILD_CHARCLASS_LOOP (isgraph);
+  else if (strcmp (class_name, "punct") == 0)
+    BUILD_CHARCLASS_LOOP (ispunct);
+  else if (strcmp (class_name, "xdigit") == 0)
+    BUILD_CHARCLASS_LOOP (isxdigit);
+  else
+    return REG_ECTYPE;
+
+  return REG_NOERROR;
+}
+
+static bin_tree_t *
+build_charclass_op (re_dfa_t *dfa, RE_TRANSLATE_TYPE trans,
+                   const char *class_name,
+                   const char *extra, int non_match,
+                   reg_errcode_t *err)
+{
+  re_bitset_ptr_t sbcset;
+#ifdef RE_ENABLE_I18N
+  re_charset_t *mbcset;
+  int alloc = 0;
+#endif /* not RE_ENABLE_I18N */
+  reg_errcode_t ret;
+  re_token_t br_token;
+  bin_tree_t *tree;
+
+  sbcset = (re_bitset_ptr_t) calloc (sizeof (bitset_t), 1);
+#ifdef RE_ENABLE_I18N
+  mbcset = (re_charset_t *) calloc (sizeof (re_charset_t), 1);
+#endif /* RE_ENABLE_I18N */
+
+#ifdef RE_ENABLE_I18N
+  if (BE (sbcset == NULL || mbcset == NULL, 0))
+#else /* not RE_ENABLE_I18N */
+  if (BE (sbcset == NULL, 0))
+#endif /* not RE_ENABLE_I18N */
+    {
+      *err = REG_ESPACE;
+      return NULL;
+    }
+
+  if (non_match)
+    {
+#ifdef RE_ENABLE_I18N
+      mbcset->non_match = 1;
+#endif /* not RE_ENABLE_I18N */
+    }
+
+  /* We don't care the syntax in this case.  */
+  ret = build_charclass (trans, sbcset,
+#ifdef RE_ENABLE_I18N
+                        mbcset, &alloc,
+#endif /* RE_ENABLE_I18N */
+                        class_name, 0);
+
+  if (BE (ret != REG_NOERROR, 0))
+    {
+      re_free (sbcset);
+#ifdef RE_ENABLE_I18N
+      free_charset (mbcset);
+#endif /* RE_ENABLE_I18N */
+      *err = ret;
+      return NULL;
+    }
+  /* \w match '_' also.  */
+  for (; *extra; extra++)
+    bitset_set (sbcset, *extra);
+
+  /* If it is non-matching list.  */
+  if (non_match)
+    bitset_not (sbcset);
+
+#ifdef RE_ENABLE_I18N
+  /* Ensure only single byte characters are set.  */
+  if (dfa->mb_cur_max > 1)
+    bitset_mask (sbcset, dfa->sb_char);
+#endif
+
+  /* Build a tree for simple bracket.  */
+  br_token.type = SIMPLE_BRACKET;
+  br_token.opr.sbcset = sbcset;
+  tree = create_token_tree (dfa, NULL, NULL, &br_token);
+  if (BE (tree == NULL, 0))
+    goto build_word_op_espace;
+
+#ifdef RE_ENABLE_I18N
+  if (dfa->mb_cur_max > 1)
+    {
+      bin_tree_t *mbc_tree;
+      /* Build a tree for complex bracket.  */
+      br_token.type = COMPLEX_BRACKET;
+      br_token.opr.mbcset = mbcset;
+      dfa->has_mb_node = 1;
+      mbc_tree = create_token_tree (dfa, NULL, NULL, &br_token);
+      if (BE (mbc_tree == NULL, 0))
+       goto build_word_op_espace;
+      /* Then join them by ALT node.  */
+      tree = create_tree (dfa, tree, mbc_tree, OP_ALT);
+      if (BE (mbc_tree != NULL, 1))
+       return tree;
+    }
+  else
+    {
+      free_charset (mbcset);
+      return tree;
+    }
+#else /* not RE_ENABLE_I18N */
+  return tree;
+#endif /* not RE_ENABLE_I18N */
+
+ build_word_op_espace:
+  re_free (sbcset);
+#ifdef RE_ENABLE_I18N
+  free_charset (mbcset);
+#endif /* RE_ENABLE_I18N */
+  *err = REG_ESPACE;
+  return NULL;
+}
+
+/* This is intended for the expressions like "a{1,3}".
+   Fetch a number from `input', and return the number.
+   Return -1, if the number field is empty like "{,1}".
+   Return -2, If an error is occured.  */
+
+static int
+fetch_number (re_string_t *input, re_token_t *token, reg_syntax_t syntax)
+{
+  int num = -1;
+  unsigned char c;
+  while (1)
+    {
+      fetch_token (token, input, syntax);
+      c = token->opr.c;
+      if (BE (token->type == END_OF_RE, 0))
+       return -2;
+      if (token->type == OP_CLOSE_DUP_NUM || c == ',')
+       break;
+      num = ((token->type != CHARACTER || c < '0' || '9' < c || num == -2)
+            ? -2 : ((num == -1) ? c - '0' : num * 10 + c - '0'));
+      num = (num > RE_DUP_MAX) ? -2 : num;
+    }
+  return num;
+}
+\f
+#ifdef RE_ENABLE_I18N
+static void
+free_charset (re_charset_t *cset)
+{
+  re_free (cset->mbchars);
+# ifdef _LIBC
+  re_free (cset->coll_syms);
+  re_free (cset->equiv_classes);
+  re_free (cset->range_starts);
+  re_free (cset->range_ends);
+# endif
+  re_free (cset->char_classes);
+  re_free (cset);
+}
+#endif /* RE_ENABLE_I18N */
+\f
+/* Functions for binary tree operation.  */
+
+/* Create a tree node.  */
+
+static bin_tree_t *
+create_tree (re_dfa_t *dfa, bin_tree_t *left, bin_tree_t *right,
+            re_token_type_t type)
+{
+  re_token_t t;
+  t.type = type;
+  return create_token_tree (dfa, left, right, &t);
+}
+
+static bin_tree_t *
+create_token_tree (re_dfa_t *dfa, bin_tree_t *left, bin_tree_t *right,
+                  const re_token_t *token)
+{
+  bin_tree_t *tree;
+  if (BE (dfa->str_tree_storage_idx == BIN_TREE_STORAGE_SIZE, 0))
+    {
+      bin_tree_storage_t *storage = re_malloc (bin_tree_storage_t, 1);
+
+      if (storage == NULL)
+       return NULL;
+      storage->next = dfa->str_tree_storage;
+      dfa->str_tree_storage = storage;
+      dfa->str_tree_storage_idx = 0;
+    }
+  tree = &dfa->str_tree_storage->data[dfa->str_tree_storage_idx++];
+
+  tree->parent = NULL;
+  tree->left = left;
+  tree->right = right;
+  tree->token = *token;
+  tree->token.duplicated = 0;
+  tree->token.opt_subexp = 0;
+  tree->first = NULL;
+  tree->next = NULL;
+  tree->node_idx = -1;
+
+  if (left != NULL)
+    left->parent = tree;
+  if (right != NULL)
+    right->parent = tree;
+  return tree;
+}
+
+/* Mark the tree SRC as an optional subexpression.
+   To be called from preorder or postorder.  */
+
+static reg_errcode_t
+mark_opt_subexp (void *extra, bin_tree_t *node)
+{
+  int idx = (int) (long) extra;
+  if (node->token.type == SUBEXP && node->token.opr.idx == idx)
+    node->token.opt_subexp = 1;
+
+  return REG_NOERROR;
+}
+
+/* Free the allocated memory inside NODE. */
+
+static void
+free_token (re_token_t *node)
+{
+#ifdef RE_ENABLE_I18N
+  if (node->type == COMPLEX_BRACKET && node->duplicated == 0)
+    free_charset (node->opr.mbcset);
+  else
+#endif /* RE_ENABLE_I18N */
+    if (node->type == SIMPLE_BRACKET && node->duplicated == 0)
+      re_free (node->opr.sbcset);
+}
+
+/* Worker function for tree walking.  Free the allocated memory inside NODE
+   and its children. */
+
+static reg_errcode_t
+free_tree (void *extra, bin_tree_t *node)
+{
+  free_token (&node->token);
+  return REG_NOERROR;
+}
+
+
+/* Duplicate the node SRC, and return new node.  This is a preorder
+   visit similar to the one implemented by the generic visitor, but
+   we need more infrastructure to maintain two parallel trees --- so,
+   it's easier to duplicate.  */
+
+static bin_tree_t *
+duplicate_tree (const bin_tree_t *root, re_dfa_t *dfa)
+{
+  const bin_tree_t *node;
+  bin_tree_t *dup_root;
+  bin_tree_t **p_new = &dup_root, *dup_node = root->parent;
+
+  for (node = root; ; )
+    {
+      /* Create a new tree and link it back to the current parent.  */
+      *p_new = create_token_tree (dfa, NULL, NULL, &node->token);
+      if (*p_new == NULL)
+       return NULL;
+      (*p_new)->parent = dup_node;
+      (*p_new)->token.duplicated = 1;
+      dup_node = *p_new;
+
+      /* Go to the left node, or up and to the right.  */
+      if (node->left)
+       {
+         node = node->left;
+         p_new = &dup_node->left;
+       }
+      else
+       {
+         const bin_tree_t *prev = NULL;
+         while (node->right == prev || node->right == NULL)
+           {
+             prev = node;
+             node = node->parent;
+             dup_node = dup_node->parent;
+             if (!node)
+               return dup_root;
+           }
+         node = node->right;
+         p_new = &dup_node->right;
+       }
+    }
+}
index 556d8ab11f40550335066f491d08383557e02a00..3dd8dfa01f2a6ab7a197ecddd481704150253c36 100644 (file)
-/* Extended regular expression matching and search library,
-   version 0.12.
-   (Implements POSIX draft P10003.2/D11.2, except for
-   internationalization features.)
+/* Extended regular expression matching and search library.
+   Copyright (C) 2002, 2003, 2005 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>.
 
-   Copyright (C) 1993 Free Software Foundation, Inc.
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Lesser General Public
+   License as published by the Free Software Foundation; either
+   version 2.1 of the License, or (at your option) any later version.
 
-   This program is free software; you can redistribute it and/or modify
-   it under the terms of the GNU General Public License as published by
-   the Free Software Foundation; either version 2, or (at your option)
-   any later version.
-
-   This program is distributed in the hope that it will be useful,
+   The GNU C Library is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
-   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-   GNU General Public License for more details.
-
-   You should have received a copy of the GNU General Public License
-   along with this program; if not, write to the Free Software
-   Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.  */
-
-/* AIX requires this to be the first thing in the file. */
-#if defined (_AIX) && !defined (REGEX_MALLOC)
-  #pragma alloca
-#endif
-
-#define _GNU_SOURCE
-
-/* We need this for `regex.h', and perhaps for the Emacs include files.  */
-#include <sys/types.h>
-
-/* We used to test for `BSTRING' here, but only GCC and Emacs define
-   `BSTRING', as far as I know, and neither of them use this code.  */
-#include <string.h>
-#ifndef bcmp
-#define bcmp(s1, s2, n)        memcmp ((s1), (s2), (n))
-#endif
-#ifndef bcopy
-#define bcopy(s, d, n) memcpy ((d), (s), (n))
-#endif
-#ifndef bzero
-#define bzero(s, n)    memset ((s), 0, (n))
-#endif
-
-#include <stdlib.h>
-
-
-/* Define the syntax stuff for \<, \>, etc.  */
-
-/* This must be nonzero for the wordchar and notwordchar pattern
-   commands in re_match_2.  */
-#ifndef Sword
-#define Sword 1
-#endif
-
-#ifdef SYNTAX_TABLE
-
-extern char *re_syntax_table;
-
-#else /* not SYNTAX_TABLE */
-
-/* How many characters in the character set.  */
-#define CHAR_SET_SIZE 256
-
-static char re_syntax_table[CHAR_SET_SIZE];
-
-static void
-init_syntax_once ()
-{
-   register int c;
-   static int done = 0;
-
-   if (done)
-     return;
-
-   bzero (re_syntax_table, sizeof re_syntax_table);
-
-   for (c = 'a'; c <= 'z'; c++)
-     re_syntax_table[c] = Sword;
-
-   for (c = 'A'; c <= 'Z'; c++)
-     re_syntax_table[c] = Sword;
-
-   for (c = '0'; c <= '9'; c++)
-     re_syntax_table[c] = Sword;
-
-   re_syntax_table['_'] = Sword;
-
-   done = 1;
-}
-
-#endif /* not SYNTAX_TABLE */
-
-#define SYNTAX(c) re_syntax_table[c]
-
-\f
-/* Get the interface, including the syntax bits.  */
-#include "regex.h"
-
-/* isalpha etc. are used for the character classes.  */
-#include <ctype.h>
-
-#ifndef isascii
-#define isascii(c) 1
-#endif
-
-#ifdef isblank
-#define ISBLANK(c) (isascii (c) && isblank (c))
-#else
-#define ISBLANK(c) ((c) == ' ' || (c) == '\t')
-#endif
-#ifdef isgraph
-#define ISGRAPH(c) (isascii (c) && isgraph (c))
-#else
-#define ISGRAPH(c) (isascii (c) && isprint (c) && !isspace (c))
-#endif
-
-#define ISPRINT(c) (isascii (c) && isprint (c))
-#define ISDIGIT(c) (isascii (c) && isdigit (c))
-#define ISALNUM(c) (isascii (c) && isalnum (c))
-#define ISALPHA(c) (isascii (c) && isalpha (c))
-#define ISCNTRL(c) (isascii (c) && iscntrl (c))
-#define ISLOWER(c) (isascii (c) && islower (c))
-#define ISPUNCT(c) (isascii (c) && ispunct (c))
-#define ISSPACE(c) (isascii (c) && isspace (c))
-#define ISUPPER(c) (isascii (c) && isupper (c))
-#define ISXDIGIT(c) (isascii (c) && isxdigit (c))
-
-#ifndef NULL
-#define NULL 0
-#endif
-
-/* We remove any previous definition of `SIGN_EXTEND_CHAR',
-   since ours (we hope) works properly with all combinations of
-   machines, compilers, `char' and `unsigned char' argument types.
-   (Per Bothner suggested the basic approach.)  */
-#undef SIGN_EXTEND_CHAR
-#if __STDC__
-#define SIGN_EXTEND_CHAR(c) ((signed char) (c))
-#else  /* not __STDC__ */
-/* As in Harbison and Steele.  */
-#define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
-#endif
-\f
-/* Should we use malloc or alloca?  If REGEX_MALLOC is not defined, we
-   use `alloca' instead of `malloc'.  This is because using malloc in
-   re_search* or re_match* could cause memory leaks when C-g is used in
-   Emacs; also, malloc is slower and causes storage fragmentation.  On
-   the other hand, malloc is more portable, and easier to debug.
-
-   Because we sometimes use alloca, some routines have to be macros,
-   not functions -- `alloca'-allocated space disappears at the end of the
-   function it is called in.  */
-
-#ifdef REGEX_MALLOC
-
-#define REGEX_ALLOCATE malloc
-#define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
-
-#else /* not REGEX_MALLOC  */
-
-/* Emacs already defines alloca, sometimes.  */
-#ifndef alloca
-
-/* Make alloca work the best possible way.  */
-#ifdef __GNUC__
-#define alloca __builtin_alloca
-#else /* not __GNUC__ */
-#if HAVE_ALLOCA_H
-#include <alloca.h>
-#else /* not __GNUC__ or HAVE_ALLOCA_H */
-#ifndef _AIX /* Already did AIX, up at the top.  */
-char *alloca ();
-#endif /* not _AIX */
-#endif /* not HAVE_ALLOCA_H */
-#endif /* not __GNUC__ */
-
-#endif /* not alloca */
-
-#define REGEX_ALLOCATE alloca
-
-/* Assumes a `char *destination' variable.  */
-#define REGEX_REALLOCATE(source, osize, nsize)                         \
-  (destination = (char *) alloca (nsize),                              \
-   bcopy (source, destination, osize),                                 \
-   destination)
-
-#endif /* not REGEX_MALLOC */
-
-
-/* True if `size1' is non-NULL and PTR is pointing anywhere inside
-   `string1' or just past its end.  This works if PTR is NULL, which is
-   a good thing.  */
-#define FIRST_STRING_P(ptr)                                    \
-  (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
-
-/* (Re)Allocate N items of type T using malloc, or fail.  */
-#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
-#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
-#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
-
-#define BYTEWIDTH 8 /* In bits.  */
-
-#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
-
-#define MAX(a, b) ((a) > (b) ? (a) : (b))
-#define MIN(a, b) ((a) < (b) ? (a) : (b))
-
-typedef char boolean;
-#define false 0
-#define true 1
-\f
-/* These are the command codes that appear in compiled regular
-   expressions.  Some opcodes are followed by argument bytes.  A
-   command code can specify any interpretation whatsoever for its
-   arguments.  Zero bytes may appear in the compiled regular expression.
-
-   The value of `exactn' is needed in search.c (search_buffer) in Emacs.
-   So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of
-   `exactn' we use here must also be 1.  */
-
-typedef enum
-{
-  no_op = 0,
-
-       /* Followed by one byte giving n, then by n literal bytes.  */
-  exactn = 1,
-
-       /* Matches any (more or less) character.  */
-  anychar,
-
-       /* Matches any one char belonging to specified set.  First
-          following byte is number of bitmap bytes.  Then come bytes
-          for a bitmap saying which chars are in.  Bits in each byte
-          are ordered low-bit-first.  A character is in the set if its
-          bit is 1.  A character too large to have a bit in the map is
-          automatically not in the set.  */
-  charset,
-
-       /* Same parameters as charset, but match any character that is
-          not one of those specified.  */
-  charset_not,
-
-       /* Start remembering the text that is matched, for storing in a
-          register.  Followed by one byte with the register number, in
-          the range 0 to one less than the pattern buffer's re_nsub
-          field.  Then followed by one byte with the number of groups
-          inner to this one.  (This last has to be part of the
-          start_memory only because we need it in the on_failure_jump
-          of re_match_2.)  */
-  start_memory,
-
-       /* Stop remembering the text that is matched and store it in a
-          memory register.  Followed by one byte with the register
-          number, in the range 0 to one less than `re_nsub' in the
-          pattern buffer, and one byte with the number of inner groups,
-          just like `start_memory'.  (We need the number of inner
-          groups here because we don't have any easy way of finding the
-          corresponding start_memory when we're at a stop_memory.)  */
-  stop_memory,
-
-       /* Match a duplicate of something remembered. Followed by one
-          byte containing the register number.  */
-  duplicate,
-
-       /* Fail unless at beginning of line.  */
-  begline,
-
-       /* Fail unless at end of line.  */
-  endline,
-
-       /* Succeeds if at beginning of buffer (if emacs) or at beginning
-          of string to be matched (if not).  */
-  begbuf,
-
-       /* Analogously, for end of buffer/string.  */
-  endbuf,
-
-       /* Followed by two byte relative address to which to jump.  */
-  jump,
-
-       /* Same as jump, but marks the end of an alternative.  */
-  jump_past_alt,
-
-       /* Followed by two-byte relative address of place to resume at
-          in case of failure.  */
-  on_failure_jump,
-
-       /* Like on_failure_jump, but pushes a placeholder instead of the
-          current string position when executed.  */
-  on_failure_keep_string_jump,
-
-       /* Throw away latest failure point and then jump to following
-          two-byte relative address.  */
-  pop_failure_jump,
-
-       /* Change to pop_failure_jump if know won't have to backtrack to
-          match; otherwise change to jump.  This is used to jump
-          back to the beginning of a repeat.  If what follows this jump
-          clearly won't match what the repeat does, such that we can be
-          sure that there is no use backtracking out of repetitions
-          already matched, then we change it to a pop_failure_jump.
-          Followed by two-byte address.  */
-  maybe_pop_jump,
-
-       /* Jump to following two-byte address, and push a dummy failure
-          point. This failure point will be thrown away if an attempt
-          is made to use it for a failure.  A `+' construct makes this
-          before the first repeat.  Also used as an intermediary kind
-          of jump when compiling an alternative.  */
-  dummy_failure_jump,
-
-       /* Push a dummy failure point and continue.  Used at the end of
-          alternatives.  */
-  push_dummy_failure,
-
-       /* Followed by two-byte relative address and two-byte number n.
-          After matching N times, jump to the address upon failure.  */
-  succeed_n,
-
-       /* Followed by two-byte relative address, and two-byte number n.
-          Jump to the address N times, then fail.  */
-  jump_n,
-
-       /* Set the following two-byte relative address to the
-          subsequent two-byte number.  The address *includes* the two
-          bytes of number.  */
-  set_number_at,
-
-  wordchar,    /* Matches any word-constituent character.  */
-  notwordchar, /* Matches any char that is not a word-constituent.  */
-
-  wordbeg,     /* Succeeds if at word beginning.  */
-  wordend,     /* Succeeds if at word end.  */
-
-  wordbound,   /* Succeeds if at a word boundary.  */
-  notwordbound /* Succeeds if not at a word boundary.  */
-
-#ifdef emacs
-  ,before_dot, /* Succeeds if before point.  */
-  at_dot,      /* Succeeds if at point.  */
-  after_dot,   /* Succeeds if after point.  */
-
-       /* Matches any character whose syntax is specified.  Followed by
-          a byte which contains a syntax code, e.g., Sword.  */
-  syntaxspec,
-
-       /* Matches any character whose syntax is not that specified.  */
-  notsyntaxspec
-#endif /* emacs */
-} re_opcode_t;
-\f
-/* Common operations on the compiled pattern.  */
-
-/* Store NUMBER in two contiguous bytes starting at DESTINATION.  */
-
-#define STORE_NUMBER(destination, number)                              \
-  do {                                                                 \
-    (destination)[0] = (number) & 0377;                                        \
-    (destination)[1] = (number) >> 8;                                  \
-  } while (0)
-
-/* Same as STORE_NUMBER, except increment DESTINATION to
-   the byte after where the number is stored.  Therefore, DESTINATION
-   must be an lvalue.  */
-
-#define STORE_NUMBER_AND_INCR(destination, number)                     \
-  do {                                                                 \
-    STORE_NUMBER (destination, number);                                        \
-    (destination) += 2;                                                        \
-  } while (0)
-
-/* Put into DESTINATION a number stored in two contiguous bytes starting
-   at SOURCE.  */
-
-#define EXTRACT_NUMBER(destination, source)                            \
-  do {                                                                 \
-    (destination) = *(source) & 0377;                                  \
-    (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8;          \
-  } while (0)
-
-#ifdef DEBUG
-static void
-extract_number (dest, source)
-    int *dest;
-    unsigned char *source;
-{
-  int temp = SIGN_EXTEND_CHAR (*(source + 1));
-  *dest = *source & 0377;
-  *dest += temp << 8;
-}
-
-#ifndef EXTRACT_MACROS /* To debug the macros.  */
-#undef EXTRACT_NUMBER
-#define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
-#endif /* not EXTRACT_MACROS */
-
-#endif /* DEBUG */
-
-/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
-   SOURCE must be an lvalue.  */
-
-#define EXTRACT_NUMBER_AND_INCR(destination, source)                   \
-  do {                                                                 \
-    EXTRACT_NUMBER (destination, source);                              \
-    (source) += 2;                                                     \
-  } while (0)
-
-#ifdef DEBUG
-static void
-extract_number_and_incr (destination, source)
-    int *destination;
-    unsigned char **source;
-{
-  extract_number (destination, *source);
-  *source += 2;
-}
-
-#ifndef EXTRACT_MACROS
-#undef EXTRACT_NUMBER_AND_INCR
-#define EXTRACT_NUMBER_AND_INCR(dest, src) \
-  extract_number_and_incr (&dest, &src)
-#endif /* not EXTRACT_MACROS */
-
-#endif /* DEBUG */
-\f
-/* If DEBUG is defined, Regex prints many voluminous messages about what
-   it is doing (if the variable `debug' is nonzero).  If linked with the
-   main program in `iregex.c', you can enter patterns and strings
-   interactively.  And if linked with the main program in `main.c' and
-   the other test files, you can run the already-written tests.  */
-
-#ifdef DEBUG
-
-/* We use standard I/O for debugging.  */
-#include <stdio.h>
-
-/* It is useful to test things that ``must'' be true when debugging.  */
-#include <assert.h>
-
-static int debug = 0;
-
-#define DEBUG_STATEMENT(e) e
-#define DEBUG_PRINT1(x) if (debug) printf (x)
-#define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
-#define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
-#define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
-#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)                          \
-  if (debug) print_partial_compiled_pattern (s, e)
-#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)                 \
-  if (debug) print_double_string (w, s1, sz1, s2, sz2)
-
-
-extern void printchar ();
-
-/* Print the fastmap in human-readable form.  */
-
-void
-print_fastmap (fastmap)
-    char *fastmap;
-{
-  unsigned was_a_range = 0;
-  unsigned i = 0;
-
-  while (i < (1 << BYTEWIDTH))
-    {
-      if (fastmap[i++])
-       {
-         was_a_range = 0;
-         printchar (i - 1);
-         while (i < (1 << BYTEWIDTH)  &&  fastmap[i])
-           {
-             was_a_range = 1;
-             i++;
-           }
-         if (was_a_range)
-           {
-             printf ("-");
-             printchar (i - 1);
-           }
-       }
-    }
-  putchar ('\n');
-}
-
-
-/* Print a compiled pattern string in human-readable form, starting at
-   the START pointer into it and ending just before the pointer END.  */
-
-void
-print_partial_compiled_pattern (start, end)
-    unsigned char *start;
-    unsigned char *end;
-{
-  int mcnt, mcnt2;
-  unsigned char *p = start;
-  unsigned char *pend = end;
-
-  if (start == NULL)
-    {
-      printf ("(null)\n");
-      return;
-    }
-
-  /* Loop over pattern commands.  */
-  while (p < pend)
-    {
-      switch ((re_opcode_t) *p++)
-       {
-       case no_op:
-         printf ("/no_op");
-         break;
-
-       case exactn:
-         mcnt = *p++;
-         printf ("/exactn/%d", mcnt);
-         do
-           {
-             putchar ('/');
-             printchar (*p++);
-           }
-         while (--mcnt);
-         break;
-
-       case start_memory:
-         mcnt = *p++;
-         printf ("/start_memory/%d/%d", mcnt, *p++);
-         break;
-
-       case stop_memory:
-         mcnt = *p++;
-         printf ("/stop_memory/%d/%d", mcnt, *p++);
-         break;
-
-       case duplicate:
-         printf ("/duplicate/%d", *p++);
-         break;
-
-       case anychar:
-         printf ("/anychar");
-         break;
-
-       case charset:
-       case charset_not:
-         {
-           register int c;
-
-           printf ("/charset%s",
-                   (re_opcode_t) *(p - 1) == charset_not ? "_not" : "");
-
-           assert (p + *p < pend);
-
-           for (c = 0; c < *p; c++)
-             {
-               unsigned bit;
-               unsigned char map_byte = p[1 + c];
-
-               putchar ('/');
-
-               for (bit = 0; bit < BYTEWIDTH; bit++)
-                 if (map_byte & (1 << bit))
-                   printchar (c * BYTEWIDTH + bit);
-             }
-           p += 1 + *p;
-           break;
-         }
-
-       case begline:
-         printf ("/begline");
-         break;
-
-       case endline:
-         printf ("/endline");
-         break;
-
-       case on_failure_jump:
-         extract_number_and_incr (&mcnt, &p);
-         printf ("/on_failure_jump/0/%d", mcnt);
-         break;
-
-       case on_failure_keep_string_jump:
-         extract_number_and_incr (&mcnt, &p);
-         printf ("/on_failure_keep_string_jump/0/%d", mcnt);
-         break;
-
-       case dummy_failure_jump:
-         extract_number_and_incr (&mcnt, &p);
-         printf ("/dummy_failure_jump/0/%d", mcnt);
-         break;
-
-       case push_dummy_failure:
-         printf ("/push_dummy_failure");
-         break;
-
-       case maybe_pop_jump:
-         extract_number_and_incr (&mcnt, &p);
-         printf ("/maybe_pop_jump/0/%d", mcnt);
-         break;
-
-       case pop_failure_jump:
-         extract_number_and_incr (&mcnt, &p);
-         printf ("/pop_failure_jump/0/%d", mcnt);
-         break;
-
-       case jump_past_alt:
-         extract_number_and_incr (&mcnt, &p);
-         printf ("/jump_past_alt/0/%d", mcnt);
-         break;
-
-       case jump:
-         extract_number_and_incr (&mcnt, &p);
-         printf ("/jump/0/%d", mcnt);
-         break;
-
-       case succeed_n:
-         extract_number_and_incr (&mcnt, &p);
-         extract_number_and_incr (&mcnt2, &p);
-         printf ("/succeed_n/0/%d/0/%d", mcnt, mcnt2);
-         break;
-
-       case jump_n:
-         extract_number_and_incr (&mcnt, &p);
-         extract_number_and_incr (&mcnt2, &p);
-         printf ("/jump_n/0/%d/0/%d", mcnt, mcnt2);
-         break;
-
-       case set_number_at:
-         extract_number_and_incr (&mcnt, &p);
-         extract_number_and_incr (&mcnt2, &p);
-         printf ("/set_number_at/0/%d/0/%d", mcnt, mcnt2);
-         break;
-
-       case wordbound:
-         printf ("/wordbound");
-         break;
-
-       case notwordbound:
-         printf ("/notwordbound");
-         break;
-
-       case wordbeg:
-         printf ("/wordbeg");
-         break;
-
-       case wordend:
-         printf ("/wordend");
-
-#ifdef emacs
-       case before_dot:
-         printf ("/before_dot");
-         break;
-
-       case at_dot:
-         printf ("/at_dot");
-         break;
-
-       case after_dot:
-         printf ("/after_dot");
-         break;
-
-       case syntaxspec:
-         printf ("/syntaxspec");
-         mcnt = *p++;
-         printf ("/%d", mcnt);
-         break;
-
-       case notsyntaxspec:
-         printf ("/notsyntaxspec");
-         mcnt = *p++;
-         printf ("/%d", mcnt);
-         break;
-#endif /* emacs */
-
-       case wordchar:
-         printf ("/wordchar");
-         break;
-
-       case notwordchar:
-         printf ("/notwordchar");
-         break;
-
-       case begbuf:
-         printf ("/begbuf");
-         break;
-
-       case endbuf:
-         printf ("/endbuf");
-         break;
-
-       default:
-         printf ("?%d", *(p-1));
-       }
-    }
-  printf ("/\n");
-}
-
-
-void
-print_compiled_pattern (bufp)
-    struct re_pattern_buffer *bufp;
-{
-  unsigned char *buffer = bufp->buffer;
-
-  print_partial_compiled_pattern (buffer, buffer + bufp->used);
-  printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
-
-  if (bufp->fastmap_accurate && bufp->fastmap)
-    {
-      printf ("fastmap: ");
-      print_fastmap (bufp->fastmap);
-    }
-
-  printf ("re_nsub: %d\t", bufp->re_nsub);
-  printf ("regs_alloc: %d\t", bufp->regs_allocated);
-  printf ("can_be_null: %d\t", bufp->can_be_null);
-  printf ("newline_anchor: %d\n", bufp->newline_anchor);
-  printf ("no_sub: %d\t", bufp->no_sub);
-  printf ("not_bol: %d\t", bufp->not_bol);
-  printf ("not_eol: %d\t", bufp->not_eol);
-  printf ("syntax: %d\n", bufp->syntax);
-  /* Perhaps we should print the translate table?  */
-}
-
-
-void
-print_double_string (where, string1, size1, string2, size2)
-    const char *where;
-    const char *string1;
-    const char *string2;
-    int size1;
-    int size2;
-{
-  unsigned this_char;
-
-  if (where == NULL)
-    printf ("(null)");
-  else
-    {
-      if (FIRST_STRING_P (where))
-       {
-         for (this_char = where - string1; this_char < size1; this_char++)
-           printchar (string1[this_char]);
-
-         where = string2;
-       }
-
-      for (this_char = where - string2; this_char < size2; this_char++)
-       printchar (string2[this_char]);
-    }
-}
-
-#else /* not DEBUG */
-
-#undef assert
-#define assert(e)
-
-#define DEBUG_STATEMENT(e)
-#define DEBUG_PRINT1(x)
-#define DEBUG_PRINT2(x1, x2)
-#define DEBUG_PRINT3(x1, x2, x3)
-#define DEBUG_PRINT4(x1, x2, x3, x4)
-#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
-#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
-
-#endif /* not DEBUG */
-\f
-/* Set by `re_set_syntax' to the current regexp syntax to recognize.  Can
-   also be assigned to arbitrarily: each pattern buffer stores its own
-   syntax, so it can be changed between regex compilations.  */
-reg_syntax_t re_syntax_options = RE_SYNTAX_EMACS;
-
-
-/* Specify the precise syntax of regexps for compilation.  This provides
-   for compatibility for various utilities which historically have
-   different, incompatible syntaxes.
-
-   The argument SYNTAX is a bit mask comprised of the various bits
-   defined in regex.h.  We return the old syntax.  */
-
-reg_syntax_t
-re_set_syntax (syntax)
-    reg_syntax_t syntax;
-{
-  reg_syntax_t ret = re_syntax_options;
-
-  re_syntax_options = syntax;
-  return ret;
-}
-\f
-/* This table gives an error message for each of the error codes listed
-   in regex.h.  Obviously the order here has to be same as there.  */
-
-static const char *re_error_msg[] =
-  { NULL,                                      /* REG_NOERROR */
-    "No match",                                        /* REG_NOMATCH */
-    "Invalid regular expression",              /* REG_BADPAT */
-    "Invalid collation character",             /* REG_ECOLLATE */
-    "Invalid character class name",            /* REG_ECTYPE */
-    "Trailing backslash",                      /* REG_EESCAPE */
-    "Invalid back reference",                  /* REG_ESUBREG */
-    "Unmatched [ or [^",                       /* REG_EBRACK */
-    "Unmatched ( or \\(",                      /* REG_EPAREN */
-    "Unmatched \\{",                           /* REG_EBRACE */
-    "Invalid content of \\{\\}",               /* REG_BADBR */
-    "Invalid range end",                       /* REG_ERANGE */
-    "Memory exhausted",                                /* REG_ESPACE */
-    "Invalid preceding regular expression",    /* REG_BADRPT */
-    "Premature end of regular expression",     /* REG_EEND */
-    "Regular expression too big",              /* REG_ESIZE */
-    "Unmatched ) or \\)",                      /* REG_ERPAREN */
-  };
-\f
-/* Subroutine declarations and macros for regex_compile.  */
-
-static void store_op1 (), store_op2 ();
-static void insert_op1 (), insert_op2 ();
-static boolean at_begline_loc_p (), at_endline_loc_p ();
-static boolean group_in_compile_stack ();
-static reg_errcode_t compile_range ();
-
-/* Fetch the next character in the uncompiled pattern---translating it
-   if necessary.  Also cast from a signed character in the constant
-   string passed to us by the user to an unsigned char that we can use
-   as an array index (in, e.g., `translate').  */
-#define PATFETCH(c)                                                    \
-  do {if (p == pend) return REG_EEND;                                  \
-    c = (unsigned char) *p++;                                          \
-    if (translate) c = translate[c];                                   \
-  } while (0)
-
-/* Fetch the next character in the uncompiled pattern, with no
-   translation.  */
-#define PATFETCH_RAW(c)                                                        \
-  do {if (p == pend) return REG_EEND;                                  \
-    c = (unsigned char) *p++;                                          \
-  } while (0)
-
-/* Go backwards one character in the pattern.  */
-#define PATUNFETCH p--
-
-
-/* If `translate' is non-null, return translate[D], else just D.  We
-   cast the subscript to translate because some data is declared as
-   `char *', to avoid warnings when a string constant is passed.  But
-   when we use a character as a subscript we must make it unsigned.  */
-#define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d))
-
-
-/* Macros for outputting the compiled pattern into `buffer'.  */
-
-/* If the buffer isn't allocated when it comes in, use this.  */
-#define INIT_BUF_SIZE  32
-
-/* Make sure we have at least N more bytes of space in buffer.  */
-#define GET_BUFFER_SPACE(n)                                            \
-    while (b - bufp->buffer + (n) > bufp->allocated)                   \
-      EXTEND_BUFFER ()
-
-/* Make sure we have one more byte of buffer space and then add C to it.  */
-#define BUF_PUSH(c)                                                    \
-  do {                                                                 \
-    GET_BUFFER_SPACE (1);                                              \
-    *b++ = (unsigned char) (c);                                                \
-  } while (0)
-
-
-/* Ensure we have two more bytes of buffer space and then append C1 and C2.  */
-#define BUF_PUSH_2(c1, c2)                                             \
-  do {                                                                 \
-    GET_BUFFER_SPACE (2);                                              \
-    *b++ = (unsigned char) (c1);                                       \
-    *b++ = (unsigned char) (c2);                                       \
-  } while (0)
-
-
-/* As with BUF_PUSH_2, except for three bytes.  */
-#define BUF_PUSH_3(c1, c2, c3)                                         \
-  do {                                                                 \
-    GET_BUFFER_SPACE (3);                                              \
-    *b++ = (unsigned char) (c1);                                       \
-    *b++ = (unsigned char) (c2);                                       \
-    *b++ = (unsigned char) (c3);                                       \
-  } while (0)
-
-
-/* Store a jump with opcode OP at LOC to location TO.  We store a
-   relative address offset by the three bytes the jump itself occupies.  */
-#define STORE_JUMP(op, loc, to) \
-  store_op1 (op, loc, (to) - (loc) - 3)
-
-/* Likewise, for a two-argument jump.  */
-#define STORE_JUMP2(op, loc, to, arg) \
-  store_op2 (op, loc, (to) - (loc) - 3, arg)
-
-/* Like `STORE_JUMP', but for inserting.  Assume `b' is the buffer end.  */
-#define INSERT_JUMP(op, loc, to) \
-  insert_op1 (op, loc, (to) - (loc) - 3, b)
-
-/* Like `STORE_JUMP2', but for inserting.  Assume `b' is the buffer end.  */
-#define INSERT_JUMP2(op, loc, to, arg) \
-  insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
-
-
-/* This is not an arbitrary limit: the arguments which represent offsets
-   into the pattern are two bytes long.  So if 2^16 bytes turns out to
-   be too small, many things would have to change.  */
-#define MAX_BUF_SIZE (1L << 16)
-
-
-/* Extend the buffer by twice its current size via realloc and
-   reset the pointers that pointed into the old block to point to the
-   correct places in the new one.  If extending the buffer results in it
-   being larger than MAX_BUF_SIZE, then flag memory exhausted.  */
-#define EXTEND_BUFFER()                                                        \
-  do {                                                                         \
-    unsigned char *old_buffer = bufp->buffer;                          \
-    if (bufp->allocated == MAX_BUF_SIZE)                               \
-      return REG_ESIZE;                                                        \
-    bufp->allocated <<= 1;                                             \
-    if (bufp->allocated > MAX_BUF_SIZE)                                        \
-      bufp->allocated = MAX_BUF_SIZE;                                  \
-    bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
-    if (bufp->buffer == NULL)                                          \
-      return REG_ESPACE;                                               \
-    /* If the buffer moved, move all the pointers into it.  */         \
-    if (old_buffer != bufp->buffer)                                    \
-      {                                                                        \
-       b = (b - old_buffer) + bufp->buffer;                            \
-       begalt = (begalt - old_buffer) + bufp->buffer;                  \
-       if (fixup_alt_jump)                                             \
-         fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
-       if (laststart)                                                  \
-         laststart = (laststart - old_buffer) + bufp->buffer;          \
-       if (pending_exact)                                              \
-         pending_exact = (pending_exact - old_buffer) + bufp->buffer;  \
-      }                                                                        \
-  } while (0)
-
-
-/* Since we have one byte reserved for the register number argument to
-   {start,stop}_memory, the maximum number of groups we can report
-   things about is what fits in that byte.  */
-#define MAX_REGNUM 255
-
-/* But patterns can have more than `MAX_REGNUM' registers.  We just
-   ignore the excess.  */
-typedef unsigned regnum_t;
-
-
-/* Macros for the compile stack.  */
-
-/* Since offsets can go either forwards or backwards, this type needs to
-   be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1.  */
-typedef int pattern_offset_t;
-
-typedef struct
-{
-  pattern_offset_t begalt_offset;
-  pattern_offset_t fixup_alt_jump;
-  pattern_offset_t inner_group_offset;
-  pattern_offset_t laststart_offset;
-  regnum_t regnum;
-} compile_stack_elt_t;
-
-
-typedef struct
-{
-  compile_stack_elt_t *stack;
-  unsigned size;
-  unsigned avail;                      /* Offset of next open position.  */
-} compile_stack_type;
-
-
-#define INIT_COMPILE_STACK_SIZE 32
-
-#define COMPILE_STACK_EMPTY  (compile_stack.avail == 0)
-#define COMPILE_STACK_FULL  (compile_stack.avail == compile_stack.size)
-
-/* The next available element.  */
-#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
-
-
-/* Set the bit for character C in a list.  */
-#define SET_LIST_BIT(c)                               \
-  (b[((unsigned char) (c)) / BYTEWIDTH]               \
-   |= 1 << (((unsigned char) c) % BYTEWIDTH))
-
-
-/* Get the next unsigned number in the uncompiled pattern.  */
-#define GET_UNSIGNED_NUMBER(num)                                       \
-  { if (p != pend)                                                     \
-     {                                                                 \
-       PATFETCH (c);                                                   \
-       while (ISDIGIT (c))                                             \
-        {                                                              \
-          if (num < 0)                                                 \
-             num = 0;                                                  \
-          num = num * 10 + c - '0';                                    \
-          if (p == pend)                                               \
-             break;                                                    \
-          PATFETCH (c);                                                \
-        }                                                              \
-       }                                                               \
-    }
-
-#define CHAR_CLASS_MAX_LENGTH  6 /* Namely, `xdigit'.  */
-
-#define IS_CHAR_CLASS(string)                                          \
-   (STREQ (string, "alpha") || STREQ (string, "upper")                 \
-    || STREQ (string, "lower") || STREQ (string, "digit")              \
-    || STREQ (string, "alnum") || STREQ (string, "xdigit")             \
-    || STREQ (string, "space") || STREQ (string, "print")              \
-    || STREQ (string, "punct") || STREQ (string, "graph")              \
-    || STREQ (string, "cntrl") || STREQ (string, "blank"))
-\f
-/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
-   Returns one of error codes defined in `regex.h', or zero for success.
-
-   Assumes the `allocated' (and perhaps `buffer') and `translate'
-   fields are set in BUFP on entry.
-
-   If it succeeds, results are put in BUFP (if it returns an error, the
-   contents of BUFP are undefined):
-     `buffer' is the compiled pattern;
-     `syntax' is set to SYNTAX;
-     `used' is set to the length of the compiled pattern;
-     `fastmap_accurate' is zero;
-     `re_nsub' is the number of subexpressions in PATTERN;
-     `not_bol' and `not_eol' are zero;
-
-   The `fastmap' and `newline_anchor' fields are neither
-   examined nor set.  */
-
-static reg_errcode_t
-regex_compile (pattern, size, syntax, bufp)
-     const char *pattern;
-     int size;
-     reg_syntax_t syntax;
-     struct re_pattern_buffer *bufp;
-{
-  /* We fetch characters from PATTERN here.  Even though PATTERN is
-     `char *' (i.e., signed), we declare these variables as unsigned, so
-     they can be reliably used as array indices.  */
-  register unsigned char c, c1;
-
-  /* A random temporary spot in PATTERN.  */
-  const char *p1;
-
-  /* Points to the end of the buffer, where we should append.  */
-  register unsigned char *b;
-
-  /* Keeps track of unclosed groups.  */
-  compile_stack_type compile_stack;
-
-  /* Points to the current (ending) position in the pattern.  */
-  const char *p = pattern;
-  const char *pend = pattern + size;
-
-  /* How to translate the characters in the pattern.  */
-  char *translate = bufp->translate;
-
-  /* Address of the count-byte of the most recently inserted `exactn'
-     command.  This makes it possible to tell if a new exact-match
-     character can be added to that command or if the character requires
-     a new `exactn' command.  */
-  unsigned char *pending_exact = 0;
-
-  /* Address of start of the most recently finished expression.
-     This tells, e.g., postfix * where to find the start of its
-     operand.  Reset at the beginning of groups and alternatives.  */
-  unsigned char *laststart = 0;
-
-  /* Address of beginning of regexp, or inside of last group.  */
-  unsigned char *begalt;
-
-  /* Place in the uncompiled pattern (i.e., the {) to
-     which to go back if the interval is invalid.  */
-  const char *beg_interval;
-
-  /* Address of the place where a forward jump should go to the end of
-     the containing expression.  Each alternative of an `or' -- except the
-     last -- ends with a forward jump of this sort.  */
-  unsigned char *fixup_alt_jump = 0;
-
-  /* Counts open-groups as they are encountered.  Remembered for the
-     matching close-group on the compile stack, so the same register
-     number is put in the stop_memory as the start_memory.  */
-  regnum_t regnum = 0;
-
-#ifdef DEBUG
-  DEBUG_PRINT1 ("\nCompiling pattern: ");
-  if (debug)
-    {
-      unsigned debug_count;
-
-      for (debug_count = 0; debug_count < size; debug_count++)
-       printchar (pattern[debug_count]);
-      putchar ('\n');
-    }
-#endif /* DEBUG */
-
-  /* Initialize the compile stack.  */
-  compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
-  if (compile_stack.stack == NULL)
-    return REG_ESPACE;
-
-  compile_stack.size = INIT_COMPILE_STACK_SIZE;
-  compile_stack.avail = 0;
-
-  /* Initialize the pattern buffer.  */
-  bufp->syntax = syntax;
-  bufp->fastmap_accurate = 0;
-  bufp->not_bol = bufp->not_eol = 0;
-
-  /* Set `used' to zero, so that if we return an error, the pattern
-     printer (for debugging) will think there's no pattern.  We reset it
-     at the end.  */
-  bufp->used = 0;
-
-  /* Always count groups, whether or not bufp->no_sub is set.  */
-  bufp->re_nsub = 0;
-
-#if !defined (emacs) && !defined (SYNTAX_TABLE)
-  /* Initialize the syntax table.  */
-   init_syntax_once ();
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Lesser General Public License for more details.
+
+   You should have received a copy of the GNU Lesser General Public
+   License along with the GNU C Library; if not, write to the Free
+   Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+   02110-1301 USA.  */
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+/* Make sure noone compiles this code with a C++ compiler.  */
+#ifdef __cplusplus
+# error "This is C code, use a C compiler"
+#endif
+
+#ifdef _LIBC
+/* We have to keep the namespace clean.  */
+# define regfree(preg) __regfree (preg)
+# define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
+# define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
+# define regerror(errcode, preg, errbuf, errbuf_size) \
+       __regerror(errcode, preg, errbuf, errbuf_size)
+# define re_set_registers(bu, re, nu, st, en) \
+       __re_set_registers (bu, re, nu, st, en)
+# define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
+       __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
+# define re_match(bufp, string, size, pos, regs) \
+       __re_match (bufp, string, size, pos, regs)
+# define re_search(bufp, string, size, startpos, range, regs) \
+       __re_search (bufp, string, size, startpos, range, regs)
+# define re_compile_pattern(pattern, length, bufp) \
+       __re_compile_pattern (pattern, length, bufp)
+# define re_set_syntax(syntax) __re_set_syntax (syntax)
+# define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
+       __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
+# define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
+
+# include "../locale/localeinfo.h"
+#endif
+
+#if defined (_MSC_VER)
+#include <stdio.h> /* for size_t */
+#endif
+
+/* On some systems, limits.h sets RE_DUP_MAX to a lower value than
+   GNU regex allows.  Include it before <regex.h>, which correctly
+   #undefs RE_DUP_MAX and sets it to the right value.  */
+#include <limits.h>
+
+#ifdef GAWK
+#undef alloca
+#define alloca alloca_is_bad_you_should_never_use_it
+#endif
+#include <regex.h>
+#include "regex_internal.h"
+
+#include "regex_internal.c"
+#ifdef GAWK
+#define bool int
+#define true (1)
+#define false (0)
+#endif
+#include "regcomp.c"
+#include "regexec.c"
+
+/* Binary backward compatibility.  */
+#if _LIBC
+# include <shlib-compat.h>
+# if SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_3)
+link_warning (re_max_failures, "the 're_max_failures' variable is obsolete and will go away.")
+int re_max_failures = 2000;
+# endif
 #endif
-
-  if (bufp->allocated == 0)
-    {
-      if (bufp->buffer)
-       { /* If zero allocated, but buffer is non-null, try to realloc
-            enough space.  This loses if buffer's address is bogus, but
-            that is the user's responsibility.  */
-         RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
-       }
-      else
-       { /* Caller did not allocate a buffer.  Do it for them.  */
-         bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
-       }
-      if (!bufp->buffer) return REG_ESPACE;
-
-      bufp->allocated = INIT_BUF_SIZE;
-    }
-
-  begalt = b = bufp->buffer;
-
-  /* Loop through the uncompiled pattern until we're at the end.  */
-  while (p != pend)
-    {
-      PATFETCH (c);
-
-      switch (c)
-       {
-       case '^':
-         {
-           if (   /* If at start of pattern, it's an operator.  */
-                  p == pattern + 1
-                  /* If context independent, it's an operator.  */
-               || syntax & RE_CONTEXT_INDEP_ANCHORS
-                  /* Otherwise, depends on what's come before.  */
-               || at_begline_loc_p (pattern, p, syntax))
-             BUF_PUSH (begline);
-           else
-             goto normal_char;
-         }
-         break;
-
-
-       case '$':
-         {
-           if (   /* If at end of pattern, it's an operator.  */
-                  p == pend
-                  /* If context independent, it's an operator.  */
-               || syntax & RE_CONTEXT_INDEP_ANCHORS
-                  /* Otherwise, depends on what's next.  */
-               || at_endline_loc_p (p, pend, syntax))
-              BUF_PUSH (endline);
-            else
-              goto normal_char;
-          }
-          break;
-
-
-       case '+':
-       case '?':
-         if ((syntax & RE_BK_PLUS_QM)
-             || (syntax & RE_LIMITED_OPS))
-           goto normal_char;
-       handle_plus:
-       case '*':
-         /* If there is no previous pattern... */
-         if (!laststart)
-           {
-             if (syntax & RE_CONTEXT_INVALID_OPS)
-               return REG_BADRPT;
-             else if (!(syntax & RE_CONTEXT_INDEP_OPS))
-               goto normal_char;
-           }
-
-         {
-           /* Are we optimizing this jump?  */
-           boolean keep_string_p = false;
-
-           /* 1 means zero (many) matches is allowed.  */
-           char zero_times_ok = 0, many_times_ok = 0;
-
-           /* If there is a sequence of repetition chars, collapse it
-              down to just one (the right one).  We can't combine
-              interval operators with these because of, e.g., `a{2}*',
-              which should only match an even number of `a's.  */
-
-           for (;;)
-             {
-               zero_times_ok |= c != '+';
-               many_times_ok |= c != '?';
-
-               if (p == pend)
-                 break;
-
-               PATFETCH (c);
-
-               if (c == '*'
-                   || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
-                 ;
-
-               else if (syntax & RE_BK_PLUS_QM  &&  c == '\\')
-                 {
-                   if (p == pend) return REG_EESCAPE;
-
-                   PATFETCH (c1);
-                   if (!(c1 == '+' || c1 == '?'))
-                     {
-                       PATUNFETCH;
-                       PATUNFETCH;
-                       break;
-                     }
-
-                   c = c1;
-                 }
-               else
-                 {
-                   PATUNFETCH;
-                   break;
-                 }
-
-               /* If we get here, we found another repeat character.  */
-              }
-
-           /* Star, etc. applied to an empty pattern is equivalent
-              to an empty pattern.  */
-           if (!laststart)
-             break;
-
-           /* Now we know whether or not zero matches is allowed
-              and also whether or not two or more matches is allowed.  */
-           if (many_times_ok)
-             { /* More than one repetition is allowed, so put in at the
-                  end a backward relative jump from `b' to before the next
-                  jump we're going to put in below (which jumps from
-                  laststart to after this jump).
-
-                  But if we are at the `*' in the exact sequence `.*\n',
-                  insert an unconditional jump backwards to the .,
-                  instead of the beginning of the loop.  This way we only
-                  push a failure point once, instead of every time
-                  through the loop.  */
-               assert (p - 1 > pattern);
-
-               /* Allocate the space for the jump.  */
-               GET_BUFFER_SPACE (3);
-
-               /* We know we are not at the first character of the pattern,
-                  because laststart was nonzero.  And we've already
-                  incremented `p', by the way, to be the character after
-                  the `*'.  Do we have to do something analogous here
-                  for null bytes, because of RE_DOT_NOT_NULL?  */
-               if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
-                   && zero_times_ok
-                   && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
-                   && !(syntax & RE_DOT_NEWLINE))
-                 { /* We have .*\n.  */
-                   STORE_JUMP (jump, b, laststart);
-                   keep_string_p = true;
-                 }
-               else
-                 /* Anything else.  */
-                 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
-
-               /* We've added more stuff to the buffer.  */
-               b += 3;
-             }
-
-           /* On failure, jump from laststart to b + 3, which will be the
-              end of the buffer after this jump is inserted.  */
-           GET_BUFFER_SPACE (3);
-           INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
-                                      : on_failure_jump,
-                        laststart, b + 3);
-           pending_exact = 0;
-           b += 3;
-
-           if (!zero_times_ok)
-             {
-               /* At least one repetition is required, so insert a
-                  `dummy_failure_jump' before the initial
-                  `on_failure_jump' instruction of the loop. This
-                  effects a skip over that instruction the first time
-                  we hit that loop.  */
-               GET_BUFFER_SPACE (3);
-               INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
-               b += 3;
-             }
-           }
-         break;
-
-
-       case '.':
-         laststart = b;
-         BUF_PUSH (anychar);
-         break;
-
-
-       case '[':
-         {
-           boolean had_char_class = false;
-
-           if (p == pend) return REG_EBRACK;
-
-           /* Ensure that we have enough space to push a charset: the
-              opcode, the length count, and the bitset; 34 bytes in all.  */
-           GET_BUFFER_SPACE (34);
-
-           laststart = b;
-
-           /* We test `*p == '^' twice, instead of using an if
-              statement, so we only need one BUF_PUSH.  */
-           BUF_PUSH (*p == '^' ? charset_not : charset);
-           if (*p == '^')
-             p++;
-
-           /* Remember the first position in the bracket expression.  */
-           p1 = p;
-
-           /* Push the number of bytes in the bitmap.  */
-           BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
-
-           /* Clear the whole map.  */
-           bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
-
-           /* charset_not matches newline according to a syntax bit.  */
-           if ((re_opcode_t) b[-2] == charset_not
-               && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
-             SET_LIST_BIT ('\n');
-
-           /* Read in characters and ranges, setting map bits.  */
-           for (;;)
-             {
-               if (p == pend) return REG_EBRACK;
-
-               PATFETCH (c);
-
-               /* \ might escape characters inside [...] and [^...].  */
-               if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
-                 {
-                   if (p == pend) return REG_EESCAPE;
-
-                   PATFETCH (c1);
-                   SET_LIST_BIT (c1);
-                   continue;
-                 }
-
-               /* Could be the end of the bracket expression.  If it's
-                  not (i.e., when the bracket expression is `[]' so
-                  far), the ']' character bit gets set way below.  */
-               if (c == ']' && p != p1 + 1)
-                 break;
-
-               /* Look ahead to see if it's a range when the last thing
-                  was a character class.  */
-               if (had_char_class && c == '-' && *p != ']')
-                 return REG_ERANGE;
-
-               /* Look ahead to see if it's a range when the last thing
-                  was a character: if this is a hyphen not at the
-                  beginning or the end of a list, then it's the range
-                  operator.  */
-               if (c == '-'
-                   && !(p - 2 >= pattern && p[-2] == '[')
-                   && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
-                   && *p != ']')
-                 {
-                   reg_errcode_t ret
-                     = compile_range (&p, pend, translate, syntax, b);
-                   if (ret != REG_NOERROR) return ret;
-                 }
-
-               else if (p[0] == '-' && p[1] != ']')
-                 { /* This handles ranges made up of characters only.  */
-                   reg_errcode_t ret;
-
-                   /* Move past the `-'.  */
-                   PATFETCH (c1);
-
-                   ret = compile_range (&p, pend, translate, syntax, b);
-                   if (ret != REG_NOERROR) return ret;
-                 }
-
-               /* See if we're at the beginning of a possible character
-                  class.  */
-
-               else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
-                 { /* Leave room for the null.  */
-                   char str[CHAR_CLASS_MAX_LENGTH + 1];
-
-                   PATFETCH (c);
-                   c1 = 0;
-
-                   /* If pattern is `[[:'.  */
-                   if (p == pend) return REG_EBRACK;
-
-                   for (;;)
-                     {
-                       PATFETCH (c);
-                       if (c == ':' || c == ']' || p == pend
-                           || c1 == CHAR_CLASS_MAX_LENGTH)
-                         break;
-                       str[c1++] = c;
-                     }
-                   str[c1] = '\0';
-
-                   /* If isn't a word bracketed by `[:' and:`]':
-                      undo the ending character, the letters, and leave
-                      the leading `:' and `[' (but set bits for them).  */
-                   if (c == ':' && *p == ']')
-                     {
-                       int ch;
-                       boolean is_alnum = STREQ (str, "alnum");
-                       boolean is_alpha = STREQ (str, "alpha");
-                       boolean is_blank = STREQ (str, "blank");
-                       boolean is_cntrl = STREQ (str, "cntrl");
-                       boolean is_digit = STREQ (str, "digit");
-                       boolean is_graph = STREQ (str, "graph");
-                       boolean is_lower = STREQ (str, "lower");
-                       boolean is_print = STREQ (str, "print");
-                       boolean is_punct = STREQ (str, "punct");
-                       boolean is_space = STREQ (str, "space");
-                       boolean is_upper = STREQ (str, "upper");
-                       boolean is_xdigit = STREQ (str, "xdigit");
-
-                       if (!IS_CHAR_CLASS (str)) return REG_ECTYPE;
-
-                       /* Throw away the ] at the end of the character
-                          class.  */
-                       PATFETCH (c);
-
-                       if (p == pend) return REG_EBRACK;
-
-                       for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
-                         {
-                           if (   (is_alnum  && ISALNUM (ch))
-                               || (is_alpha  && ISALPHA (ch))
-                               || (is_blank  && ISBLANK (ch))
-                               || (is_cntrl  && ISCNTRL (ch))
-                               || (is_digit  && ISDIGIT (ch))
-                               || (is_graph  && ISGRAPH (ch))
-                               || (is_lower  && ISLOWER (ch))
-                               || (is_print  && ISPRINT (ch))
-                               || (is_punct  && ISPUNCT (ch))
-                               || (is_space  && ISSPACE (ch))
-                               || (is_upper  && ISUPPER (ch))
-                               || (is_xdigit && ISXDIGIT (ch)))
-                           SET_LIST_BIT (ch);
-                         }
-                       had_char_class = true;
-                     }
-                   else
-                     {
-                       c1++;
-                       while (c1--)
-                         PATUNFETCH;
-                       SET_LIST_BIT ('[');
-                       SET_LIST_BIT (':');
-                       had_char_class = false;
-                     }
-                 }
-               else
-                 {
-                   had_char_class = false;
-                   SET_LIST_BIT (c);
-                 }
-             }
-
-           /* Discard any (non)matching list bytes that are all 0 at the
-              end of the map.  Decrease the map-length byte too.  */
-           while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
-             b[-1]--;
-           b += b[-1];
-         }
-         break;
-
-
-       case '(':
-         if (syntax & RE_NO_BK_PARENS)
-           goto handle_open;
-         else
-           goto normal_char;
-
-
-       case ')':
-         if (syntax & RE_NO_BK_PARENS)
-           goto handle_close;
-         else
-           goto normal_char;
-
-
-       case '\n':
-         if (syntax & RE_NEWLINE_ALT)
-           goto handle_alt;
-         else
-           goto normal_char;
-
-
-       case '|':
-         if (syntax & RE_NO_BK_VBAR)
-           goto handle_alt;
-         else
-           goto normal_char;
-
-
-       case '{':
-          if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
-            goto handle_interval;
-          else
-            goto normal_char;
-
-
-       case '\\':
-         if (p == pend) return REG_EESCAPE;
-
-         /* Do not translate the character after the \, so that we can
-            distinguish, e.g., \B from \b, even if we normally would
-            translate, e.g., B to b.  */
-         PATFETCH_RAW (c);
-
-         switch (c)
-           {
-           case '(':
-             if (syntax & RE_NO_BK_PARENS)
-               goto normal_backslash;
-
-           handle_open:
-             bufp->re_nsub++;
-             regnum++;
-
-             if (COMPILE_STACK_FULL)
-               {
-                 RETALLOC (compile_stack.stack, compile_stack.size << 1,
-                           compile_stack_elt_t);
-                 if (compile_stack.stack == NULL) return REG_ESPACE;
-
-                 compile_stack.size <<= 1;
-               }
-
-             /* These are the values to restore when we hit end of this
-                group.  They are all relative offsets, so that if the
-                whole pattern moves because of realloc, they will still
-                be valid.  */
-             COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
-             COMPILE_STACK_TOP.fixup_alt_jump
-               = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
-             COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
-             COMPILE_STACK_TOP.regnum = regnum;
-
-             /* We will eventually replace the 0 with the number of
-                groups inner to this one.  But do not push a
-                start_memory for groups beyond the last one we can
-                represent in the compiled pattern.  */
-             if (regnum <= MAX_REGNUM)
-               {
-                 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
-                 BUF_PUSH_3 (start_memory, regnum, 0);
-               }
-
-             compile_stack.avail++;
-
-             fixup_alt_jump = 0;
-             laststart = 0;
-             begalt = b;
-             /* If we've reached MAX_REGNUM groups, then this open
-                won't actually generate any code, so we'll have to
-                clear pending_exact explicitly.  */
-             pending_exact = 0;
-             break;
-
-
-           case ')':
-             if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
-
-             if (COMPILE_STACK_EMPTY)
-             {
-               if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
-                 goto normal_backslash;
-               else
-                 return REG_ERPAREN;
-             }
-
-           handle_close:
-             if (fixup_alt_jump)
-               { /* Push a dummy failure point at the end of the
-                    alternative for a possible future
-                    `pop_failure_jump' to pop.  See comments at
-                    `push_dummy_failure' in `re_match_2'.  */
-                 BUF_PUSH (push_dummy_failure);
-
-                 /* We allocated space for this jump when we assigned
-                    to `fixup_alt_jump', in the `handle_alt' case below.  */
-                 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
-               }
-
-             /* See similar code for backslashed left paren above.  */
-             if (COMPILE_STACK_EMPTY)
-             {
-               if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
-                 goto normal_char;
-               else
-                 return REG_ERPAREN;
-             }
-
-             /* Since we just checked for an empty stack above, this
-                ``can't happen''.  */
-             assert (compile_stack.avail != 0);
-             {
-               /* We don't just want to restore into `regnum', because
-                  later groups should continue to be numbered higher,
-                  as in `(ab)c(de)' -- the second group is #2.  */
-               regnum_t this_group_regnum;
-
-               compile_stack.avail--;
-               begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
-               fixup_alt_jump
-                 = COMPILE_STACK_TOP.fixup_alt_jump
-                   ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
-                   : 0;
-               laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
-               this_group_regnum = COMPILE_STACK_TOP.regnum;
-               /* If we've reached MAX_REGNUM groups, then this open
-                  won't actually generate any code, so we'll have to
-                  clear pending_exact explicitly.  */
-               pending_exact = 0;
-
-               /* We're at the end of the group, so now we know how many
-                  groups were inside this one.  */
-               if (this_group_regnum <= MAX_REGNUM)
-                 {
-                   unsigned char *inner_group_loc
-                     = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
-
-                   *inner_group_loc = regnum - this_group_regnum;
-                   BUF_PUSH_3 (stop_memory, this_group_regnum,
-                               regnum - this_group_regnum);
-                 }
-             }
-             break;
-
-
-           case '|':                                   /* `\|'.  */
-             if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
-               goto normal_backslash;
-           handle_alt:
-             if (syntax & RE_LIMITED_OPS)
-               goto normal_char;
-
-             /* Insert before the previous alternative a jump which
-                jumps to this alternative if the former fails.  */
-             GET_BUFFER_SPACE (3);
-             INSERT_JUMP (on_failure_jump, begalt, b + 6);
-             pending_exact = 0;
-             b += 3;
-
-             /* The alternative before this one has a jump after it
-                which gets executed if it gets matched.  Adjust that
-                jump so it will jump to this alternative's analogous
-                jump (put in below, which in turn will jump to the next
-                (if any) alternative's such jump, etc.).  The last such
-                jump jumps to the correct final destination.  A picture:
-                         _____ _____
-                         |   | |   |
-                         |   v |   v
-                        a | b   | c
-
-                If we are at `b', then fixup_alt_jump right now points to a
-                three-byte space after `a'.  We'll put in the jump, set
-                fixup_alt_jump to right after `b', and leave behind three
-                bytes which we'll fill in when we get to after `c'.  */
-
-             if (fixup_alt_jump)
-               STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
-
-             /* Mark and leave space for a jump after this alternative,
-                to be filled in later either by next alternative or
-                when know we're at the end of a series of alternatives.  */
-             fixup_alt_jump = b;
-             GET_BUFFER_SPACE (3);
-             b += 3;
-
-             laststart = 0;
-             begalt = b;
-             break;
-
-
-           case '{':
-             /* If \{ is a literal.  */
-             if (!(syntax & RE_INTERVALS)
-                    /* If we're at `\{' and it's not the open-interval
-                       operator.  */
-                 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
-                 || (p - 2 == pattern  &&  p == pend))
-               goto normal_backslash;
-
-           handle_interval:
-             {
-               /* If got here, then the syntax allows intervals.  */
-
-               /* At least (most) this many matches must be made.  */
-               int lower_bound = -1, upper_bound = -1;
-
-               beg_interval = p - 1;
-
-               if (p == pend)
-                 {
-                   if (syntax & RE_NO_BK_BRACES)
-                     goto unfetch_interval;
-                   else
-                     return REG_EBRACE;
-                 }
-
-               GET_UNSIGNED_NUMBER (lower_bound);
-
-               if (c == ',')
-                 {
-                   GET_UNSIGNED_NUMBER (upper_bound);
-                   if (upper_bound < 0) upper_bound = RE_DUP_MAX;
-                 }
-               else
-                 /* Interval such as `{1}' => match exactly once. */
-                 upper_bound = lower_bound;
-
-               if (lower_bound < 0 || upper_bound > RE_DUP_MAX
-                   || lower_bound > upper_bound)
-                 {
-                   if (syntax & RE_NO_BK_BRACES)
-                     goto unfetch_interval;
-                   else
-                     return REG_BADBR;
-                 }
-
-               if (!(syntax & RE_NO_BK_BRACES))
-                 {
-                   if (c != '\\') return REG_EBRACE;
-
-                   PATFETCH (c);
-                 }
-
-               if (c != '}')
-                 {
-                   if (syntax & RE_NO_BK_BRACES)
-                     goto unfetch_interval;
-                   else
-                     return REG_BADBR;
-                 }
-
-               /* We just parsed a valid interval.  */
-
-               /* If it's invalid to have no preceding re.  */
-               if (!laststart)
-                 {
-                   if (syntax & RE_CONTEXT_INVALID_OPS)
-                     return REG_BADRPT;
-                   else if (syntax & RE_CONTEXT_INDEP_OPS)
-                     laststart = b;
-                   else
-                     goto unfetch_interval;
-                 }
-
-               /* If the upper bound is zero, don't want to succeed at
-                  all; jump from `laststart' to `b + 3', which will be
-                  the end of the buffer after we insert the jump.  */
-                if (upper_bound == 0)
-                  {
-                    GET_BUFFER_SPACE (3);
-                    INSERT_JUMP (jump, laststart, b + 3);
-                    b += 3;
-                  }
-
-                /* Otherwise, we have a nontrivial interval.  When
-                   we're all done, the pattern will look like:
-                     set_number_at <jump count> <upper bound>
-                     set_number_at <succeed_n count> <lower bound>
-                     succeed_n <after jump addr> <succeed_n count>
-                     <body of loop>
-                     jump_n <succeed_n addr> <jump count>
-                   (The upper bound and `jump_n' are omitted if
-                   `upper_bound' is 1, though.)  */
-                else
-                  { /* If the upper bound is > 1, we need to insert
-                       more at the end of the loop.  */
-                    unsigned nbytes = 10 + (upper_bound > 1) * 10;
-
-                    GET_BUFFER_SPACE (nbytes);
-
-                    /* Initialize lower bound of the `succeed_n', even
-                       though it will be set during matching by its
-                       attendant `set_number_at' (inserted next),
-                       because `re_compile_fastmap' needs to know.
-                       Jump to the `jump_n' we might insert below.  */
-                    INSERT_JUMP2 (succeed_n, laststart,
-                                  b + 5 + (upper_bound > 1) * 5,
-                                  lower_bound);
-                    b += 5;
-
-                    /* Code to initialize the lower bound.  Insert
-                       before the `succeed_n'.  The `5' is the last two
-                       bytes of this `set_number_at', plus 3 bytes of
-                       the following `succeed_n'.  */
-                    insert_op2 (set_number_at, laststart, 5, lower_bound, b);
-                    b += 5;
-
-                    if (upper_bound > 1)
-                      { /* More than one repetition is allowed, so
-                           append a backward jump to the `succeed_n'
-                           that starts this interval.
-
-                           When we've reached this during matching,
-                           we'll have matched the interval once, so
-                           jump back only `upper_bound - 1' times.  */
-                        STORE_JUMP2 (jump_n, b, laststart + 5,
-                                     upper_bound - 1);
-                        b += 5;
-
-                        /* The location we want to set is the second
-                           parameter of the `jump_n'; that is `b-2' as
-                           an absolute address.  `laststart' will be
-                           the `set_number_at' we're about to insert;
-                           `laststart+3' the number to set, the source
-                           for the relative address.  But we are
-                           inserting into the middle of the pattern --
-                           so everything is getting moved up by 5.
-                           Conclusion: (b - 2) - (laststart + 3) + 5,
-                           i.e., b - laststart.
-
-                           We insert this at the beginning of the loop
-                           so that if we fail during matching, we'll
-                           reinitialize the bounds.  */
-                        insert_op2 (set_number_at, laststart, b - laststart,
-                                    upper_bound - 1, b);
-                        b += 5;
-                      }
-                  }
-               pending_exact = 0;
-               beg_interval = NULL;
-             }
-             break;
-
-           unfetch_interval:
-             /* If an invalid interval, match the characters as literals.  */
-              assert (beg_interval);
-              p = beg_interval;
-              beg_interval = NULL;
-
-              /* normal_char and normal_backslash need `c'.  */
-              PATFETCH (c);
-
-              if (!(syntax & RE_NO_BK_BRACES))
-                {
-                  if (p > pattern  &&  p[-1] == '\\')
-                    goto normal_backslash;
-                }
-              goto normal_char;
-
-#ifdef emacs
-           /* There is no way to specify the before_dot and after_dot
-              operators.  rms says this is ok.  --karl  */
-           case '=':
-             BUF_PUSH (at_dot);
-             break;
-
-           case 's':
-             laststart = b;
-             PATFETCH (c);
-             BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
-             break;
-
-           case 'S':
-             laststart = b;
-             PATFETCH (c);
-             BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
-             break;
-#endif /* emacs */
-
-
-           case 'w':
-             laststart = b;
-             BUF_PUSH (wordchar);
-             break;
-
-
-           case 'W':
-             laststart = b;
-             BUF_PUSH (notwordchar);
-             break;
-
-
-           case '<':
-             BUF_PUSH (wordbeg);
-             break;
-
-           case '>':
-             BUF_PUSH (wordend);
-             break;
-
-           case 'b':
-             BUF_PUSH (wordbound);
-             break;
-
-           case 'B':
-             BUF_PUSH (notwordbound);
-             break;
-
-           case '`':
-             BUF_PUSH (begbuf);
-             break;
-
-           case '\'':
-             BUF_PUSH (endbuf);
-             break;
-
-           case '1': case '2': case '3': case '4': case '5':
-           case '6': case '7': case '8': case '9':
-             if (syntax & RE_NO_BK_REFS)
-               goto normal_char;
-
-             c1 = c - '0';
-
-             if (c1 > regnum)
-               return REG_ESUBREG;
-
-             /* Can't back reference to a subexpression if inside of it.  */
-             if (group_in_compile_stack (compile_stack, c1))
-               goto normal_char;
-
-             laststart = b;
-             BUF_PUSH_2 (duplicate, c1);
-             break;
-
-
-           case '+':
-           case '?':
-             if (syntax & RE_BK_PLUS_QM)
-               goto handle_plus;
-             else
-               goto normal_backslash;
-
-           default:
-           normal_backslash:
-             /* You might think it would be useful for \ to mean
-                not to translate; but if we don't translate it
-                it will never match anything.  */
-             c = TRANSLATE (c);
-             goto normal_char;
-           }
-         break;
-
-
-       default:
-       /* Expects the character in `c'.  */
-       normal_char:
-             /* If no exactn currently being built.  */
-         if (!pending_exact
-
-             /* If last exactn not at current position.  */
-             || pending_exact + *pending_exact + 1 != b
-
-             /* We have only one byte following the exactn for the count.  */
-             || *pending_exact == (1 << BYTEWIDTH) - 1
-
-             /* If followed by a repetition operator.  */
-             || *p == '*' || *p == '^'
-             || ((syntax & RE_BK_PLUS_QM)
-                 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
-                 : (*p == '+' || *p == '?'))
-             || ((syntax & RE_INTERVALS)
-                 && ((syntax & RE_NO_BK_BRACES)
-                     ? *p == '{'
-                     : (p[0] == '\\' && p[1] == '{'))))
-           {
-             /* Start building a new exactn.  */
-
-             laststart = b;
-
-             BUF_PUSH_2 (exactn, 0);
-             pending_exact = b - 1;
-           }
-
-         BUF_PUSH (c);
-         (*pending_exact)++;
-         break;
-       } /* switch (c) */
-    } /* while p != pend */
-
-
-  /* Through the pattern now.  */
-
-  if (fixup_alt_jump)
-    STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
-
-  if (!COMPILE_STACK_EMPTY)
-    return REG_EPAREN;
-
-  free (compile_stack.stack);
-
-  /* We have succeeded; set the length of the buffer.  */
-  bufp->used = b - bufp->buffer;
-
-#ifdef DEBUG
-  if (debug)
-    {
-      DEBUG_PRINT1 ("\nCompiled pattern: ");
-      print_compiled_pattern (bufp);
-    }
-#endif /* DEBUG */
-
-  return REG_NOERROR;
-} /* regex_compile */
-\f
-/* Subroutines for `regex_compile'.  */
-
-/* Store OP at LOC followed by two-byte integer parameter ARG.  */
-
-static void
-store_op1 (op, loc, arg)
-    re_opcode_t op;
-    unsigned char *loc;
-    int arg;
-{
-  *loc = (unsigned char) op;
-  STORE_NUMBER (loc + 1, arg);
-}
-
-
-/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2.  */
-
-static void
-store_op2 (op, loc, arg1, arg2)
-    re_opcode_t op;
-    unsigned char *loc;
-    int arg1, arg2;
-{
-  *loc = (unsigned char) op;
-  STORE_NUMBER (loc + 1, arg1);
-  STORE_NUMBER (loc + 3, arg2);
-}
-
-
-/* Copy the bytes from LOC to END to open up three bytes of space at LOC
-   for OP followed by two-byte integer parameter ARG.  */
-
-static void
-insert_op1 (op, loc, arg, end)
-    re_opcode_t op;
-    unsigned char *loc;
-    int arg;
-    unsigned char *end;
-{
-  register unsigned char *pfrom = end;
-  register unsigned char *pto = end + 3;
-
-  while (pfrom != loc)
-    *--pto = *--pfrom;
-
-  store_op1 (op, loc, arg);
-}
-
-
-/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2.  */
-
-static void
-insert_op2 (op, loc, arg1, arg2, end)
-    re_opcode_t op;
-    unsigned char *loc;
-    int arg1, arg2;
-    unsigned char *end;
-{
-  register unsigned char *pfrom = end;
-  register unsigned char *pto = end + 5;
-
-  while (pfrom != loc)
-    *--pto = *--pfrom;
-
-  store_op2 (op, loc, arg1, arg2);
-}
-
-
-/* P points to just after a ^ in PATTERN.  Return true if that ^ comes
-   after an alternative or a begin-subexpression.  We assume there is at
-   least one character before the ^.  */
-
-static boolean
-at_begline_loc_p (pattern, p, syntax)
-    const char *pattern, *p;
-    reg_syntax_t syntax;
-{
-  const char *prev = p - 2;
-  boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
-
-  return
-       /* After a subexpression?  */
-       (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
-       /* After an alternative?  */
-    || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
-}
-
-
-/* The dual of at_begline_loc_p.  This one is for $.  We assume there is
-   at least one character after the $, i.e., `P < PEND'.  */
-
-static boolean
-at_endline_loc_p (p, pend, syntax)
-    const char *p, *pend;
-    int syntax;
-{
-  const char *next = p;
-  boolean next_backslash = *next == '\\';
-  const char *next_next = p + 1 < pend ? p + 1 : NULL;
-
-  return
-       /* Before a subexpression?  */
-       (syntax & RE_NO_BK_PARENS ? *next == ')'
-       : next_backslash && next_next && *next_next == ')')
-       /* Before an alternative?  */
-    || (syntax & RE_NO_BK_VBAR ? *next == '|'
-       : next_backslash && next_next && *next_next == '|');
-}
-
-
-/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
-   false if it's not.  */
-
-static boolean
-group_in_compile_stack (compile_stack, regnum)
-    compile_stack_type compile_stack;
-    regnum_t regnum;
-{
-  int this_element;
-
-  for (this_element = compile_stack.avail - 1;
-       this_element >= 0;
-       this_element--)
-    if (compile_stack.stack[this_element].regnum == regnum)
-      return true;
-
-  return false;
-}
-
-
-/* Read the ending character of a range (in a bracket expression) from the
-   uncompiled pattern *P_PTR (which ends at PEND).  We assume the
-   starting character is in `P[-2]'.  (`P[-1]' is the character `-'.)
-   Then we set the translation of all bits between the starting and
-   ending characters (inclusive) in the compiled pattern B.
-
-   Return an error code.
-
-   We use these short variable names so we can use the same macros as
-   `regex_compile' itself.  */
-
-static reg_errcode_t
-compile_range (p_ptr, pend, translate, syntax, b)
-    const char **p_ptr, *pend;
-    char *translate;
-    reg_syntax_t syntax;
-    unsigned char *b;
-{
-  unsigned this_char;
-
-  const char *p = *p_ptr;
-  int range_start, range_end;
-
-  if (p == pend)
-    return REG_ERANGE;
-
-  /* Even though the pattern is a signed `char *', we need to fetch
-     with unsigned char *'s; if the high bit of the pattern character
-     is set, the range endpoints will be negative if we fetch using a
-     signed char *.
-
-     We also want to fetch the endpoints without translating them; the
-     appropriate translation is done in the bit-setting loop below.  */
-  range_start = ((unsigned char *) p)[-2];
-  range_end   = ((unsigned char *) p)[0];
-
-  /* Have to increment the pointer into the pattern string, so the
-     caller isn't still at the ending character.  */
-  (*p_ptr)++;
-
-  /* If the start is after the end, the range is empty.  */
-  if (range_start > range_end)
-    return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
-
-  /* Here we see why `this_char' has to be larger than an `unsigned
-     char' -- the range is inclusive, so if `range_end' == 0xff
-     (assuming 8-bit characters), we would otherwise go into an infinite
-     loop, since all characters <= 0xff.  */
-  for (this_char = range_start; this_char <= range_end; this_char++)
-    {
-      SET_LIST_BIT (TRANSLATE (this_char));
-    }
-
-  return REG_NOERROR;
-}
-\f
-/* Failure stack declarations and macros; both re_compile_fastmap and
-   re_match_2 use a failure stack.  These have to be macros because of
-   REGEX_ALLOCATE.  */
-
-
-/* Number of failure points for which to initially allocate space
-   when matching.  If this number is exceeded, we allocate more
-   space, so it is not a hard limit.  */
-#ifndef INIT_FAILURE_ALLOC
-#define INIT_FAILURE_ALLOC 5
-#endif
-
-/* Roughly the maximum number of failure points on the stack.  Would be
-   exactly that if always used MAX_FAILURE_SPACE each time we failed.
-   This is a variable only so users of regex can assign to it; we never
-   change it ourselves.  */
-int re_max_failures = 2000;
-
-typedef const unsigned char *fail_stack_elt_t;
-
-typedef struct
-{
-  fail_stack_elt_t *stack;
-  unsigned size;
-  unsigned avail;                      /* Offset of next open position.  */
-} fail_stack_type;
-
-#define FAIL_STACK_EMPTY()     (fail_stack.avail == 0)
-#define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
-#define FAIL_STACK_FULL()      (fail_stack.avail == fail_stack.size)
-#define FAIL_STACK_TOP()       (fail_stack.stack[fail_stack.avail])
-
-
-/* Initialize `fail_stack'.  Do `return -2' if the alloc fails.  */
-
-#define INIT_FAIL_STACK()                                              \
-  do {                                                                 \
-    fail_stack.stack = (fail_stack_elt_t *)                            \
-      REGEX_ALLOCATE (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
-                                                                       \
-    if (fail_stack.stack == NULL)                                      \
-      return -2;                                                       \
-                                                                       \
-    fail_stack.size = INIT_FAILURE_ALLOC;                              \
-    fail_stack.avail = 0;                                              \
-  } while (0)
-
-
-/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
-
-   Return 1 if succeeds, and 0 if either ran out of memory
-   allocating space for it or it was already too large.
-
-   REGEX_REALLOCATE requires `destination' be declared.   */
-
-#define DOUBLE_FAIL_STACK(fail_stack)                                  \
-  ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS             \
-   ? 0                                                                 \
-   : ((fail_stack).stack = (fail_stack_elt_t *)                                \
-       REGEX_REALLOCATE ((fail_stack).stack,                           \
-         (fail_stack).size * sizeof (fail_stack_elt_t),                \
-         ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)),        \
-                                                                       \
-      (fail_stack).stack == NULL                                       \
-      ? 0                                                              \
-      : ((fail_stack).size <<= 1,                                      \
-        1)))
-
-
-/* Push PATTERN_OP on FAIL_STACK.
-
-   Return 1 if was able to do so and 0 if ran out of memory allocating
-   space to do so.  */
-#define PUSH_PATTERN_OP(pattern_op, fail_stack)                                \
-  ((FAIL_STACK_FULL ()                                                 \
-    && !DOUBLE_FAIL_STACK (fail_stack))                                        \
-    ? 0                                                                        \
-    : ((fail_stack).stack[(fail_stack).avail++] = pattern_op,          \
-       1))
-
-/* This pushes an item onto the failure stack.  Must be a four-byte
-   value.  Assumes the variable `fail_stack'.  Probably should only
-   be called from within `PUSH_FAILURE_POINT'.  */
-#define PUSH_FAILURE_ITEM(item)                                                \
-  fail_stack.stack[fail_stack.avail++] = (fail_stack_elt_t) item
-
-/* The complement operation.  Assumes `fail_stack' is nonempty.  */
-#define POP_FAILURE_ITEM() fail_stack.stack[--fail_stack.avail]
-
-/* Used to omit pushing failure point id's when we're not debugging.  */
-#ifdef DEBUG
-#define DEBUG_PUSH PUSH_FAILURE_ITEM
-#define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_ITEM ()
-#else
-#define DEBUG_PUSH(item)
-#define DEBUG_POP(item_addr)
-#endif
-
-
-/* Push the information about the state we will need
-   if we ever fail back to it.
-
-   Requires variables fail_stack, regstart, regend, reg_info, and
-   num_regs be declared.  DOUBLE_FAIL_STACK requires `destination' be
-   declared.
-
-   Does `return FAILURE_CODE' if runs out of memory.  */
-
-#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code)  \
-  do {                                                                 \
-    char *destination;                                                 \
-    /* Must be int, so when we don't save any registers, the arithmetic        \
-       of 0 + -1 isn't done as unsigned.  */                           \
-    int this_reg;                                                      \
-                                                                       \
-    DEBUG_STATEMENT (failure_id++);                                    \
-    DEBUG_STATEMENT (nfailure_points_pushed++);                                \
-    DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id);          \
-    DEBUG_PRINT2 ("  Before push, next avail: %d\n", (fail_stack).avail);\
-    DEBUG_PRINT2 ("                     size: %d\n", (fail_stack).size);\
-                                                                       \
-    DEBUG_PRINT2 ("  slots needed: %d\n", NUM_FAILURE_ITEMS);          \
-    DEBUG_PRINT2 ("     available: %d\n", REMAINING_AVAIL_SLOTS);      \
-                                                                       \
-    /* Ensure we have enough space allocated for what we will push.  */        \
-    while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS)                  \
-      {                                                                        \
-       if (!DOUBLE_FAIL_STACK (fail_stack))                    \
-         return failure_code;                                          \
-                                                                       \
-       DEBUG_PRINT2 ("\n  Doubled stack; size now: %d\n",              \
-                      (fail_stack).size);                              \
-       DEBUG_PRINT2 ("  slots available: %d\n", REMAINING_AVAIL_SLOTS);\
-      }                                                                        \
-                                                                       \
-    /* Push the info, starting with the registers.  */                 \
-    DEBUG_PRINT1 ("\n");                                               \
-                                                                       \
-    for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
-        this_reg++)                                                    \
-      {                                                                        \
-       DEBUG_PRINT2 ("  Pushing reg: %d\n", this_reg);                 \
-       DEBUG_STATEMENT (num_regs_pushed++);                            \
-                                                                       \
-       DEBUG_PRINT2 ("    start: 0x%x\n", regstart[this_reg]);         \
-       PUSH_FAILURE_ITEM (regstart[this_reg]);                         \
-                                                                       \
-       DEBUG_PRINT2 ("    end: 0x%x\n", regend[this_reg]);             \
-       PUSH_FAILURE_ITEM (regend[this_reg]);                           \
-                                                                       \
-       DEBUG_PRINT2 ("    info: 0x%x\n      ", reg_info[this_reg]);    \
-       DEBUG_PRINT2 (" match_null=%d",                                 \
-                     REG_MATCH_NULL_STRING_P (reg_info[this_reg]));    \
-       DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg]));    \
-       DEBUG_PRINT2 (" matched_something=%d",                          \
-                     MATCHED_SOMETHING (reg_info[this_reg]));          \
-       DEBUG_PRINT2 (" ever_matched=%d",                               \
-                     EVER_MATCHED_SOMETHING (reg_info[this_reg]));     \
-       DEBUG_PRINT1 ("\n");                                            \
-       PUSH_FAILURE_ITEM (reg_info[this_reg].word);                    \
-      }                                                                        \
-                                                                       \
-    DEBUG_PRINT2 ("  Pushing  low active reg: %d\n", lowest_active_reg);\
-    PUSH_FAILURE_ITEM (lowest_active_reg);                             \
-                                                                       \
-    DEBUG_PRINT2 ("  Pushing high active reg: %d\n", highest_active_reg);\
-    PUSH_FAILURE_ITEM (highest_active_reg);                            \
-                                                                       \
-    DEBUG_PRINT2 ("  Pushing pattern 0x%x: ", pattern_place);          \
-    DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend);          \
-    PUSH_FAILURE_ITEM (pattern_place);                                 \
-                                                                       \
-    DEBUG_PRINT2 ("  Pushing string 0x%x: `", string_place);           \
-    DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2,   \
-                                size2);                                \
-    DEBUG_PRINT1 ("'\n");                                              \
-    PUSH_FAILURE_ITEM (string_place);                                  \
-                                                                       \
-    DEBUG_PRINT2 ("  Pushing failure id: %u\n", failure_id);           \
-    DEBUG_PUSH (failure_id);                                           \
-  } while (0)
-
-/* This is the number of items that are pushed and popped on the stack
-   for each register.  */
-#define NUM_REG_ITEMS  3
-
-/* Individual items aside from the registers.  */
-#ifdef DEBUG
-#define NUM_NONREG_ITEMS 5 /* Includes failure point id.  */
-#else
-#define NUM_NONREG_ITEMS 4
-#endif
-
-/* We push at most this many items on the stack.  */
-#define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
-
-/* We actually push this many items.  */
-#define NUM_FAILURE_ITEMS                                              \
-  ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS        \
-    + NUM_NONREG_ITEMS)
-
-/* How many items can still be added to the stack without overflowing it.  */
-#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
-
-
-/* Pops what PUSH_FAIL_STACK pushes.
-
-   We restore into the parameters, all of which should be lvalues:
-     STR -- the saved data position.
-     PAT -- the saved pattern position.
-     LOW_REG, HIGH_REG -- the highest and lowest active registers.
-     REGSTART, REGEND -- arrays of string positions.
-     REG_INFO -- array of information about each subexpression.
-
-   Also assumes the variables `fail_stack' and (if debugging), `bufp',
-   `pend', `string1', `size1', `string2', and `size2'.  */
-
-#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
-{                                                                      \
-  DEBUG_STATEMENT (fail_stack_elt_t failure_id;)                       \
-  int this_reg;                                                                \
-  const unsigned char *string_temp;                                    \
-                                                                       \
-  assert (!FAIL_STACK_EMPTY ());                                       \
-                                                                       \
-  /* Remove failure points and point to how many regs pushed.  */      \
-  DEBUG_PRINT1 ("POP_FAILURE_POINT:\n");                               \
-  DEBUG_PRINT2 ("  Before pop, next avail: %d\n", fail_stack.avail);   \
-  DEBUG_PRINT2 ("                    size: %d\n", fail_stack.size);    \
-                                                                       \
-  assert (fail_stack.avail >= NUM_NONREG_ITEMS);                       \
-                                                                       \
-  DEBUG_POP (&failure_id);                                             \
-  DEBUG_PRINT2 ("  Popping failure id: %u\n", failure_id);             \
-                                                                       \
-  /* If the saved string location is NULL, it came from an             \
-     on_failure_keep_string_jump opcode, and we want to throw away the \
-     saved NULL, thus retaining our current position in the string.  */        \
-  string_temp = POP_FAILURE_ITEM ();                                   \
-  if (string_temp != NULL)                                             \
-    str = (const char *) string_temp;                                  \
-                                                                       \
-  DEBUG_PRINT2 ("  Popping string 0x%x: `", str);                      \
-  DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2);     \
-  DEBUG_PRINT1 ("'\n");                                                        \
-                                                                       \
-  pat = (unsigned char *) POP_FAILURE_ITEM ();                         \
-  DEBUG_PRINT2 ("  Popping pattern 0x%x: ", pat);                      \
-  DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend);                      \
-                                                                       \
-  /* Restore register info.  */                                                \
-  high_reg = (unsigned) POP_FAILURE_ITEM ();                           \
-  DEBUG_PRINT2 ("  Popping high active reg: %d\n", high_reg);          \
-                                                                       \
-  low_reg = (unsigned) POP_FAILURE_ITEM ();                            \
-  DEBUG_PRINT2 ("  Popping  low active reg: %d\n", low_reg);           \
-                                                                       \
-  for (this_reg = high_reg; this_reg >= low_reg; this_reg--)           \
-    {                                                                  \
-      DEBUG_PRINT2 ("    Popping reg: %d\n", this_reg);                        \
-                                                                       \
-      reg_info[this_reg].word = POP_FAILURE_ITEM ();                   \
-      DEBUG_PRINT2 ("      info: 0x%x\n", reg_info[this_reg]);         \
-                                                                       \
-      regend[this_reg] = (const char *) POP_FAILURE_ITEM ();           \
-      DEBUG_PRINT2 ("      end: 0x%x\n", regend[this_reg]);            \
-                                                                       \
-      regstart[this_reg] = (const char *) POP_FAILURE_ITEM ();         \
-      DEBUG_PRINT2 ("      start: 0x%x\n", regstart[this_reg]);                \
-    }                                                                  \
-                                                                       \
-  DEBUG_STATEMENT (nfailure_points_popped++);                          \
-} /* POP_FAILURE_POINT */
-\f
-/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
-   BUFP.  A fastmap records which of the (1 << BYTEWIDTH) possible
-   characters can start a string that matches the pattern.  This fastmap
-   is used by re_search to skip quickly over impossible starting points.
-
-   The caller must supply the address of a (1 << BYTEWIDTH)-byte data
-   area as BUFP->fastmap.
-
-   We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
-   the pattern buffer.
-
-   Returns 0 if we succeed, -2 if an internal error.   */
-
-int
-re_compile_fastmap (bufp)
-     struct re_pattern_buffer *bufp;
-{
-  int j, k;
-  fail_stack_type fail_stack;
-#ifndef REGEX_MALLOC
-  char *destination;
-#endif
-  /* We don't push any register information onto the failure stack.  */
-  unsigned num_regs = 0;
-
-  register char *fastmap = bufp->fastmap;
-  unsigned char *pattern = bufp->buffer;
-  unsigned long size = bufp->used;
-  const unsigned char *p = pattern;
-  register unsigned char *pend = pattern + size;
-
-  /* Assume that each path through the pattern can be null until
-     proven otherwise.  We set this false at the bottom of switch
-     statement, to which we get only if a particular path doesn't
-     match the empty string.  */
-  boolean path_can_be_null = true;
-
-  /* We aren't doing a `succeed_n' to begin with.  */
-  boolean succeed_n_p = false;
-
-  assert (fastmap != NULL && p != NULL);
-
-  INIT_FAIL_STACK ();
-  bzero (fastmap, 1 << BYTEWIDTH);  /* Assume nothing's valid.  */
-  bufp->fastmap_accurate = 1;      /* It will be when we're done.  */
-  bufp->can_be_null = 0;
-
-  while (p != pend || !FAIL_STACK_EMPTY ())
-    {
-      if (p == pend)
-       {
-         bufp->can_be_null |= path_can_be_null;
-
-         /* Reset for next path.  */
-         path_can_be_null = true;
-
-         p = fail_stack.stack[--fail_stack.avail];
-       }
-
-      /* We should never be about to go beyond the end of the pattern.  */
-      assert (p < pend);
-
-#ifdef SWITCH_ENUM_BUG
-      switch ((int) ((re_opcode_t) *p++))
-#else
-      switch ((re_opcode_t) *p++)
-#endif
-       {
-
-       /* I guess the idea here is to simply not bother with a fastmap
-          if a backreference is used, since it's too hard to figure out
-          the fastmap for the corresponding group.  Setting
-          `can_be_null' stops `re_search_2' from using the fastmap, so
-          that is all we do.  */
-       case duplicate:
-         bufp->can_be_null = 1;
-         return 0;
-
-
-      /* Following are the cases which match a character.  These end
-        with `break'.  */
-
-       case exactn:
-         fastmap[p[1]] = 1;
-         break;
-
-
-       case charset:
-         for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
-           if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
-             fastmap[j] = 1;
-         break;
-
-
-       case charset_not:
-         /* Chars beyond end of map must be allowed.  */
-         for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
-           fastmap[j] = 1;
-
-         for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
-           if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
-             fastmap[j] = 1;
-         break;
-
-
-       case wordchar:
-         for (j = 0; j < (1 << BYTEWIDTH); j++)
-           if (SYNTAX (j) == Sword)
-             fastmap[j] = 1;
-         break;
-
-
-       case notwordchar:
-         for (j = 0; j < (1 << BYTEWIDTH); j++)
-           if (SYNTAX (j) != Sword)
-             fastmap[j] = 1;
-         break;
-
-
-       case anychar:
-         /* `.' matches anything ...  */
-         for (j = 0; j < (1 << BYTEWIDTH); j++)
-           fastmap[j] = 1;
-
-         /* ... except perhaps newline.  */
-         if (!(bufp->syntax & RE_DOT_NEWLINE))
-           fastmap['\n'] = 0;
-
-         /* Return if we have already set `can_be_null'; if we have,
-            then the fastmap is irrelevant.  Something's wrong here.  */
-         else if (bufp->can_be_null)
-           return 0;
-
-         /* Otherwise, have to check alternative paths.  */
-         break;
-
-
-#ifdef emacs
-       case syntaxspec:
-         k = *p++;
-         for (j = 0; j < (1 << BYTEWIDTH); j++)
-           if (SYNTAX (j) == (enum syntaxcode) k)
-             fastmap[j] = 1;
-         break;
-
-
-       case notsyntaxspec:
-         k = *p++;
-         for (j = 0; j < (1 << BYTEWIDTH); j++)
-           if (SYNTAX (j) != (enum syntaxcode) k)
-             fastmap[j] = 1;
-         break;
-
-
-      /* All cases after this match the empty string.  These end with
-        `continue'.  */
-
-
-       case before_dot:
-       case at_dot:
-       case after_dot:
-         continue;
-#endif /* not emacs */
-
-
-       case no_op:
-       case begline:
-       case endline:
-       case begbuf:
-       case endbuf:
-       case wordbound:
-       case notwordbound:
-       case wordbeg:
-       case wordend:
-       case push_dummy_failure:
-         continue;
-
-
-       case jump_n:
-       case pop_failure_jump:
-       case maybe_pop_jump:
-       case jump:
-       case jump_past_alt:
-       case dummy_failure_jump:
-         EXTRACT_NUMBER_AND_INCR (j, p);
-         p += j;
-         if (j > 0)
-           continue;
-
-         /* Jump backward implies we just went through the body of a
-            loop and matched nothing.  Opcode jumped to should be
-            `on_failure_jump' or `succeed_n'.  Just treat it like an
-            ordinary jump.  For a * loop, it has pushed its failure
-            point already; if so, discard that as redundant.  */
-         if ((re_opcode_t) *p != on_failure_jump
-             && (re_opcode_t) *p != succeed_n)
-           continue;
-
-         p++;
-         EXTRACT_NUMBER_AND_INCR (j, p);
-         p += j;
-
-         /* If what's on the stack is where we are now, pop it.  */
-         if (!FAIL_STACK_EMPTY ()
-             && fail_stack.stack[fail_stack.avail - 1] == p)
-           fail_stack.avail--;
-
-         continue;
-
-
-       case on_failure_jump:
-       case on_failure_keep_string_jump:
-       handle_on_failure_jump:
-         EXTRACT_NUMBER_AND_INCR (j, p);
-
-         /* For some patterns, e.g., `(a?)?', `p+j' here points to the
-            end of the pattern.  We don't want to push such a point,
-            since when we restore it above, entering the switch will
-            increment `p' past the end of the pattern.  We don't need
-            to push such a point since we obviously won't find any more
-            fastmap entries beyond `pend'.  Such a pattern can match
-            the null string, though.  */
-         if (p + j < pend)
-           {
-             if (!PUSH_PATTERN_OP (p + j, fail_stack))
-               return -2;
-           }
-         else
-           bufp->can_be_null = 1;
-
-         if (succeed_n_p)
-           {
-             EXTRACT_NUMBER_AND_INCR (k, p);   /* Skip the n.  */
-             succeed_n_p = false;
-           }
-
-         continue;
-
-
-       case succeed_n:
-         /* Get to the number of times to succeed.  */
-         p += 2;
-
-         /* Increment p past the n for when k != 0.  */
-         EXTRACT_NUMBER_AND_INCR (k, p);
-         if (k == 0)
-           {
-             p -= 4;
-             succeed_n_p = true;  /* Spaghetti code alert.  */
-             goto handle_on_failure_jump;
-           }
-         continue;
-
-
-       case set_number_at:
-         p += 4;
-         continue;
-
-
-       case start_memory:
-       case stop_memory:
-         p += 2;
-         continue;
-
-
-       default:
-         abort (); /* We have listed all the cases.  */
-       } /* switch *p++ */
-
-      /* Getting here means we have found the possible starting
-        characters for one path of the pattern -- and that the empty
-        string does not match.  We need not follow this path further.
-        Instead, look at the next alternative (remembered on the
-        stack), or quit if no more.  The test at the top of the loop
-        does these things.  */
-      path_can_be_null = false;
-      p = pend;
-    } /* while p */
-
-  /* Set `can_be_null' for the last path (also the first path, if the
-     pattern is empty).  */
-  bufp->can_be_null |= path_can_be_null;
-  return 0;
-} /* re_compile_fastmap */
-\f
-/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
-   ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use
-   this memory for recording register information.  STARTS and ENDS
-   must be allocated using the malloc library routine, and must each
-   be at least NUM_REGS * sizeof (regoff_t) bytes long.
-
-   If NUM_REGS == 0, then subsequent matches should allocate their own
-   register data.
-
-   Unless this function is called, the first search or match using
-   PATTERN_BUFFER will allocate its own register data, without
-   freeing the old data.  */
-
-void
-re_set_registers (bufp, regs, num_regs, starts, ends)
-    struct re_pattern_buffer *bufp;
-    struct re_registers *regs;
-    unsigned num_regs;
-    regoff_t *starts, *ends;
-{
-  if (num_regs)
-    {
-      bufp->regs_allocated = REGS_REALLOCATE;
-      regs->num_regs = num_regs;
-      regs->start = starts;
-      regs->end = ends;
-    }
-  else
-    {
-      bufp->regs_allocated = REGS_UNALLOCATED;
-      regs->num_regs = 0;
-      regs->start = regs->end = (regoff_t *) 0;
-    }
-}
-\f
-/* Searching routines.  */
-
-/* Like re_search_2, below, but only one string is specified, and
-   doesn't let you say where to stop matching. */
-
-int
-re_search (bufp, string, size, startpos, range, regs)
-     struct re_pattern_buffer *bufp;
-     const char *string;
-     int size, startpos, range;
-     struct re_registers *regs;
-{
-  return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
-                     regs, size);
-}
-
-
-/* Using the compiled pattern in BUFP->buffer, first tries to match the
-   virtual concatenation of STRING1 and STRING2, starting first at index
-   STARTPOS, then at STARTPOS + 1, and so on.
-
-   STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
-
-   RANGE is how far to scan while trying to match.  RANGE = 0 means try
-   only at STARTPOS; in general, the last start tried is STARTPOS +
-   RANGE.
-
-   In REGS, return the indices of the virtual concatenation of STRING1
-   and STRING2 that matched the entire BUFP->buffer and its contained
-   subexpressions.
-
-   Do not consider matching one past the index STOP in the virtual
-   concatenation of STRING1 and STRING2.
-
-   We return either the position in the strings at which the match was
-   found, -1 if no match, or -2 if error (such as failure
-   stack overflow).  */
-
-int
-re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
-     struct re_pattern_buffer *bufp;
-     const char *string1, *string2;
-     int size1, size2;
-     int startpos;
-     int range;
-     struct re_registers *regs;
-     int stop;
-{
-  int val;
-  register char *fastmap = bufp->fastmap;
-  register char *translate = bufp->translate;
-  int total_size = size1 + size2;
-  int endpos = startpos + range;
-
-  /* Check for out-of-range STARTPOS.  */
-  if (startpos < 0 || startpos > total_size)
-    return -1;
-
-  /* Fix up RANGE if it might eventually take us outside
-     the virtual concatenation of STRING1 and STRING2.  */
-  if (endpos < -1)
-    range = -1 - startpos;
-  else if (endpos > total_size)
-    range = total_size - startpos;
-
-  /* If the search isn't to be a backwards one, don't waste time in a
-     search for a pattern that must be anchored.  */
-  if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
-    {
-      if (startpos > 0)
-       return -1;
-      else
-       range = 1;
-    }
-
-  /* Update the fastmap now if not correct already.  */
-  if (fastmap && !bufp->fastmap_accurate)
-    if (re_compile_fastmap (bufp) == -2)
-      return -2;
-
-  /* Loop through the string, looking for a place to start matching.  */
-  for (;;)
-    {
-      /* If a fastmap is supplied, skip quickly over characters that
-        cannot be the start of a match.  If the pattern can match the
-        null string, however, we don't need to skip characters; we want
-        the first null string.  */
-      if (fastmap && startpos < total_size && !bufp->can_be_null)
-       {
-         if (range > 0)        /* Searching forwards.  */
-           {
-             register const char *d;
-             register int lim = 0;
-             int irange = range;
-
-             if (startpos < size1 && startpos + range >= size1)
-               lim = range - (size1 - startpos);
-
-             d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
-
-             /* Written out as an if-else to avoid testing `translate'
-                inside the loop.  */
-             if (translate)
-               while (range > lim
-                      && !fastmap[(unsigned char)
-                                  translate[(unsigned char) *d++]])
-                 range--;
-             else
-               while (range > lim && !fastmap[(unsigned char) *d++])
-                 range--;
-
-             startpos += irange - range;
-           }
-         else                          /* Searching backwards.  */
-           {
-             register char c = (size1 == 0 || startpos >= size1
-                                ? string2[startpos - size1]
-                                : string1[startpos]);
-
-             if (!fastmap[(unsigned char) TRANSLATE (c)])
-               goto advance;
-           }
-       }
-
-      /* If can't match the null string, and that's all we have left, fail.  */
-      if (range >= 0 && startpos == total_size && fastmap
-         && !bufp->can_be_null)
-       return -1;
-
-      val = re_match_2 (bufp, string1, size1, string2, size2,
-                       startpos, regs, stop);
-      if (val >= 0)
-       return startpos;
-
-      if (val == -2)
-       return -2;
-
-    advance:
-      if (!range)
-       break;
-      else if (range > 0)
-       {
-         range--;
-         startpos++;
-       }
-      else
-       {
-         range++;
-         startpos--;
-       }
-    }
-  return -1;
-} /* re_search_2 */
-\f
-/* Declarations and macros for re_match_2.  */
-
-static int bcmp_translate ();
-static boolean alt_match_null_string_p (),
-              common_op_match_null_string_p (),
-              group_match_null_string_p ();
-
-/* Structure for per-register (a.k.a. per-group) information.
-   This must not be longer than one word, because we push this value
-   onto the failure stack.  Other register information, such as the
-   starting and ending positions (which are addresses), and the list of
-   inner groups (which is a bits list) are maintained in separate
-   variables.
-
-   We are making a (strictly speaking) nonportable assumption here: that
-   the compiler will pack our bit fields into something that fits into
-   the type of `word', i.e., is something that fits into one item on the
-   failure stack.  */
-typedef union
-{
-  fail_stack_elt_t word;
-  struct
-  {
-      /* This field is one if this group can match the empty string,
-        zero if not.  If not yet determined,  `MATCH_NULL_UNSET_VALUE'.  */
-#define MATCH_NULL_UNSET_VALUE 3
-    unsigned match_null_string_p : 2;
-    unsigned is_active : 1;
-    unsigned matched_something : 1;
-    unsigned ever_matched_something : 1;
-  } bits;
-} register_info_type;
-
-#define REG_MATCH_NULL_STRING_P(R)  ((R).bits.match_null_string_p)
-#define IS_ACTIVE(R)  ((R).bits.is_active)
-#define MATCHED_SOMETHING(R)  ((R).bits.matched_something)
-#define EVER_MATCHED_SOMETHING(R)  ((R).bits.ever_matched_something)
-
-
-/* Call this when have matched a real character; it sets `matched' flags
-   for the subexpressions which we are currently inside.  Also records
-   that those subexprs have matched.  */
-#define SET_REGS_MATCHED()                                             \
-  do                                                                   \
-    {                                                                  \
-      unsigned r;                                                      \
-      for (r = lowest_active_reg; r <= highest_active_reg; r++)                \
-       {                                                               \
-         MATCHED_SOMETHING (reg_info[r])                               \
-           = EVER_MATCHED_SOMETHING (reg_info[r])                      \
-           = 1;                                                        \
-       }                                                               \
-    }                                                                  \
-  while (0)
-
-
-/* This converts PTR, a pointer into one of the search strings `string1'
-   and `string2' into an offset from the beginning of that string.  */
-#define POINTER_TO_OFFSET(ptr)                                         \
-  (FIRST_STRING_P (ptr) ? (ptr) - string1 : (ptr) - string2 + size1)
-
-/* Registers are set to a sentinel when they haven't yet matched.  */
-#define REG_UNSET_VALUE ((char *) -1)
-#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
-
-
-/* Macros for dealing with the split strings in re_match_2.  */
-
-#define MATCHING_IN_FIRST_STRING  (dend == end_match_1)
-
-/* Call before fetching a character with *d.  This switches over to
-   string2 if necessary.  */
-#define PREFETCH()                                                     \
-  while (d == dend)                                                    \
-    {                                                                  \
-      /* End of string2 => fail.  */                                   \
-      if (dend == end_match_2)                                                 \
-       goto fail;                                                      \
-      /* End of string1 => advance to string2.  */                     \
-      d = string2;                                                     \
-      dend = end_match_2;                                              \
-    }
-
-
-/* Test if at very beginning or at very end of the virtual concatenation
-   of `string1' and `string2'.  If only one string, it's `string2'.  */
-#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
-#define AT_STRINGS_END(d) ((d) == end2)
-
-
-/* Test if D points to a character which is word-constituent.  We have
-   two special cases to check for: if past the end of string1, look at
-   the first character in string2; and if before the beginning of
-   string2, look at the last character in string1.  */
-#define WORDCHAR_P(d)                                                  \
-  (SYNTAX ((d) == end1 ? *string2                                      \
-          : (d) == string2 - 1 ? *(end1 - 1) : *(d))                   \
-   == Sword)
-
-/* Test if the character before D and the one at D differ with respect
-   to being word-constituent.  */
-#define AT_WORD_BOUNDARY(d)                                            \
-  (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)                            \
-   || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
-
-
-/* Free everything we malloc.  */
-#ifdef REGEX_MALLOC
-#define FREE_VAR(var) if (var) free (var); var = NULL
-#define FREE_VARIABLES()                                               \
-  do {                                                                 \
-    FREE_VAR (fail_stack.stack);                                       \
-    FREE_VAR (regstart);                                               \
-    FREE_VAR (regend);                                                 \
-    FREE_VAR (old_regstart);                                           \
-    FREE_VAR (old_regend);                                             \
-    FREE_VAR (best_regstart);                                          \
-    FREE_VAR (best_regend);                                            \
-    FREE_VAR (reg_info);                                               \
-    FREE_VAR (reg_dummy);                                              \
-    FREE_VAR (reg_info_dummy);                                         \
-  } while (0)
-#else /* not REGEX_MALLOC */
-/* Some MIPS systems (at least) want this to free alloca'd storage.  */
-#define FREE_VARIABLES() alloca (0)
-#endif /* not REGEX_MALLOC */
-
-
-/* These values must meet several constraints.  They must not be valid
-   register values; since we have a limit of 255 registers (because
-   we use only one byte in the pattern for the register number), we can
-   use numbers larger than 255.  They must differ by 1, because of
-   NUM_FAILURE_ITEMS above.  And the value for the lowest register must
-   be larger than the value for the highest register, so we do not try
-   to actually save any registers when none are active.  */
-#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
-#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
-\f
-/* Matching routines.  */
-
-#ifndef emacs   /* Emacs never uses this.  */
-/* re_match is like re_match_2 except it takes only a single string.  */
-
-int
-re_match (bufp, string, size, pos, regs)
-     struct re_pattern_buffer *bufp;
-     const char *string;
-     int size, pos;
-     struct re_registers *regs;
- {
-  return re_match_2 (bufp, NULL, 0, string, size, pos, regs, size);
-}
-#endif /* not emacs */
-
-
-/* re_match_2 matches the compiled pattern in BUFP against the
-   the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
-   and SIZE2, respectively).  We start matching at POS, and stop
-   matching at STOP.
-
-   If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
-   store offsets for the substring each group matched in REGS.  See the
-   documentation for exactly how many groups we fill.
-
-   We return -1 if no match, -2 if an internal error (such as the
-   failure stack overflowing).  Otherwise, we return the length of the
-   matched substring.  */
-
-int
-re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
-     struct re_pattern_buffer *bufp;
-     const char *string1, *string2;
-     int size1, size2;
-     int pos;
-     struct re_registers *regs;
-     int stop;
-{
-  /* General temporaries.  */
-  int mcnt;
-  unsigned char *p1;
-
-  /* Just past the end of the corresponding string.  */
-  const char *end1, *end2;
-
-  /* Pointers into string1 and string2, just past the last characters in
-     each to consider matching.  */
-  const char *end_match_1, *end_match_2;
-
-  /* Where we are in the data, and the end of the current string.  */
-  const char *d, *dend;
-
-  /* Where we are in the pattern, and the end of the pattern.  */
-  unsigned char *p = bufp->buffer;
-  register unsigned char *pend = p + bufp->used;
-
-  /* We use this to map every character in the string.  */
-  char *translate = bufp->translate;
-
-  /* Failure point stack.  Each place that can handle a failure further
-     down the line pushes a failure point on this stack.  It consists of
-     restart, regend, and reg_info for all registers corresponding to
-     the subexpressions we're currently inside, plus the number of such
-     registers, and, finally, two char *'s.  The first char * is where
-     to resume scanning the pattern; the second one is where to resume
-     scanning the strings.  If the latter is zero, the failure point is
-     a ``dummy''; if a failure happens and the failure point is a dummy,
-     it gets discarded and the next next one is tried.  */
-  fail_stack_type fail_stack;
-#ifdef DEBUG
-  static unsigned failure_id = 0;
-  unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
-#endif
-
-  /* We fill all the registers internally, independent of what we
-     return, for use in backreferences.  The number here includes
-     an element for register zero.  */
-  unsigned num_regs = bufp->re_nsub + 1;
-
-  /* The currently active registers.  */
-  unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
-  unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
-
-  /* Information on the contents of registers. These are pointers into
-     the input strings; they record just what was matched (on this
-     attempt) by a subexpression part of the pattern, that is, the
-     regnum-th regstart pointer points to where in the pattern we began
-     matching and the regnum-th regend points to right after where we
-     stopped matching the regnum-th subexpression.  (The zeroth register
-     keeps track of what the whole pattern matches.)  */
-  const char **regstart = NULL, **regend = NULL;
-
-  /* If a group that's operated upon by a repetition operator fails to
-     match anything, then the register for its start will need to be
-     restored because it will have been set to wherever in the string we
-     are when we last see its open-group operator.  Similarly for a
-     register's end.  */
-  const char **old_regstart = NULL, **old_regend = NULL;
-
-  /* The is_active field of reg_info helps us keep track of which (possibly
-     nested) subexpressions we are currently in. The matched_something
-     field of reg_info[reg_num] helps us tell whether or not we have
-     matched any of the pattern so far this time through the reg_num-th
-     subexpression.  These two fields get reset each time through any
-     loop their register is in.  */
-  register_info_type *reg_info = NULL;
-
-  /* The following record the register info as found in the above
-     variables when we find a match better than any we've seen before.
-     This happens as we backtrack through the failure points, which in
-     turn happens only if we have not yet matched the entire string. */
-  unsigned best_regs_set = false;
-  const char **best_regstart = NULL, **best_regend = NULL;
-
-  /* Logically, this is `best_regend[0]'.  But we don't want to have to
-     allocate space for that if we're not allocating space for anything
-     else (see below).  Also, we never need info about register 0 for
-     any of the other register vectors, and it seems rather a kludge to
-     treat `best_regend' differently than the rest.  So we keep track of
-     the end of the best match so far in a separate variable.  We
-     initialize this to NULL so that when we backtrack the first time
-     and need to test it, it's not garbage.  */
-  const char *match_end = NULL;
-
-  /* Used when we pop values we don't care about.  */
-  const char **reg_dummy = NULL;
-  register_info_type *reg_info_dummy = NULL;
-
-#ifdef DEBUG
-  /* Counts the total number of registers pushed.  */
-  unsigned num_regs_pushed = 0;
-#endif
-
-  DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
-
-  INIT_FAIL_STACK ();
-
-  /* Do not bother to initialize all the register variables if there are
-     no groups in the pattern, as it takes a fair amount of time.  If
-     there are groups, we include space for register 0 (the whole
-     pattern), even though we never use it, since it simplifies the
-     array indexing.  We should fix this.  */
-  if (bufp->re_nsub)
-    {
-      regstart = REGEX_TALLOC (num_regs, const char *);
-      regend = REGEX_TALLOC (num_regs, const char *);
-      old_regstart = REGEX_TALLOC (num_regs, const char *);
-      old_regend = REGEX_TALLOC (num_regs, const char *);
-      best_regstart = REGEX_TALLOC (num_regs, const char *);
-      best_regend = REGEX_TALLOC (num_regs, const char *);
-      reg_info = REGEX_TALLOC (num_regs, register_info_type);
-      reg_dummy = REGEX_TALLOC (num_regs, const char *);
-      reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
-
-      if (!(regstart && regend && old_regstart && old_regend && reg_info
-           && best_regstart && best_regend && reg_dummy && reg_info_dummy))
-       {
-         FREE_VARIABLES ();
-         return -2;
-       }
-    }
-#ifdef REGEX_MALLOC
-  else
-    {
-      /* We must initialize all our variables to NULL, so that
-        `FREE_VARIABLES' doesn't try to free them.  */
-      regstart = regend = old_regstart = old_regend = best_regstart
-       = best_regend = reg_dummy = NULL;
-      reg_info = reg_info_dummy = (register_info_type *) NULL;
-    }
-#endif /* REGEX_MALLOC */
-
-  /* The starting position is bogus.  */
-  if (pos < 0 || pos > size1 + size2)
-    {
-      FREE_VARIABLES ();
-      return -1;
-    }
-
-  /* Initialize subexpression text positions to -1 to mark ones that no
-     start_memory/stop_memory has been seen for. Also initialize the
-     register information struct.  */
-  for (mcnt = 1; mcnt < num_regs; mcnt++)
-    {
-      regstart[mcnt] = regend[mcnt]
-       = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
-
-      REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
-      IS_ACTIVE (reg_info[mcnt]) = 0;
-      MATCHED_SOMETHING (reg_info[mcnt]) = 0;
-      EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
-    }
-
-  /* We move `string1' into `string2' if the latter's empty -- but not if
-     `string1' is null.  */
-  if (size2 == 0 && string1 != NULL)
-    {
-      string2 = string1;
-      size2 = size1;
-      string1 = 0;
-      size1 = 0;
-    }
-  end1 = string1 + size1;
-  end2 = string2 + size2;
-
-  /* Compute where to stop matching, within the two strings.  */
-  if (stop <= size1)
-    {
-      end_match_1 = string1 + stop;
-      end_match_2 = string2;
-    }
-  else
-    {
-      end_match_1 = end1;
-      end_match_2 = string2 + stop - size1;
-    }
-
-  /* `p' scans through the pattern as `d' scans through the data.
-     `dend' is the end of the input string that `d' points within.  `d'
-     is advanced into the following input string whenever necessary, but
-     this happens before fetching; therefore, at the beginning of the
-     loop, `d' can be pointing at the end of a string, but it cannot
-     equal `string2'.  */
-  if (size1 > 0 && pos <= size1)
-    {
-      d = string1 + pos;
-      dend = end_match_1;
-    }
-  else
-    {
-      d = string2 + pos - size1;
-      dend = end_match_2;
-    }
-
-  DEBUG_PRINT1 ("The compiled pattern is: ");
-  DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
-  DEBUG_PRINT1 ("The string to match is: `");
-  DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
-  DEBUG_PRINT1 ("'\n");
-
-  /* This loops over pattern commands.  It exits by returning from the
-     function if the match is complete, or it drops through if the match
-     fails at this starting point in the input data.  */
-  for (;;)
-    {
-      DEBUG_PRINT2 ("\n0x%x: ", p);
-
-      if (p == pend)
-       { /* End of pattern means we might have succeeded.  */
-         DEBUG_PRINT1 ("end of pattern ... ");
-
-         /* If we haven't matched the entire string, and we want the
-            longest match, try backtracking.  */
-         if (d != end_match_2)
-           {
-             DEBUG_PRINT1 ("backtracking.\n");
-
-             if (!FAIL_STACK_EMPTY ())
-               { /* More failure points to try.  */
-                 boolean same_str_p = (FIRST_STRING_P (match_end)
-                                       == MATCHING_IN_FIRST_STRING);
-
-                 /* If exceeds best match so far, save it.  */
-                 if (!best_regs_set
-                     || (same_str_p && d > match_end)
-                     || (!same_str_p && !MATCHING_IN_FIRST_STRING))
-                   {
-                     best_regs_set = true;
-                     match_end = d;
-
-                     DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
-
-                     for (mcnt = 1; mcnt < num_regs; mcnt++)
-                       {
-                         best_regstart[mcnt] = regstart[mcnt];
-                         best_regend[mcnt] = regend[mcnt];
-                       }
-                   }
-                 goto fail;
-               }
-
-             /* If no failure points, don't restore garbage.  */
-             else if (best_regs_set)
-               {
-               restore_best_regs:
-                 /* Restore best match.  It may happen that `dend ==
-                    end_match_1' while the restored d is in string2.
-                    For example, the pattern `x.*y.*z' against the
-                    strings `x-' and `y-z-', if the two strings are
-                    not consecutive in memory.  */
-                 DEBUG_PRINT1 ("Restoring best registers.\n");
-
-                 d = match_end;
-                 dend = ((d >= string1 && d <= end1)
-                          ? end_match_1 : end_match_2);
-
-                 for (mcnt = 1; mcnt < num_regs; mcnt++)
-                   {
-                     regstart[mcnt] = best_regstart[mcnt];
-                     regend[mcnt] = best_regend[mcnt];
-                   }
-               }
-           } /* d != end_match_2 */
-
-         DEBUG_PRINT1 ("Accepting match.\n");
-
-         /* If caller wants register contents data back, do it.  */
-         if (regs && !bufp->no_sub)
-           {
-             /* Have the register data arrays been allocated?  */
-             if (bufp->regs_allocated == REGS_UNALLOCATED)
-               { /* No.  So allocate them with malloc.  We need one
-                    extra element beyond `num_regs' for the `-1' marker
-                    GNU code uses.  */
-                 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
-                 regs->start = TALLOC (regs->num_regs, regoff_t);
-                 regs->end = TALLOC (regs->num_regs, regoff_t);
-                 if (regs->start == NULL || regs->end == NULL)
-                   return -2;
-                 bufp->regs_allocated = REGS_REALLOCATE;
-               }
-             else if (bufp->regs_allocated == REGS_REALLOCATE)
-               { /* Yes.  If we need more elements than were already
-                    allocated, reallocate them.  If we need fewer, just
-                    leave it alone.  */
-                 if (regs->num_regs < num_regs + 1)
-                   {
-                     regs->num_regs = num_regs + 1;
-                     RETALLOC (regs->start, regs->num_regs, regoff_t);
-                     RETALLOC (regs->end, regs->num_regs, regoff_t);
-                     if (regs->start == NULL || regs->end == NULL)
-                       return -2;
-                   }
-               }
-             else
-               assert (bufp->regs_allocated == REGS_FIXED);
-
-             /* Convert the pointer data in `regstart' and `regend' to
-                indices.  Register zero has to be set differently,
-                since we haven't kept track of any info for it.  */
-             if (regs->num_regs > 0)
-               {
-                 regs->start[0] = pos;
-                 regs->end[0] = (MATCHING_IN_FIRST_STRING ? d - string1
-                                 : d - string2 + size1);
-               }
-
-             /* Go through the first `min (num_regs, regs->num_regs)'
-                registers, since that is all we initialized.  */
-             for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
-               {
-                 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
-                   regs->start[mcnt] = regs->end[mcnt] = -1;
-                 else
-                   {
-                     regs->start[mcnt] = POINTER_TO_OFFSET (regstart[mcnt]);
-                     regs->end[mcnt] = POINTER_TO_OFFSET (regend[mcnt]);
-                   }
-               }
-
-             /* If the regs structure we return has more elements than
-                were in the pattern, set the extra elements to -1.  If
-                we (re)allocated the registers, this is the case,
-                because we always allocate enough to have at least one
-                -1 at the end.  */
-             for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
-               regs->start[mcnt] = regs->end[mcnt] = -1;
-           } /* regs && !bufp->no_sub */
-
-         FREE_VARIABLES ();
-         DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
-                       nfailure_points_pushed, nfailure_points_popped,
-                       nfailure_points_pushed - nfailure_points_popped);
-         DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
-
-         mcnt = d - pos - (MATCHING_IN_FIRST_STRING
-                           ? string1
-                           : string2 - size1);
-
-         DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
-
-         return mcnt;
-       }
-
-      /* Otherwise match next pattern command.  */
-#ifdef SWITCH_ENUM_BUG
-      switch ((int) ((re_opcode_t) *p++))
-#else
-      switch ((re_opcode_t) *p++)
-#endif
-       {
-       /* Ignore these.  Used to ignore the n of succeed_n's which
-          currently have n == 0.  */
-       case no_op:
-         DEBUG_PRINT1 ("EXECUTING no_op.\n");
-         break;
-
-
-       /* Match the next n pattern characters exactly.  The following
-          byte in the pattern defines n, and the n bytes after that
-          are the characters to match.  */
-       case exactn:
-         mcnt = *p++;
-         DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
-
-         /* This is written out as an if-else so we don't waste time
-            testing `translate' inside the loop.  */
-         if (translate)
-           {
-             do
-               {
-                 PREFETCH ();
-                 if (translate[(unsigned char) *d++] != (char) *p++)
-                   goto fail;
-               }
-             while (--mcnt);
-           }
-         else
-           {
-             do
-               {
-                 PREFETCH ();
-                 if (*d++ != (char) *p++) goto fail;
-               }
-             while (--mcnt);
-           }
-         SET_REGS_MATCHED ();
-         break;
-
-
-       /* Match any character except possibly a newline or a null.  */
-       case anychar:
-         DEBUG_PRINT1 ("EXECUTING anychar.\n");
-
-         PREFETCH ();
-
-         if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
-             || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
-           goto fail;
-
-         SET_REGS_MATCHED ();
-         DEBUG_PRINT2 ("  Matched `%d'.\n", *d);
-         d++;
-         break;
-
-
-       case charset:
-       case charset_not:
-         {
-           register unsigned char c;
-           boolean not = (re_opcode_t) *(p - 1) == charset_not;
-
-           DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
-
-           PREFETCH ();
-           c = TRANSLATE (*d); /* The character to match.  */
-
-           /* Cast to `unsigned' instead of `unsigned char' in case the
-              bit list is a full 32 bytes long.  */
-           if (c < (unsigned) (*p * BYTEWIDTH)
-               && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
-             not = !not;
-
-           p += 1 + *p;
-
-           if (!not) goto fail;
-
-           SET_REGS_MATCHED ();
-           d++;
-           break;
-         }
-
-
-       /* The beginning of a group is represented by start_memory.
-          The arguments are the register number in the next byte, and the
-          number of groups inner to this one in the next.  The text
-          matched within the group is recorded (in the internal
-          registers data structure) under the register number.  */
-       case start_memory:
-         DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
-
-         /* Find out if this group can match the empty string.  */
-         p1 = p;               /* To send to group_match_null_string_p.  */
-
-         if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
-           REG_MATCH_NULL_STRING_P (reg_info[*p])
-             = group_match_null_string_p (&p1, pend, reg_info);
-
-         /* Save the position in the string where we were the last time
-            we were at this open-group operator in case the group is
-            operated upon by a repetition operator, e.g., with `(a*)*b'
-            against `ab'; then we want to ignore where we are now in
-            the string in case this attempt to match fails.  */
-         old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
-                            ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
-                            : regstart[*p];
-         DEBUG_PRINT2 ("  old_regstart: %d\n",
-                        POINTER_TO_OFFSET (old_regstart[*p]));
-
-         regstart[*p] = d;
-         DEBUG_PRINT2 ("  regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
-
-         IS_ACTIVE (reg_info[*p]) = 1;
-         MATCHED_SOMETHING (reg_info[*p]) = 0;
-
-         /* This is the new highest active register.  */
-         highest_active_reg = *p;
-
-         /* If nothing was active before, this is the new lowest active
-            register.  */
-         if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
-           lowest_active_reg = *p;
-
-         /* Move past the register number and inner group count.  */
-         p += 2;
-         break;
-
-
-       /* The stop_memory opcode represents the end of a group.  Its
-          arguments are the same as start_memory's: the register
-          number, and the number of inner groups.  */
-       case stop_memory:
-         DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
-
-         /* We need to save the string position the last time we were at
-            this close-group operator in case the group is operated
-            upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
-            against `aba'; then we want to ignore where we are now in
-            the string in case this attempt to match fails.  */
-         old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
-                          ? REG_UNSET (regend[*p]) ? d : regend[*p]
-                          : regend[*p];
-         DEBUG_PRINT2 ("      old_regend: %d\n",
-                        POINTER_TO_OFFSET (old_regend[*p]));
-
-         regend[*p] = d;
-         DEBUG_PRINT2 ("      regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
-
-         /* This register isn't active anymore.  */
-         IS_ACTIVE (reg_info[*p]) = 0;
-
-         /* If this was the only register active, nothing is active
-            anymore.  */
-         if (lowest_active_reg == highest_active_reg)
-           {
-             lowest_active_reg = NO_LOWEST_ACTIVE_REG;
-             highest_active_reg = NO_HIGHEST_ACTIVE_REG;
-           }
-         else
-           { /* We must scan for the new highest active register, since
-                it isn't necessarily one less than now: consider
-                (a(b)c(d(e)f)g).  When group 3 ends, after the f), the
-                new highest active register is 1.  */
-             unsigned char r = *p - 1;
-             while (r > 0 && !IS_ACTIVE (reg_info[r]))
-               r--;
-
-             /* If we end up at register zero, that means that we saved
-                the registers as the result of an `on_failure_jump', not
-                a `start_memory', and we jumped to past the innermost
-                `stop_memory'.  For example, in ((.)*) we save
-                registers 1 and 2 as a result of the *, but when we pop
-                back to the second ), we are at the stop_memory 1.
-                Thus, nothing is active.  */
-             if (r == 0)
-               {
-                 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
-                 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
-               }
-             else
-               highest_active_reg = r;
-           }
-
-         /* If just failed to match something this time around with a
-            group that's operated on by a repetition operator, try to
-            force exit from the ``loop'', and restore the register
-            information for this group that we had before trying this
-            last match.  */
-         if ((!MATCHED_SOMETHING (reg_info[*p])
-              || (re_opcode_t) p[-3] == start_memory)
-             && (p + 2) < pend)
-           {
-             boolean is_a_jump_n = false;
-
-             p1 = p + 2;
-             mcnt = 0;
-             switch ((re_opcode_t) *p1++)
-               {
-                 case jump_n:
-                   is_a_jump_n = true;
-                 case pop_failure_jump:
-                 case maybe_pop_jump:
-                 case jump:
-                 case dummy_failure_jump:
-                   EXTRACT_NUMBER_AND_INCR (mcnt, p1);
-                   if (is_a_jump_n)
-                     p1 += 2;
-                   break;
-
-                 default:
-                   /* do nothing */ ;
-               }
-             p1 += mcnt;
-
-             /* If the next operation is a jump backwards in the pattern
-                to an on_failure_jump right before the start_memory
-                corresponding to this stop_memory, exit from the loop
-                by forcing a failure after pushing on the stack the
-                on_failure_jump's jump in the pattern, and d.  */
-             if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
-                 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
-               {
-                 /* If this group ever matched anything, then restore
-                    what its registers were before trying this last
-                    failed match, e.g., with `(a*)*b' against `ab' for
-                    regstart[1], and, e.g., with `((a*)*(b*)*)*'
-                    against `aba' for regend[3].
-
-                    Also restore the registers for inner groups for,
-                    e.g., `((a*)(b*))*' against `aba' (register 3 would
-                    otherwise get trashed).  */
-
-                 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
-                   {
-                     unsigned r;
-
-                     EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
-
-                     /* Restore this and inner groups' (if any) registers.  */
-                     for (r = *p; r < *p + *(p + 1); r++)
-                       {
-                         regstart[r] = old_regstart[r];
-
-                         /* xx why this test?  */
-                         if ((int) old_regend[r] >= (int) regstart[r])
-                           regend[r] = old_regend[r];
-                       }
-                   }
-                 p1++;
-                 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
-                 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
-
-                 goto fail;
-               }
-           }
-
-         /* Move past the register number and the inner group count.  */
-         p += 2;
-         break;
-
-
-       /* \<digit> has been turned into a `duplicate' command which is
-          followed by the numeric value of <digit> as the register number.  */
-       case duplicate:
-         {
-           register const char *d2, *dend2;
-           int regno = *p++;   /* Get which register to match against.  */
-           DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
-
-           /* Can't back reference a group which we've never matched.  */
-           if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
-             goto fail;
-
-           /* Where in input to try to start matching.  */
-           d2 = regstart[regno];
-
-           /* Where to stop matching; if both the place to start and
-              the place to stop matching are in the same string, then
-              set to the place to stop, otherwise, for now have to use
-              the end of the first string.  */
-
-           dend2 = ((FIRST_STRING_P (regstart[regno])
-                     == FIRST_STRING_P (regend[regno]))
-                    ? regend[regno] : end_match_1);
-           for (;;)
-             {
-               /* If necessary, advance to next segment in register
-                  contents.  */
-               while (d2 == dend2)
-                 {
-                   if (dend2 == end_match_2) break;
-                   if (dend2 == regend[regno]) break;
-
-                   /* End of string1 => advance to string2. */
-                   d2 = string2;
-                   dend2 = regend[regno];
-                 }
-               /* At end of register contents => success */
-               if (d2 == dend2) break;
-
-               /* If necessary, advance to next segment in data.  */
-               PREFETCH ();
-
-               /* How many characters left in this segment to match.  */
-               mcnt = dend - d;
-
-               /* Want how many consecutive characters we can match in
-                  one shot, so, if necessary, adjust the count.  */
-               if (mcnt > dend2 - d2)
-                 mcnt = dend2 - d2;
-
-               /* Compare that many; failure if mismatch, else move
-                  past them.  */
-               if (translate
-                   ? bcmp_translate (d, d2, mcnt, translate)
-                   : bcmp (d, d2, mcnt))
-                 goto fail;
-               d += mcnt, d2 += mcnt;
-             }
-         }
-         break;
-
-
-       /* begline matches the empty string at the beginning of the string
-          (unless `not_bol' is set in `bufp'), and, if
-          `newline_anchor' is set, after newlines.  */
-       case begline:
-         DEBUG_PRINT1 ("EXECUTING begline.\n");
-
-         if (AT_STRINGS_BEG (d))
-           {
-             if (!bufp->not_bol) break;
-           }
-         else if (d[-1] == '\n' && bufp->newline_anchor)
-           {
-             break;
-           }
-         /* In all other cases, we fail.  */
-         goto fail;
-
-
-       /* endline is the dual of begline.  */
-       case endline:
-         DEBUG_PRINT1 ("EXECUTING endline.\n");
-
-         if (AT_STRINGS_END (d))
-           {
-             if (!bufp->not_eol) break;
-           }
-
-         /* We have to ``prefetch'' the next character.  */
-         else if ((d == end1 ? *string2 : *d) == '\n'
-                  && bufp->newline_anchor)
-           {
-             break;
-           }
-         goto fail;
-
-
-       /* Match at the very beginning of the data.  */
-       case begbuf:
-         DEBUG_PRINT1 ("EXECUTING begbuf.\n");
-         if (AT_STRINGS_BEG (d))
-           break;
-         goto fail;
-
-
-       /* Match at the very end of the data.  */
-       case endbuf:
-         DEBUG_PRINT1 ("EXECUTING endbuf.\n");
-         if (AT_STRINGS_END (d))
-           break;
-         goto fail;
-
-
-       /* on_failure_keep_string_jump is used to optimize `.*\n'.  It
-          pushes NULL as the value for the string on the stack.  Then
-          `pop_failure_point' will keep the current value for the
-          string, instead of restoring it.  To see why, consider
-          matching `foo\nbar' against `.*\n'.  The .* matches the foo;
-          then the . fails against the \n.  But the next thing we want
-          to do is match the \n against the \n; if we restored the
-          string value, we would be back at the foo.
-
-          Because this is used only in specific cases, we don't need to
-          check all the things that `on_failure_jump' does, to make
-          sure the right things get saved on the stack.  Hence we don't
-          share its code.  The only reason to push anything on the
-          stack at all is that otherwise we would have to change
-          `anychar's code to do something besides goto fail in this
-          case; that seems worse than this.  */
-       case on_failure_keep_string_jump:
-         DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
-
-         EXTRACT_NUMBER_AND_INCR (mcnt, p);
-         DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
-
-         PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
-         break;
-
-
-       /* Uses of on_failure_jump:
-
-          Each alternative starts with an on_failure_jump that points
-          to the beginning of the next alternative.  Each alternative
-          except the last ends with a jump that in effect jumps past
-          the rest of the alternatives.  (They really jump to the
-          ending jump of the following alternative, because tensioning
-          these jumps is a hassle.)
-
-          Repeats start with an on_failure_jump that points past both
-          the repetition text and either the following jump or
-          pop_failure_jump back to this on_failure_jump.  */
-       case on_failure_jump:
-       on_failure:
-         DEBUG_PRINT1 ("EXECUTING on_failure_jump");
-
-         EXTRACT_NUMBER_AND_INCR (mcnt, p);
-         DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
-
-         /* If this on_failure_jump comes right before a group (i.e.,
-            the original * applied to a group), save the information
-            for that group and all inner ones, so that if we fail back
-            to this point, the group's information will be correct.
-            For example, in \(a*\)*\1, we need the preceding group,
-            and in \(\(a*\)b*\)\2, we need the inner group.  */
-
-         /* We can't use `p' to check ahead because we push
-            a failure point to `p + mcnt' after we do this.  */
-         p1 = p;
-
-         /* We need to skip no_op's before we look for the
-            start_memory in case this on_failure_jump is happening as
-            the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
-            against aba.  */
-         while (p1 < pend && (re_opcode_t) *p1 == no_op)
-           p1++;
-
-         if (p1 < pend && (re_opcode_t) *p1 == start_memory)
-           {
-             /* We have a new highest active register now.  This will
-                get reset at the start_memory we are about to get to,
-                but we will have saved all the registers relevant to
-                this repetition op, as described above.  */
-             highest_active_reg = *(p1 + 1) + *(p1 + 2);
-             if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
-               lowest_active_reg = *(p1 + 1);
-           }
-
-         DEBUG_PRINT1 (":\n");
-         PUSH_FAILURE_POINT (p + mcnt, d, -2);
-         break;
-
-
-       /* A smart repeat ends with `maybe_pop_jump'.
-          We change it to either `pop_failure_jump' or `jump'.  */
-       case maybe_pop_jump:
-         EXTRACT_NUMBER_AND_INCR (mcnt, p);
-         DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
-         {
-           register unsigned char *p2 = p;
-
-           /* Compare the beginning of the repeat with what in the
-              pattern follows its end. If we can establish that there
-              is nothing that they would both match, i.e., that we
-              would have to backtrack because of (as in, e.g., `a*a')
-              then we can change to pop_failure_jump, because we'll
-              never have to backtrack.
-
-              This is not true in the case of alternatives: in
-              `(a|ab)*' we do need to backtrack to the `ab' alternative
-              (e.g., if the string was `ab').  But instead of trying to
-              detect that here, the alternative has put on a dummy
-              failure point which is what we will end up popping.  */
-
-           /* Skip over open/close-group commands.  */
-           while (p2 + 2 < pend
-                  && ((re_opcode_t) *p2 == stop_memory
-                      || (re_opcode_t) *p2 == start_memory))
-             p2 += 3;                  /* Skip over args, too.  */
-
-           /* If we're at the end of the pattern, we can change.  */
-           if (p2 == pend)
-             {
-               /* Consider what happens when matching ":\(.*\)"
-                  against ":/".  I don't really understand this code
-                  yet.  */
-               p[-3] = (unsigned char) pop_failure_jump;
-               DEBUG_PRINT1
-                 ("  End of pattern: change to `pop_failure_jump'.\n");
-             }
-
-           else if ((re_opcode_t) *p2 == exactn
-                    || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
-             {
-               register unsigned char c
-                 = *p2 == (unsigned char) endline ? '\n' : p2[2];
-               p1 = p + mcnt;
-
-               /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
-                  to the `maybe_finalize_jump' of this case.  Examine what
-                  follows.  */
-               if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
-                 {
-                   p[-3] = (unsigned char) pop_failure_jump;
-                   DEBUG_PRINT3 ("  %c != %c => pop_failure_jump.\n",
-                                 c, p1[5]);
-                 }
-
-               else if ((re_opcode_t) p1[3] == charset
-                        || (re_opcode_t) p1[3] == charset_not)
-                 {
-                   int not = (re_opcode_t) p1[3] == charset_not;
-
-                   if (c < (unsigned char) (p1[4] * BYTEWIDTH)
-                       && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
-                     not = !not;
-
-                   /* `not' is equal to 1 if c would match, which means
-                       that we can't change to pop_failure_jump.  */
-                   if (!not)
-                     {
-                       p[-3] = (unsigned char) pop_failure_jump;
-                       DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
-                     }
-                 }
-             }
-         }
-         p -= 2;               /* Point at relative address again.  */
-         if ((re_opcode_t) p[-1] != pop_failure_jump)
-           {
-             p[-1] = (unsigned char) jump;
-             DEBUG_PRINT1 ("  Match => jump.\n");
-             goto unconditional_jump;
-           }
-       /* Note fall through.  */
-
-
-       /* The end of a simple repeat has a pop_failure_jump back to
-          its matching on_failure_jump, where the latter will push a
-          failure point.  The pop_failure_jump takes off failure
-          points put on by this pop_failure_jump's matching
-          on_failure_jump; we got through the pattern to here from the
-          matching on_failure_jump, so didn't fail.  */
-       case pop_failure_jump:
-         {
-           /* We need to pass separate storage for the lowest and
-              highest registers, even though we don't care about the
-              actual values.  Otherwise, we will restore only one
-              register from the stack, since lowest will == highest in
-              `pop_failure_point'.  */
-           unsigned dummy_low_reg, dummy_high_reg;
-           unsigned char *pdummy;
-           const char *sdummy;
-
-           DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
-           POP_FAILURE_POINT (sdummy, pdummy,
-                              dummy_low_reg, dummy_high_reg,
-                              reg_dummy, reg_dummy, reg_info_dummy);
-         }
-         /* Note fall through.  */
-
-
-       /* Unconditionally jump (without popping any failure points).  */
-       case jump:
-       unconditional_jump:
-         EXTRACT_NUMBER_AND_INCR (mcnt, p);    /* Get the amount to jump.  */
-         DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
-         p += mcnt;                            /* Do the jump.  */
-         DEBUG_PRINT2 ("(to 0x%x).\n", p);
-         break;
-
-
-       /* We need this opcode so we can detect where alternatives end
-          in `group_match_null_string_p' et al.  */
-       case jump_past_alt:
-         DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
-         goto unconditional_jump;
-
-
-       /* Normally, the on_failure_jump pushes a failure point, which
-          then gets popped at pop_failure_jump.  We will end up at
-          pop_failure_jump, also, and with a pattern of, say, `a+', we
-          are skipping over the on_failure_jump, so we have to push
-          something meaningless for pop_failure_jump to pop.  */
-       case dummy_failure_jump:
-         DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
-         /* It doesn't matter what we push for the string here.  What
-            the code at `fail' tests is the value for the pattern.  */
-         PUSH_FAILURE_POINT (0, 0, -2);
-         goto unconditional_jump;
-
-
-       /* At the end of an alternative, we need to push a dummy failure
-          point in case we are followed by a `pop_failure_jump', because
-          we don't want the failure point for the alternative to be
-          popped.  For example, matching `(a|ab)*' against `aab'
-          requires that we match the `ab' alternative.  */
-       case push_dummy_failure:
-         DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
-         /* See comments just above at `dummy_failure_jump' about the
-            two zeroes.  */
-         PUSH_FAILURE_POINT (0, 0, -2);
-         break;
-
-       /* Have to succeed matching what follows at least n times.
-          After that, handle like `on_failure_jump'.  */
-       case succeed_n:
-         EXTRACT_NUMBER (mcnt, p + 2);
-         DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
-
-         assert (mcnt >= 0);
-         /* Originally, this is how many times we HAVE to succeed.  */
-         if (mcnt > 0)
-           {
-              mcnt--;
-              p += 2;
-              STORE_NUMBER_AND_INCR (p, mcnt);
-              DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p, mcnt);
-           }
-         else if (mcnt == 0)
-           {
-             DEBUG_PRINT2 ("  Setting two bytes from 0x%x to no_op.\n", p+2);
-             p[2] = (unsigned char) no_op;
-             p[3] = (unsigned char) no_op;
-             goto on_failure;
-           }
-         break;
-
-       case jump_n:
-         EXTRACT_NUMBER (mcnt, p + 2);
-         DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
-
-         /* Originally, this is how many times we CAN jump.  */
-         if (mcnt)
-           {
-              mcnt--;
-              STORE_NUMBER (p + 2, mcnt);
-              goto unconditional_jump;
-           }
-         /* If don't have to jump any more, skip over the rest of command.  */
-         else
-           p += 4;
-         break;
-
-       case set_number_at:
-         {
-           DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
-
-           EXTRACT_NUMBER_AND_INCR (mcnt, p);
-           p1 = p + mcnt;
-           EXTRACT_NUMBER_AND_INCR (mcnt, p);
-           DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p1, mcnt);
-           STORE_NUMBER (p1, mcnt);
-           break;
-         }
-
-       case wordbound:
-         DEBUG_PRINT1 ("EXECUTING wordbound.\n");
-         if (AT_WORD_BOUNDARY (d))
-           break;
-         goto fail;
-
-       case notwordbound:
-         DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
-         if (AT_WORD_BOUNDARY (d))
-           goto fail;
-         break;
-
-       case wordbeg:
-         DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
-         if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
-           break;
-         goto fail;
-
-       case wordend:
-         DEBUG_PRINT1 ("EXECUTING wordend.\n");
-         if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
-             && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
-           break;
-         goto fail;
-
-#ifdef emacs
-#ifdef emacs19
-       case before_dot:
-         DEBUG_PRINT1 ("EXECUTING before_dot.\n");
-         if (PTR_CHAR_POS ((unsigned char *) d) >= point)
-           goto fail;
-         break;
-
-       case at_dot:
-         DEBUG_PRINT1 ("EXECUTING at_dot.\n");
-         if (PTR_CHAR_POS ((unsigned char *) d) != point)
-           goto fail;
-         break;
-
-       case after_dot:
-         DEBUG_PRINT1 ("EXECUTING after_dot.\n");
-         if (PTR_CHAR_POS ((unsigned char *) d) <= point)
-           goto fail;
-         break;
-#else /* not emacs19 */
-       case at_dot:
-         DEBUG_PRINT1 ("EXECUTING at_dot.\n");
-         if (PTR_CHAR_POS ((unsigned char *) d) + 1 != point)
-           goto fail;
-         break;
-#endif /* not emacs19 */
-
-       case syntaxspec:
-         DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
-         mcnt = *p++;
-         goto matchsyntax;
-
-       case wordchar:
-         DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
-         mcnt = (int) Sword;
-       matchsyntax:
-         PREFETCH ();
-         if (SYNTAX (*d++) != (enum syntaxcode) mcnt)
-           goto fail;
-         SET_REGS_MATCHED ();
-         break;
-
-       case notsyntaxspec:
-         DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
-         mcnt = *p++;
-         goto matchnotsyntax;
-
-       case notwordchar:
-         DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
-         mcnt = (int) Sword;
-       matchnotsyntax:
-         PREFETCH ();
-         if (SYNTAX (*d++) == (enum syntaxcode) mcnt)
-           goto fail;
-         SET_REGS_MATCHED ();
-         break;
-
-#else /* not emacs */
-       case wordchar:
-         DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
-         PREFETCH ();
-         if (!WORDCHAR_P (d))
-           goto fail;
-         SET_REGS_MATCHED ();
-         d++;
-         break;
-
-       case notwordchar:
-         DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
-         PREFETCH ();
-         if (WORDCHAR_P (d))
-           goto fail;
-         SET_REGS_MATCHED ();
-         d++;
-         break;
-#endif /* not emacs */
-
-       default:
-         abort ();
-       }
-      continue;  /* Successfully executed one pattern command; keep going.  */
-
-
-    /* We goto here if a matching operation fails. */
-    fail:
-      if (!FAIL_STACK_EMPTY ())
-       { /* A restart point is known.  Restore to that state.  */
-         DEBUG_PRINT1 ("\nFAIL:\n");
-         POP_FAILURE_POINT (d, p,
-                            lowest_active_reg, highest_active_reg,
-                            regstart, regend, reg_info);
-
-         /* If this failure point is a dummy, try the next one.  */
-         if (!p)
-           goto fail;
-
-         /* If we failed to the end of the pattern, don't examine *p.  */
-         assert (p <= pend);
-         if (p < pend)
-           {
-             boolean is_a_jump_n = false;
-
-             /* If failed to a backwards jump that's part of a repetition
-                loop, need to pop this failure point and use the next one.  */
-             switch ((re_opcode_t) *p)
-               {
-               case jump_n:
-                 is_a_jump_n = true;
-               case maybe_pop_jump:
-               case pop_failure_jump:
-               case jump:
-                 p1 = p + 1;
-                 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
-                 p1 += mcnt;
-
-                 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
-                     || (!is_a_jump_n
-                         && (re_opcode_t) *p1 == on_failure_jump))
-                   goto fail;
-                 break;
-               default:
-                 /* do nothing */ ;
-               }
-           }
-
-         if (d >= string1 && d <= end1)
-           dend = end_match_1;
-       }
-      else
-       break;   /* Matching at this starting point really fails.  */
-    } /* for (;;) */
-
-  if (best_regs_set)
-    goto restore_best_regs;
-
-  FREE_VARIABLES ();
-
-  return -1;                           /* Failure to match.  */
-} /* re_match_2 */
-\f
-/* Subroutine definitions for re_match_2.  */
-
-
-/* We are passed P pointing to a register number after a start_memory.
-
-   Return true if the pattern up to the corresponding stop_memory can
-   match the empty string, and false otherwise.
-
-   If we find the matching stop_memory, sets P to point to one past its number.
-   Otherwise, sets P to an undefined byte less than or equal to END.
-
-   We don't handle duplicates properly (yet).  */
-
-static boolean
-group_match_null_string_p (p, end, reg_info)
-    unsigned char **p, *end;
-    register_info_type *reg_info;
-{
-  int mcnt;
-  /* Point to after the args to the start_memory.  */
-  unsigned char *p1 = *p + 2;
-
-  while (p1 < end)
-    {
-      /* Skip over opcodes that can match nothing, and return true or
-        false, as appropriate, when we get to one that can't, or to the
-        matching stop_memory.  */
-
-      switch ((re_opcode_t) *p1)
-       {
-       /* Could be either a loop or a series of alternatives.  */
-       case on_failure_jump:
-         p1++;
-         EXTRACT_NUMBER_AND_INCR (mcnt, p1);
-
-         /* If the next operation is not a jump backwards in the
-            pattern.  */
-
-         if (mcnt >= 0)
-           {
-             /* Go through the on_failure_jumps of the alternatives,
-                seeing if any of the alternatives cannot match nothing.
-                The last alternative starts with only a jump,
-                whereas the rest start with on_failure_jump and end
-                with a jump, e.g., here is the pattern for `a|b|c':
-
-                /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
-                /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
-                /exactn/1/c
-
-                So, we have to first go through the first (n-1)
-                alternatives and then deal with the last one separately.  */
-
-
-             /* Deal with the first (n-1) alternatives, which start
-                with an on_failure_jump (see above) that jumps to right
-                past a jump_past_alt.  */
-
-             while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
-               {
-                 /* `mcnt' holds how many bytes long the alternative
-                    is, including the ending `jump_past_alt' and
-                    its number.  */
-
-                 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
-                                                     reg_info))
-                   return false;
-
-                 /* Move to right after this alternative, including the
-                    jump_past_alt.  */
-                 p1 += mcnt;
-
-                 /* Break if it's the beginning of an n-th alternative
-                    that doesn't begin with an on_failure_jump.  */
-                 if ((re_opcode_t) *p1 != on_failure_jump)
-                   break;
-
-                 /* Still have to check that it's not an n-th
-                    alternative that starts with an on_failure_jump.  */
-                 p1++;
-                 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
-                 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
-                   {
-                     /* Get to the beginning of the n-th alternative.  */
-                     p1 -= 3;
-                     break;
-                   }
-               }
-
-             /* Deal with the last alternative: go back and get number
-                of the `jump_past_alt' just before it.  `mcnt' contains
-                the length of the alternative.  */
-             EXTRACT_NUMBER (mcnt, p1 - 2);
-
-             if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
-               return false;
-
-             p1 += mcnt;       /* Get past the n-th alternative.  */
-           } /* if mcnt > 0 */
-         break;
-
-
-       case stop_memory:
-         assert (p1[1] == **p);
-         *p = p1 + 2;
-         return true;
-
-
-       default:
-         if (!common_op_match_null_string_p (&p1, end, reg_info))
-           return false;
-       }
-    } /* while p1 < end */
-
-  return false;
-} /* group_match_null_string_p */
-
-
-/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
-   It expects P to be the first byte of a single alternative and END one
-   byte past the last. The alternative can contain groups.  */
-
-static boolean
-alt_match_null_string_p (p, end, reg_info)
-    unsigned char *p, *end;
-    register_info_type *reg_info;
-{
-  int mcnt;
-  unsigned char *p1 = p;
-
-  while (p1 < end)
-    {
-      /* Skip over opcodes that can match nothing, and break when we get
-        to one that can't.  */
-
-      switch ((re_opcode_t) *p1)
-       {
-       /* It's a loop.  */
-       case on_failure_jump:
-         p1++;
-         EXTRACT_NUMBER_AND_INCR (mcnt, p1);
-         p1 += mcnt;
-         break;
-
-       default:
-         if (!common_op_match_null_string_p (&p1, end, reg_info))
-           return false;
-       }
-    }  /* while p1 < end */
-
-  return true;
-} /* alt_match_null_string_p */
-
-
-/* Deals with the ops common to group_match_null_string_p and
-   alt_match_null_string_p.
-
-   Sets P to one after the op and its arguments, if any.  */
-
-static boolean
-common_op_match_null_string_p (p, end, reg_info)
-    unsigned char **p, *end;
-    register_info_type *reg_info;
-{
-  int mcnt;
-  boolean ret;
-  int reg_no;
-  unsigned char *p1 = *p;
-
-  switch ((re_opcode_t) *p1++)
-    {
-    case no_op:
-    case begline:
-    case endline:
-    case begbuf:
-    case endbuf:
-    case wordbeg:
-    case wordend:
-    case wordbound:
-    case notwordbound:
-#ifdef emacs
-    case before_dot:
-    case at_dot:
-    case after_dot:
-#endif
-      break;
-
-    case start_memory:
-      reg_no = *p1;
-      assert (reg_no > 0 && reg_no <= MAX_REGNUM);
-      ret = group_match_null_string_p (&p1, end, reg_info);
-
-      /* Have to set this here in case we're checking a group which
-        contains a group and a back reference to it.  */
-
-      if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
-       REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
-
-      if (!ret)
-       return false;
-      break;
-
-    /* If this is an optimized succeed_n for zero times, make the jump.  */
-    case jump:
-      EXTRACT_NUMBER_AND_INCR (mcnt, p1);
-      if (mcnt >= 0)
-       p1 += mcnt;
-      else
-       return false;
-      break;
-
-    case succeed_n:
-      /* Get to the number of times to succeed.  */
-      p1 += 2;
-      EXTRACT_NUMBER_AND_INCR (mcnt, p1);
-
-      if (mcnt == 0)
-       {
-         p1 -= 4;
-         EXTRACT_NUMBER_AND_INCR (mcnt, p1);
-         p1 += mcnt;
-       }
-      else
-       return false;
-      break;
-
-    case duplicate:
-      if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
-       return false;
-      break;
-
-    case set_number_at:
-      p1 += 4;
-
-    default:
-      /* All other opcodes mean we cannot match the empty string.  */
-      return false;
-  }
-
-  *p = p1;
-  return true;
-} /* common_op_match_null_string_p */
-
-
-/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
-   bytes; nonzero otherwise.  */
-
-static int
-bcmp_translate(
-     unsigned char *s1,
-     unsigned char *s2,
-     int len,
-     char *translate
-)
-{
-  register unsigned char *p1 = s1, *p2 = s2;
-  while (len)
-    {
-      if (translate[*p1++] != translate[*p2++]) return 1;
-      len--;
-    }
-  return 0;
-}
-\f
-/* Entry points for GNU code.  */
-
-/* re_compile_pattern is the GNU regular expression compiler: it
-   compiles PATTERN (of length SIZE) and puts the result in BUFP.
-   Returns 0 if the pattern was valid, otherwise an error string.
-
-   Assumes the `allocated' (and perhaps `buffer') and `translate' fields
-   are set in BUFP on entry.
-
-   We call regex_compile to do the actual compilation.  */
-
-const char *
-re_compile_pattern (pattern, length, bufp)
-     const char *pattern;
-     int length;
-     struct re_pattern_buffer *bufp;
-{
-  reg_errcode_t ret;
-
-  /* GNU code is written to assume at least RE_NREGS registers will be set
-     (and at least one extra will be -1).  */
-  bufp->regs_allocated = REGS_UNALLOCATED;
-
-  /* And GNU code determines whether or not to get register information
-     by passing null for the REGS argument to re_match, etc., not by
-     setting no_sub.  */
-  bufp->no_sub = 0;
-
-  /* Match anchors at newline.  */
-  bufp->newline_anchor = 1;
-
-  ret = regex_compile (pattern, length, re_syntax_options, bufp);
-
-  return re_error_msg[(int) ret];
-}
-\f
-/* Entry points compatible with 4.2 BSD regex library.  We don't define
-   them if this is an Emacs or POSIX compilation.  */
-
-#if !defined (emacs) && !defined (_POSIX_SOURCE)
-
-/* BSD has one and only one pattern buffer.  */
-static struct re_pattern_buffer re_comp_buf;
-
-char *
-re_comp (s)
-    const char *s;
-{
-  reg_errcode_t ret;
-
-  if (!s)
-    {
-      if (!re_comp_buf.buffer)
-       return "No previous regular expression";
-      return 0;
-    }
-
-  if (!re_comp_buf.buffer)
-    {
-      re_comp_buf.buffer = (unsigned char *) malloc (200);
-      if (re_comp_buf.buffer == NULL)
-       return "Memory exhausted";
-      re_comp_buf.allocated = 200;
-
-      re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
-      if (re_comp_buf.fastmap == NULL)
-       return "Memory exhausted";
-    }
-
-  /* Since `re_exec' always passes NULL for the `regs' argument, we
-     don't need to initialize the pattern buffer fields which affect it.  */
-
-  /* Match anchors at newlines.  */
-  re_comp_buf.newline_anchor = 1;
-
-  ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
-
-  /* Yes, we're discarding `const' here.  */
-  return (char *) re_error_msg[(int) ret];
-}
-
-
-int
-re_exec (s)
-    const char *s;
-{
-  const int len = strlen (s);
-  return
-    0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
-}
-#endif /* not emacs and not _POSIX_SOURCE */
-\f
-/* POSIX.2 functions.  Don't define these for Emacs.  */
-
-#ifndef emacs
-
-/* regcomp takes a regular expression as a string and compiles it.
-
-   PREG is a regex_t *.  We do not expect any fields to be initialized,
-   since POSIX says we shouldn't.  Thus, we set
-
-     `buffer' to the compiled pattern;
-     `used' to the length of the compiled pattern;
-     `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
-       REG_EXTENDED bit in CFLAGS is set; otherwise, to
-       RE_SYNTAX_POSIX_BASIC;
-     `newline_anchor' to REG_NEWLINE being set in CFLAGS;
-     `fastmap' and `fastmap_accurate' to zero;
-     `re_nsub' to the number of subexpressions in PATTERN.
-
-   PATTERN is the address of the pattern string.
-
-   CFLAGS is a series of bits which affect compilation.
-
-     If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
-     use POSIX basic syntax.
-
-     If REG_NEWLINE is set, then . and [^...] don't match newline.
-     Also, regexec will try a match beginning after every newline.
-
-     If REG_ICASE is set, then we considers upper- and lowercase
-     versions of letters to be equivalent when matching.
-
-     If REG_NOSUB is set, then when PREG is passed to regexec, that
-     routine will report only success or failure, and nothing about the
-     registers.
-
-   It returns 0 if it succeeds, nonzero if it doesn't.  (See regex.h for
-   the return codes and their meanings.)  */
-
-int
-regcomp (preg, pattern, cflags)
-    regex_t *preg;
-    const char *pattern;
-    int cflags;
-{
-  reg_errcode_t ret;
-  unsigned syntax
-    = (cflags & REG_EXTENDED) ?
-      RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
-
-  /* regex_compile will allocate the space for the compiled pattern.  */
-  preg->buffer = 0;
-  preg->allocated = 0;
-
-  /* Don't bother to use a fastmap when searching.  This simplifies the
-     REG_NEWLINE case: if we used a fastmap, we'd have to put all the
-     characters after newlines into the fastmap.  This way, we just try
-     every character.  */
-  preg->fastmap = 0;
-
-  if (cflags & REG_ICASE)
-    {
-      unsigned i;
-
-      preg->translate = (char *) malloc (CHAR_SET_SIZE);
-      if (preg->translate == NULL)
-       return (int) REG_ESPACE;
-
-      /* Map uppercase characters to corresponding lowercase ones.  */
-      for (i = 0; i < CHAR_SET_SIZE; i++)
-       preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
-    }
-  else
-    preg->translate = NULL;
-
-  /* If REG_NEWLINE is set, newlines are treated differently.  */
-  if (cflags & REG_NEWLINE)
-    { /* REG_NEWLINE implies neither . nor [^...] match newline.  */
-      syntax &= ~RE_DOT_NEWLINE;
-      syntax |= RE_HAT_LISTS_NOT_NEWLINE;
-      /* It also changes the matching behavior.  */
-      preg->newline_anchor = 1;
-    }
-  else
-    preg->newline_anchor = 0;
-
-  preg->no_sub = !!(cflags & REG_NOSUB);
-
-  /* POSIX says a null character in the pattern terminates it, so we
-     can use strlen here in compiling the pattern.  */
-  ret = regex_compile (pattern, strlen (pattern), syntax, preg);
-
-  /* POSIX doesn't distinguish between an unmatched open-group and an
-     unmatched close-group: both are REG_EPAREN.  */
-  if (ret == REG_ERPAREN) ret = REG_EPAREN;
-
-  return (int) ret;
-}
-
-
-/* regexec searches for a given pattern, specified by PREG, in the
-   string STRING.
-
-   If NMATCH is zero or REG_NOSUB was set in the cflags argument to
-   `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at
-   least NMATCH elements, and we set them to the offsets of the
-   corresponding matched substrings.
-
-   EFLAGS specifies `execution flags' which affect matching: if
-   REG_NOTBOL is set, then ^ does not match at the beginning of the
-   string; if REG_NOTEOL is set, then $ does not match at the end.
-
-   We return 0 if we find a match and REG_NOMATCH if not.  */
-
-int
-regexec (preg, string, nmatch, pmatch, eflags)
-    const regex_t *preg;
-    const char *string;
-    size_t nmatch;
-    regmatch_t pmatch[];
-    int eflags;
-{
-  int ret;
-  struct re_registers regs;
-  regex_t private_preg;
-  int len = strlen (string);
-  boolean want_reg_info = !preg->no_sub && nmatch > 0;
-
-  private_preg = *preg;
-
-  private_preg.not_bol = !!(eflags & REG_NOTBOL);
-  private_preg.not_eol = !!(eflags & REG_NOTEOL);
-
-  /* The user has told us exactly how many registers to return
-     information about, via `nmatch'.  We have to pass that on to the
-     matching routines.  */
-  private_preg.regs_allocated = REGS_FIXED;
-
-  if (want_reg_info)
-    {
-      regs.num_regs = nmatch;
-      regs.start = TALLOC (nmatch, regoff_t);
-      regs.end = TALLOC (nmatch, regoff_t);
-      if (regs.start == NULL || regs.end == NULL)
-       return (int) REG_NOMATCH;
-    }
-
-  /* Perform the searching operation.  */
-  ret = re_search (&private_preg, string, len,
-                  /* start: */ 0, /* range: */ len,
-                  want_reg_info ? &regs : (struct re_registers *) 0);
-
-  /* Copy the register information to the POSIX structure.  */
-  if (want_reg_info)
-    {
-      if (ret >= 0)
-       {
-         unsigned r;
-
-         for (r = 0; r < nmatch; r++)
-           {
-             pmatch[r].rm_so = regs.start[r];
-             pmatch[r].rm_eo = regs.end[r];
-           }
-       }
-
-      /* If we needed the temporary register info, free the space now.  */
-      free (regs.start);
-      free (regs.end);
-    }
-
-  /* We want zero return to mean success, unlike `re_search'.  */
-  return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
-}
-
-
-/* Returns a message corresponding to an error code, ERRCODE, returned
-   from either regcomp or regexec.   We don't use PREG here.  */
-
-size_t
-regerror(int errcode, const regex_t *preg,
-        char *errbuf, size_t errbuf_size)
-{
-  const char *msg;
-  size_t msg_size;
-
-  if (errcode < 0
-      || errcode >= (sizeof (re_error_msg) / sizeof (re_error_msg[0])))
-    /* Only error codes returned by the rest of the code should be passed
-       to this routine.  If we are given anything else, or if other regex
-       code generates an invalid error code, then the program has a bug.
-       Dump core so we can fix it.  */
-    abort ();
-
-  msg = re_error_msg[errcode];
-
-  /* POSIX doesn't require that we do anything in this case, but why
-     not be nice.  */
-  if (! msg)
-    msg = "Success";
-
-  msg_size = strlen (msg) + 1; /* Includes the null.  */
-
-  if (errbuf_size != 0)
-    {
-      if (msg_size > errbuf_size)
-       {
-         strncpy (errbuf, msg, errbuf_size - 1);
-         errbuf[errbuf_size - 1] = 0;
-       }
-      else
-       strcpy (errbuf, msg);
-    }
-
-  return msg_size;
-}
-
-
-/* Free dynamically allocated space used by PREG.  */
-
-void
-regfree (preg)
-    regex_t *preg;
-{
-  if (preg->buffer != NULL)
-    free (preg->buffer);
-  preg->buffer = NULL;
-
-  preg->allocated = 0;
-  preg->used = 0;
-
-  if (preg->fastmap != NULL)
-    free (preg->fastmap);
-  preg->fastmap = NULL;
-  preg->fastmap_accurate = 0;
-
-  if (preg->translate != NULL)
-    free (preg->translate);
-  preg->translate = NULL;
-}
-
-#endif /* not emacs  */
-\f
-/*
-Local variables:
-make-backup-files: t
-version-control: t
-trim-versions-without-asking: nil
-End:
-*/
index 6eb64f14020db0a20ba596de5b58b3c552157f16..de9332788359ed127e3a613b0d4c676836f0416e 100644 (file)
@@ -1,70 +1,87 @@
 /* Definitions for data structures and routines for the regular
-   expression library, version 0.12.
+   expression library.
+   Copyright (C) 1985,1989-93,1995-98,2000,2001,2002,2003,2005,2006,2008
+   Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
 
-   Copyright (C) 1985, 1989, 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Lesser General Public
+   License as published by the Free Software Foundation; either
+   version 2.1 of the License, or (at your option) any later version.
 
-   This program is free software; you can redistribute it and/or modify
-   it under the terms of the GNU General Public License as published by
-   the Free Software Foundation; either version 2, or (at your option)
-   any later version.
-
-   This program is distributed in the hope that it will be useful,
+   The GNU C Library is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
-   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-   GNU General Public License for more details.
-
-   You should have received a copy of the GNU General Public License
-   along with this program; if not, write to the Free Software
-   Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.  */
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Lesser General Public License for more details.
 
-#ifndef __REGEXP_LIBRARY_H__
-#define __REGEXP_LIBRARY_H__
+   You should have received a copy of the GNU Lesser General Public
+   License along with the GNU C Library; if not, write to the Free
+   Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+   02110-1301 USA.  */
 
-/* POSIX says that <sys/types.h> must be included (by the caller) before
-   <regex.h>.  */
+#ifndef _REGEX_H
+#define _REGEX_H 1
 
-#ifdef VMS
-/* VMS doesn't have `size_t' in <sys/types.h>, even though POSIX says it
-   should be there.  */
+#ifdef HAVE_STDDEF_H
 #include <stddef.h>
 #endif
 
+#ifdef HAVE_SYS_TYPES_H
+#include <sys/types.h>
+#endif
+
+#ifndef _LIBC
+#define __USE_GNU      1
+#endif
+
+/* Allow the use in C++ code.  */
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* The following two types have to be signed and unsigned integer type
+   wide enough to hold a value of a pointer.  For most ANSI compilers
+   ptrdiff_t and size_t should be likely OK.  Still size of these two
+   types is 2 for Microsoft C.  Ugh... */
+typedef long int s_reg_t;
+typedef unsigned long int active_reg_t;
 
 /* The following bits are used to determine the regexp syntax we
    recognize.  The set/not-set meanings are chosen so that Emacs syntax
    remains the value 0.  The bits are given in alphabetical order, and
    the definitions shifted by one from the previous bit; thus, when we
    add or remove a bit, only one other definition need change.  */
-typedef unsigned reg_syntax_t;
+typedef unsigned long int reg_syntax_t;
 
+#ifdef __USE_GNU
 /* If this bit is not set, then \ inside a bracket expression is literal.
    If set, then such a \ quotes the following character.  */
-#define RE_BACKSLASH_ESCAPE_IN_LISTS (1)
+# define RE_BACKSLASH_ESCAPE_IN_LISTS ((unsigned long int) 1)
 
 /* If this bit is not set, then + and ? are operators, and \+ and \? are
      literals.
    If set, then \+ and \? are operators and + and ? are literals.  */
-#define RE_BK_PLUS_QM (RE_BACKSLASH_ESCAPE_IN_LISTS << 1)
+# define RE_BK_PLUS_QM (RE_BACKSLASH_ESCAPE_IN_LISTS << 1)
 
 /* If this bit is set, then character classes are supported.  They are:
      [:alpha:], [:upper:], [:lower:],  [:digit:], [:alnum:], [:xdigit:],
      [:space:], [:print:], [:punct:], [:graph:], and [:cntrl:].
    If not set, then character classes are not supported.  */
-#define RE_CHAR_CLASSES (RE_BK_PLUS_QM << 1)
+# define RE_CHAR_CLASSES (RE_BK_PLUS_QM << 1)
 
 /* If this bit is set, then ^ and $ are always anchors (outside bracket
      expressions, of course).
    If this bit is not set, then it depends:
-       ^  is an anchor if it is at the beginning of a regular
-          expression or after an open-group or an alternation operator;
-       $  is an anchor if it is at the end of a regular expression, or
-          before a close-group or an alternation operator.
+        ^  is an anchor if it is at the beginning of a regular
+           expression or after an open-group or an alternation operator;
+        $  is an anchor if it is at the end of a regular expression, or
+           before a close-group or an alternation operator.
 
    This bit could be (re)combined with RE_CONTEXT_INDEP_OPS, because
    POSIX draft 11.2 says that * etc. in leading positions is undefined.
    We already implemented a previous draft which made those constructs
    invalid, though, so we haven't changed the code back.  */
-#define RE_CONTEXT_INDEP_ANCHORS (RE_CHAR_CLASSES << 1)
+# define RE_CONTEXT_INDEP_ANCHORS (RE_CHAR_CLASSES << 1)
 
 /* If this bit is set, then special characters are always special
      regardless of where they are in the pattern.
@@ -72,63 +89,94 @@ typedef unsigned reg_syntax_t;
      some contexts; otherwise they are ordinary.  Specifically,
      * + ? and intervals are only special when not after the beginning,
      open-group, or alternation operator.  */
-#define RE_CONTEXT_INDEP_OPS (RE_CONTEXT_INDEP_ANCHORS << 1)
+# define RE_CONTEXT_INDEP_OPS (RE_CONTEXT_INDEP_ANCHORS << 1)
 
 /* If this bit is set, then *, +, ?, and { cannot be first in an re or
      immediately after an alternation or begin-group operator.  */
-#define RE_CONTEXT_INVALID_OPS (RE_CONTEXT_INDEP_OPS << 1)
+# define RE_CONTEXT_INVALID_OPS (RE_CONTEXT_INDEP_OPS << 1)
 
 /* If this bit is set, then . matches newline.
    If not set, then it doesn't.  */
-#define RE_DOT_NEWLINE (RE_CONTEXT_INVALID_OPS << 1)
+# define RE_DOT_NEWLINE (RE_CONTEXT_INVALID_OPS << 1)
 
 /* If this bit is set, then . doesn't match NUL.
    If not set, then it does.  */
-#define RE_DOT_NOT_NULL (RE_DOT_NEWLINE << 1)
+# define RE_DOT_NOT_NULL (RE_DOT_NEWLINE << 1)
 
 /* If this bit is set, nonmatching lists [^...] do not match newline.
    If not set, they do.  */
-#define RE_HAT_LISTS_NOT_NEWLINE (RE_DOT_NOT_NULL << 1)
+# define RE_HAT_LISTS_NOT_NEWLINE (RE_DOT_NOT_NULL << 1)
 
 /* If this bit is set, either \{...\} or {...} defines an
      interval, depending on RE_NO_BK_BRACES.
    If not set, \{, \}, {, and } are literals.  */
-#define RE_INTERVALS (RE_HAT_LISTS_NOT_NEWLINE << 1)
+# define RE_INTERVALS (RE_HAT_LISTS_NOT_NEWLINE << 1)
 
 /* If this bit is set, +, ? and | aren't recognized as operators.
    If not set, they are.  */
-#define RE_LIMITED_OPS (RE_INTERVALS << 1)
+# define RE_LIMITED_OPS (RE_INTERVALS << 1)
 
 /* If this bit is set, newline is an alternation operator.
    If not set, newline is literal.  */
-#define RE_NEWLINE_ALT (RE_LIMITED_OPS << 1)
+# define RE_NEWLINE_ALT (RE_LIMITED_OPS << 1)
 
 /* If this bit is set, then `{...}' defines an interval, and \{ and \}
      are literals.
   If not set, then `\{...\}' defines an interval.  */
-#define RE_NO_BK_BRACES (RE_NEWLINE_ALT << 1)
+# define RE_NO_BK_BRACES (RE_NEWLINE_ALT << 1)
 
 /* If this bit is set, (...) defines a group, and \( and \) are literals.
    If not set, \(...\) defines a group, and ( and ) are literals.  */
-#define RE_NO_BK_PARENS (RE_NO_BK_BRACES << 1)
+# define RE_NO_BK_PARENS (RE_NO_BK_BRACES << 1)
 
 /* If this bit is set, then \<digit> matches <digit>.
    If not set, then \<digit> is a back-reference.  */
-#define RE_NO_BK_REFS (RE_NO_BK_PARENS << 1)
+# define RE_NO_BK_REFS (RE_NO_BK_PARENS << 1)
 
 /* If this bit is set, then | is an alternation operator, and \| is literal.
    If not set, then \| is an alternation operator, and | is literal.  */
-#define RE_NO_BK_VBAR (RE_NO_BK_REFS << 1)
+# define RE_NO_BK_VBAR (RE_NO_BK_REFS << 1)
 
 /* If this bit is set, then an ending range point collating higher
      than the starting range point, as in [z-a], is invalid.
    If not set, then when ending range point collates higher than the
      starting range point, the range is ignored.  */
-#define RE_NO_EMPTY_RANGES (RE_NO_BK_VBAR << 1)
+# define RE_NO_EMPTY_RANGES (RE_NO_BK_VBAR << 1)
 
 /* If this bit is set, then an unmatched ) is ordinary.
    If not set, then an unmatched ) is invalid.  */
-#define RE_UNMATCHED_RIGHT_PAREN_ORD (RE_NO_EMPTY_RANGES << 1)
+# define RE_UNMATCHED_RIGHT_PAREN_ORD (RE_NO_EMPTY_RANGES << 1)
+
+/* If this bit is set, succeed as soon as we match the whole pattern,
+   without further backtracking.  */
+# define RE_NO_POSIX_BACKTRACKING (RE_UNMATCHED_RIGHT_PAREN_ORD << 1)
+
+/* If this bit is set, do not process the GNU regex operators.
+   If not set, then the GNU regex operators are recognized. */
+# define RE_NO_GNU_OPS (RE_NO_POSIX_BACKTRACKING << 1)
+
+/* If this bit is set, a syntactically invalid interval is treated as
+   a string of ordinary characters.  For example, the ERE 'a{1' is
+   treated as 'a\{1'.  */
+# define RE_INVALID_INTERVAL_ORD (RE_NO_GNU_OPS << 1)
+
+/* If this bit is set, then ignore case when matching.
+   If not set, then case is significant.  */
+# define RE_ICASE (RE_INVALID_INTERVAL_ORD << 1)
+
+/* This bit is used internally like RE_CONTEXT_INDEP_ANCHORS but only
+   for ^, because it is difficult to scan the regex backwards to find
+   whether ^ should be special.  */
+# define RE_CARET_ANCHORS_HERE (RE_ICASE << 1)
+
+/* If this bit is set, then \{ cannot be first in an bre or
+   immediately after an alternation or begin-group operator.  */
+# define RE_CONTEXT_INVALID_DUP (RE_CARET_ANCHORS_HERE << 1)
+
+/* If this bit is set, then no_sub will be set to 1 during
+   re_compile_pattern.  */
+#define RE_NO_SUB (RE_CONTEXT_INVALID_DUP << 1)
+#endif
 
 /* This global variable defines the particular regexp syntax to use (for
    some interfaces).  When a regexp is compiled, the syntax used is
@@ -136,6 +184,7 @@ typedef unsigned reg_syntax_t;
    already-compiled regexps.  */
 extern reg_syntax_t re_syntax_options;
 \f
+#ifdef __USE_GNU
 /* Define combinations of the above bits for the standard possibilities.
    (The [[[ comments delimit what gets put into the Texinfo file, so
    don't delete them!)  */
@@ -143,13 +192,22 @@ extern reg_syntax_t re_syntax_options;
 #define RE_SYNTAX_EMACS 0
 
 #define RE_SYNTAX_AWK                                                  \
-  (RE_BACKSLASH_ESCAPE_IN_LISTS | RE_DOT_NOT_NULL                      \
-   | RE_NO_BK_PARENS            | RE_NO_BK_REFS                                \
-   | RE_NO_BK_VBAR               | RE_NO_EMPTY_RANGES                  \
-   | RE_UNMATCHED_RIGHT_PAREN_ORD)
-
-#define RE_SYNTAX_POSIX_AWK                                            \
-  (RE_SYNTAX_POSIX_EXTENDED | RE_BACKSLASH_ESCAPE_IN_LISTS)
+  (RE_BACKSLASH_ESCAPE_IN_LISTS   | RE_DOT_NOT_NULL                    \
+   | RE_NO_BK_PARENS              | RE_NO_BK_REFS                      \
+   | RE_NO_BK_VBAR                | RE_NO_EMPTY_RANGES                 \
+   | RE_DOT_NEWLINE              | RE_CONTEXT_INDEP_ANCHORS            \
+   | RE_UNMATCHED_RIGHT_PAREN_ORD | RE_NO_GNU_OPS)
+
+#define RE_SYNTAX_GNU_AWK                                              \
+  ((RE_SYNTAX_POSIX_EXTENDED | RE_BACKSLASH_ESCAPE_IN_LISTS            \
+   | RE_INVALID_INTERVAL_ORD)                                          \
+   & ~(RE_DOT_NOT_NULL | RE_CONTEXT_INDEP_OPS                          \
+       | RE_CONTEXT_INVALID_OPS ))
+
+#define RE_SYNTAX_POSIX_AWK                                            \
+  (RE_SYNTAX_POSIX_EXTENDED | RE_BACKSLASH_ESCAPE_IN_LISTS             \
+   | RE_INTERVALS          | RE_NO_GNU_OPS                             \
+   | RE_INVALID_INTERVAL_ORD)
 
 #define RE_SYNTAX_GREP                                                 \
   (RE_BK_PLUS_QM              | RE_CHAR_CLASSES                                \
@@ -163,7 +221,8 @@ extern reg_syntax_t re_syntax_options;
    | RE_NO_BK_VBAR)
 
 #define RE_SYNTAX_POSIX_EGREP                                          \
-  (RE_SYNTAX_EGREP | RE_INTERVALS | RE_NO_BK_BRACES)
+  (RE_SYNTAX_EGREP | RE_INTERVALS | RE_NO_BK_BRACES                    \
+   | RE_INVALID_INTERVAL_ORD)
 
 /* P1003.2/D11.2, section 4.20.7.1, lines 5078ff.  */
 #define RE_SYNTAX_ED RE_SYNTAX_POSIX_BASIC
@@ -176,7 +235,7 @@ extern reg_syntax_t re_syntax_options;
    | RE_INTERVALS  | RE_NO_EMPTY_RANGES)
 
 #define RE_SYNTAX_POSIX_BASIC                                          \
-  (_RE_SYNTAX_POSIX_COMMON | RE_BK_PLUS_QM)
+  (_RE_SYNTAX_POSIX_COMMON | RE_BK_PLUS_QM | RE_CONTEXT_INVALID_DUP)
 
 /* Differs from ..._POSIX_BASIC only in that RE_BK_PLUS_QM becomes
    RE_LIMITED_OPS, i.e., \? \+ \| are not recognized.  Actually, this
@@ -185,13 +244,13 @@ extern reg_syntax_t re_syntax_options;
   (_RE_SYNTAX_POSIX_COMMON | RE_LIMITED_OPS)
 
 #define RE_SYNTAX_POSIX_EXTENDED                                       \
-  (_RE_SYNTAX_POSIX_COMMON | RE_CONTEXT_INDEP_ANCHORS                  \
-   | RE_CONTEXT_INDEP_OPS  | RE_NO_BK_BRACES                           \
-   | RE_NO_BK_PARENS       | RE_NO_BK_VBAR                             \
-   | RE_UNMATCHED_RIGHT_PAREN_ORD)
+  (_RE_SYNTAX_POSIX_COMMON  | RE_CONTEXT_INDEP_ANCHORS                 \
+   | RE_CONTEXT_INDEP_OPS   | RE_NO_BK_BRACES                          \
+   | RE_NO_BK_PARENS        | RE_NO_BK_VBAR                            \
+   | RE_CONTEXT_INVALID_OPS | RE_UNMATCHED_RIGHT_PAREN_ORD)
 
-/* Differs from ..._POSIX_EXTENDED in that RE_CONTEXT_INVALID_OPS
-   replaces RE_CONTEXT_INDEP_OPS and RE_NO_BK_REFS is added.  */
+/* Differs from ..._POSIX_EXTENDED in that RE_CONTEXT_INDEP_OPS is
+   removed and RE_NO_BK_REFS is added.  */
 #define RE_SYNTAX_POSIX_MINIMAL_EXTENDED                               \
   (_RE_SYNTAX_POSIX_COMMON  | RE_CONTEXT_INDEP_ANCHORS                 \
    | RE_CONTEXT_INVALID_OPS | RE_NO_BK_BRACES                          \
@@ -202,10 +261,12 @@ extern reg_syntax_t re_syntax_options;
 /* Maximum number of duplicates an interval can allow.  Some systems
    (erroneously) define this in other header files, but we want our
    value, so remove any previous define.  */
-#ifdef RE_DUP_MAX
-#undef RE_DUP_MAX
+# ifdef RE_DUP_MAX
+#  undef RE_DUP_MAX
+# endif
+/* If sizeof(int) == 2, then ((1 << 15) - 1) overflows.  */
+# define RE_DUP_MAX (0x7fff)
 #endif
-#define RE_DUP_MAX ((1 << 15) - 1)
 
 
 /* POSIX `cflags' bits (i.e., information for `regcomp').  */
@@ -240,18 +301,26 @@ extern reg_syntax_t re_syntax_options;
 /* Like REG_NOTBOL, except for the end-of-line.  */
 #define REG_NOTEOL (1 << 1)
 
+/* Use PMATCH[0] to delimit the start and end of the search in the
+   buffer.  */
+#define REG_STARTEND (1 << 2)
+
 
 /* If any error codes are removed, changed, or added, update the
    `re_error_msg' table in regex.c.  */
 typedef enum
 {
+#if defined _XOPEN_SOURCE || defined __USE_XOPEN2K
+  REG_ENOSYS = -1,     /* This will never happen for this implementation.  */
+#endif
+
   REG_NOERROR = 0,     /* Success.  */
   REG_NOMATCH,         /* Didn't find a match (for regexec).  */
 
   /* POSIX regcomp return error codes.  (In the order listed in the
      standard.)  */
   REG_BADPAT,          /* Invalid pattern.  */
-  REG_ECOLLATE,                /* Not implemented.  */
+  REG_ECOLLATE,                /* Inalid collating element.  */
   REG_ECTYPE,          /* Invalid character class name.  */
   REG_EESCAPE,         /* Trailing backslash.  */
   REG_ESUBREG,         /* Invalid back reference.  */
@@ -275,85 +344,92 @@ typedef enum
    compiled, the `re_nsub' field is available.  All other fields are
    private to the regex routines.  */
 
+#ifndef RE_TRANSLATE_TYPE
+# define __RE_TRANSLATE_TYPE unsigned char *
+# ifdef __USE_GNU
+#  define RE_TRANSLATE_TYPE __RE_TRANSLATE_TYPE
+# endif
+#endif
+
+#ifdef __USE_GNU
+# define __REPB_PREFIX(name) name
+#else
+# define __REPB_PREFIX(name) __##name
+#endif
+
 struct re_pattern_buffer
 {
-/* [[[begin pattern_buffer]]] */
-       /* Space that holds the compiled pattern.  It is declared as
-         `unsigned char *' because its elements are
-          sometimes used as array indexes.  */
-  unsigned char *buffer;
+  /* Space that holds the compiled pattern.  It is declared as
+     `unsigned char *' because its elements are sometimes used as
+     array indexes.  */
+  unsigned char *__REPB_PREFIX(buffer);
 
-       /* Number of bytes to which `buffer' points.  */
-  unsigned long allocated;
+  /* Number of bytes to which `buffer' points.  */
+  unsigned long int __REPB_PREFIX(allocated);
 
-       /* Number of bytes actually used in `buffer'.  */
-  unsigned long used;
+  /* Number of bytes actually used in `buffer'.  */
+  unsigned long int __REPB_PREFIX(used);
 
-       /* Syntax setting with which the pattern was compiled.  */
-  reg_syntax_t syntax;
+  /* Syntax setting with which the pattern was compiled.  */
+  reg_syntax_t __REPB_PREFIX(syntax);
 
-       /* Pointer to a fastmap, if any, otherwise zero.  re_search uses
-          the fastmap, if there is one, to skip over impossible
-          starting points for matches.  */
-  char *fastmap;
+  /* Pointer to a fastmap, if any, otherwise zero.  re_search uses the
+     fastmap, if there is one, to skip over impossible starting points
+     for matches.  */
+  char *__REPB_PREFIX(fastmap);
 
-       /* Either a translate table to apply to all characters before
-          comparing them, or zero for no translation.  The translation
-          is applied to a pattern when it is compiled and to a string
-          when it is matched.  */
-  char *translate;
+  /* Either a translate table to apply to all characters before
+     comparing them, or zero for no translation.  The translation is
+     applied to a pattern when it is compiled and to a string when it
+     is matched.  */
+  __RE_TRANSLATE_TYPE __REPB_PREFIX(translate);
 
-       /* Number of subexpressions found by the compiler.  */
+  /* Number of subexpressions found by the compiler.  */
   size_t re_nsub;
 
-       /* Zero if this pattern cannot match the empty string, one else.
-          Well, in truth it's used only in `re_search_2', to see
-          whether or not we should use the fastmap, so we don't set
-          this absolutely perfectly; see `re_compile_fastmap' (the
-          `duplicate' case).  */
-  unsigned can_be_null : 1;
-
-       /* If REGS_UNALLOCATED, allocate space in the `regs' structure
-            for `max (RE_NREGS, re_nsub + 1)' groups.
-          If REGS_REALLOCATE, reallocate space if necessary.
-          If REGS_FIXED, use what's there.  */
-#define REGS_UNALLOCATED 0
-#define REGS_REALLOCATE 1
-#define REGS_FIXED 2
-  unsigned regs_allocated : 2;
-
-       /* Set to zero when `regex_compile' compiles a pattern; set to one
-          by `re_compile_fastmap' if it updates the fastmap.  */
-  unsigned fastmap_accurate : 1;
-
-       /* If set, `re_match_2' does not return information about
-          subexpressions.  */
-  unsigned no_sub : 1;
-
-       /* If set, a beginning-of-line anchor doesn't match at the
-          beginning of the string.  */
-  unsigned not_bol : 1;
-
-       /* Similarly for an end-of-line anchor.  */
-  unsigned not_eol : 1;
-
-       /* If true, an anchor at a newline matches.  */
-  unsigned newline_anchor : 1;
-
-/* [[[end pattern_buffer]]] */
-};
+  /* Zero if this pattern cannot match the empty string, one else.
+     Well, in truth it's used only in `re_search_2', to see whether or
+     not we should use the fastmap, so we don't set this absolutely
+     perfectly; see `re_compile_fastmap' (the `duplicate' case).  */
+  unsigned __REPB_PREFIX(can_be_null) : 1;
+
+  /* If REGS_UNALLOCATED, allocate space in the `regs' structure
+     for `max (RE_NREGS, re_nsub + 1)' groups.
+     If REGS_REALLOCATE, reallocate space if necessary.
+     If REGS_FIXED, use what's there.  */
+#ifdef __USE_GNU
+# define REGS_UNALLOCATED 0
+# define REGS_REALLOCATE 1
+# define REGS_FIXED 2
+#endif
+  unsigned __REPB_PREFIX(regs_allocated) : 2;
 
-typedef struct re_pattern_buffer regex_t;
+  /* Set to zero when `regex_compile' compiles a pattern; set to one
+     by `re_compile_fastmap' if it updates the fastmap.  */
+  unsigned __REPB_PREFIX(fastmap_accurate) : 1;
+
+  /* If set, `re_match_2' does not return information about
+     subexpressions.  */
+  unsigned __REPB_PREFIX(no_sub) : 1;
 
+  /* If set, a beginning-of-line anchor doesn't match at the beginning
+     of the string.  */
+  unsigned __REPB_PREFIX(not_bol) : 1;
+
+  /* Similarly for an end-of-line anchor.  */
+  unsigned __REPB_PREFIX(not_eol) : 1;
+
+  /* If true, an anchor at a newline matches.  */
+  unsigned __REPB_PREFIX(newline_anchor) : 1;
+};
 
-/* search.c (search_buffer) in Emacs needs this one opcode value.  It is
-   defined both in `regex.c' and here.  */
-#define RE_EXACTN_VALUE 1
+typedef struct re_pattern_buffer regex_t;
 \f
 /* Type for byte offsets within the string.  POSIX mandates this.  */
 typedef int regoff_t;
 
 
+#ifdef __USE_GNU
 /* This is the structure we store register match data in.  See
    regex.texinfo for a full description of what registers match.  */
 struct re_registers
@@ -367,8 +443,9 @@ struct re_registers
 /* If `regs_allocated' is REGS_UNALLOCATED in the pattern buffer,
    `re_match_2' returns information about at least this many registers
    the first time a `regs' structure is passed.  */
-#ifndef RE_NREGS
-#define RE_NREGS 30
+# ifndef RE_NREGS
+#  define RE_NREGS 30
+# endif
 #endif
 
 
@@ -383,38 +460,22 @@ typedef struct
 \f
 /* Declarations for routines.  */
 
-/* To avoid duplicating every routine declaration -- once with a
-   prototype (if we are ANSI), and once without (if we aren't) -- we
-   use the following macro to declare argument types.  This
-   unfortunately clutters up the declarations a bit, but I think it's
-   worth it.  */
-
-#if __STDC__
-
-#define _RE_ARGS(args) args
-
-#else /* not __STDC__ */
-
-#define _RE_ARGS(args) ()
-
-#endif /* not __STDC__ */
-
+#ifdef __USE_GNU
 /* Sets the current default syntax to SYNTAX, and return the old syntax.
    You can also simply assign to the `re_syntax_options' variable.  */
-extern reg_syntax_t re_set_syntax _RE_ARGS ((reg_syntax_t syntax));
+extern reg_syntax_t re_set_syntax (reg_syntax_t __syntax);
 
 /* Compile the regular expression PATTERN, with length LENGTH
    and syntax given by the global `re_syntax_options', into the buffer
    BUFFER.  Return NULL if successful, and an error string if not.  */
-extern const char *re_compile_pattern
-  _RE_ARGS ((const char *pattern, int length,
-            struct re_pattern_buffer *buffer));
+extern const char *re_compile_pattern (const char *__pattern, size_t __length,
+                                      struct re_pattern_buffer *__buffer);
 
 
 /* Compile a fastmap for the compiled pattern in BUFFER; used to
    accelerate searches.  Return 0 if successful and -2 if was an
    internal error.  */
-extern int re_compile_fastmap _RE_ARGS ((struct re_pattern_buffer *buffer));
+extern int re_compile_fastmap (struct re_pattern_buffer *__buffer);
 
 
 /* Search in the string STRING (with length LENGTH) for the pattern
@@ -422,31 +483,30 @@ extern int re_compile_fastmap _RE_ARGS ((struct re_pattern_buffer *buffer));
    characters.  Return the starting position of the match, -1 for no
    match, or -2 for an internal error.  Also return register
    information in REGS (if REGS and BUFFER->no_sub are nonzero).  */
-extern int re_search
-  _RE_ARGS ((struct re_pattern_buffer *buffer, const char *string,
-           int length, int start, int range, struct re_registers *regs));
+extern int re_search (struct re_pattern_buffer *__buffer, const char *__cstring,
+                     int __length, int __start, int __range,
+                     struct re_registers *__regs);
 
 
 /* Like `re_search', but search in the concatenation of STRING1 and
    STRING2.  Also, stop searching at index START + STOP.  */
-extern int re_search_2
-  _RE_ARGS ((struct re_pattern_buffer *buffer, const char *string1,
-            int length1, const char *string2, int length2,
-            int start, int range, struct re_registers *regs, int stop));
+extern int re_search_2 (struct re_pattern_buffer *__buffer,
+                       const char *__string1, int __length1,
+                       const char *__string2, int __length2, int __start,
+                       int __range, struct re_registers *__regs, int __stop);
 
 
 /* Like `re_search', but return how many characters in STRING the regexp
    in BUFFER matched, starting at position START.  */
-extern int re_match
-  _RE_ARGS ((struct re_pattern_buffer *buffer, const char *string,
-            int length, int start, struct re_registers *regs));
+extern int re_match (struct re_pattern_buffer *__buffer, const char *__cstring,
+                    int __length, int __start, struct re_registers *__regs);
 
 
 /* Relates to `re_match' as `re_search_2' relates to `re_search'.  */
-extern int re_match_2
-  _RE_ARGS ((struct re_pattern_buffer *buffer, const char *string1,
-            int length1, const char *string2, int length2,
-            int start, struct re_registers *regs, int stop));
+extern int re_match_2 (struct re_pattern_buffer *__buffer,
+                      const char *__string1, int __length1,
+                      const char *__string2, int __length2, int __start,
+                      struct re_registers *__regs, int __stop);
 
 
 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
@@ -461,30 +521,59 @@ extern int re_match_2
    Unless this function is called, the first search or match using
    PATTERN_BUFFER will allocate its own register data, without
    freeing the old data.  */
-extern void re_set_registers
-  _RE_ARGS ((struct re_pattern_buffer *buffer, struct re_registers *regs,
-            unsigned num_regs, regoff_t *starts, regoff_t *ends));
-
+extern void re_set_registers (struct re_pattern_buffer *__buffer,
+                             struct re_registers *__regs,
+                             unsigned int __num_regs,
+                             regoff_t *__starts, regoff_t *__ends);
+#endif /* Use GNU */
+
+#if defined _REGEX_RE_COMP || (defined _LIBC && defined __USE_BSD)
+# ifndef _CRAY
 /* 4.2 bsd compatibility.  */
-extern char *re_comp _RE_ARGS ((const char *));
-extern int re_exec _RE_ARGS ((const char *));
+extern char *re_comp (const char *);
+extern int re_exec (const char *);
+# endif
+#endif
+
+/* GCC 2.95 and later have "__restrict"; C99 compilers have
+   "restrict", and "configure" may have defined "restrict".  */
+#ifndef __restrict
+# if ! (2 < __GNUC__ || (2 == __GNUC__ && 95 <= __GNUC_MINOR__))
+#  if defined restrict || 199901L <= __STDC_VERSION__
+#   define __restrict restrict
+#  else
+#   define __restrict
+#  endif
+# endif
+#endif
+/* gcc 3.1 and up support the [restrict] syntax.  */
+#ifndef __restrict_arr
+# if (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1)) \
+     && !defined __GNUG__
+#  define __restrict_arr __restrict
+# else
+#  define __restrict_arr
+# endif
+#endif
 
 /* POSIX compatibility.  */
-extern int regcomp _RE_ARGS ((regex_t *preg, const char *pattern, int cflags));
-extern int regexec
-  _RE_ARGS ((const regex_t *preg, const char *string, size_t nmatch,
-            regmatch_t pmatch[], int eflags));
-extern size_t regerror
-  _RE_ARGS ((int errcode, const regex_t *preg, char *errbuf,
-            size_t errbuf_size));
-extern void regfree _RE_ARGS ((regex_t *preg));
-
-#endif /* not __REGEXP_LIBRARY_H__ */
-\f
-/*
-Local variables:
-make-backup-files: t
-version-control: t
-trim-versions-without-asking: nil
-End:
-*/
+extern int regcomp (regex_t *__restrict __preg,
+                   const char *__restrict __pattern,
+                   int __cflags);
+
+extern int regexec (const regex_t *__restrict __preg,
+                   const char *__restrict __cstring, size_t __nmatch,
+                   regmatch_t __pmatch[__restrict_arr],
+                   int __eflags);
+
+extern size_t regerror (int __errcode, const regex_t *__restrict __preg,
+                       char *__restrict __errbuf, size_t __errbuf_size);
+
+extern void regfree (regex_t *__preg);
+
+
+#ifdef __cplusplus
+}
+#endif /* C++ */
+
+#endif /* regex.h */
diff --git a/compat/regex/regex_internal.c b/compat/regex/regex_internal.c
new file mode 100644 (file)
index 0000000..dad17a8
--- /dev/null
@@ -0,0 +1,1744 @@
+/* Extended regular expression matching and search library.
+   Copyright (C) 2002-2006, 2010 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Lesser General Public
+   License as published by the Free Software Foundation; either
+   version 2.1 of the License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Lesser General Public License for more details.
+
+   You should have received a copy of the GNU Lesser General Public
+   License along with the GNU C Library; if not, write to the Free
+   Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+   02110-1301 USA.  */
+
+static void re_string_construct_common (const char *str, int len,
+                                       re_string_t *pstr,
+                                       RE_TRANSLATE_TYPE trans, int icase,
+                                       const re_dfa_t *dfa) internal_function;
+static re_dfastate_t *create_ci_newstate (const re_dfa_t *dfa,
+                                         const re_node_set *nodes,
+                                         unsigned int hash) internal_function;
+static re_dfastate_t *create_cd_newstate (const re_dfa_t *dfa,
+                                         const re_node_set *nodes,
+                                         unsigned int context,
+                                         unsigned int hash) internal_function;
+
+#ifdef GAWK
+#undef MAX     /* safety */
+static int
+MAX(size_t a, size_t b)
+{
+       return (a > b ? a : b);
+}
+#endif
+\f
+/* Functions for string operation.  */
+
+/* This function allocate the buffers.  It is necessary to call
+   re_string_reconstruct before using the object.  */
+
+static reg_errcode_t
+internal_function
+re_string_allocate (re_string_t *pstr, const char *str, int len, int init_len,
+                   RE_TRANSLATE_TYPE trans, int icase, const re_dfa_t *dfa)
+{
+  reg_errcode_t ret;
+  int init_buf_len;
+
+  /* Ensure at least one character fits into the buffers.  */
+  if (init_len < dfa->mb_cur_max)
+    init_len = dfa->mb_cur_max;
+  init_buf_len = (len + 1 < init_len) ? len + 1: init_len;
+  re_string_construct_common (str, len, pstr, trans, icase, dfa);
+
+  ret = re_string_realloc_buffers (pstr, init_buf_len);
+  if (BE (ret != REG_NOERROR, 0))
+    return ret;
+
+  pstr->word_char = dfa->word_char;
+  pstr->word_ops_used = dfa->word_ops_used;
+  pstr->mbs = pstr->mbs_allocated ? pstr->mbs : (unsigned char *) str;
+  pstr->valid_len = (pstr->mbs_allocated || dfa->mb_cur_max > 1) ? 0 : len;
+  pstr->valid_raw_len = pstr->valid_len;
+  return REG_NOERROR;
+}
+
+/* This function allocate the buffers, and initialize them.  */
+
+static reg_errcode_t
+internal_function
+re_string_construct (re_string_t *pstr, const char *str, int len,
+                    RE_TRANSLATE_TYPE trans, int icase, const re_dfa_t *dfa)
+{
+  reg_errcode_t ret;
+  memset (pstr, '\0', sizeof (re_string_t));
+  re_string_construct_common (str, len, pstr, trans, icase, dfa);
+
+  if (len > 0)
+    {
+      ret = re_string_realloc_buffers (pstr, len + 1);
+      if (BE (ret != REG_NOERROR, 0))
+       return ret;
+    }
+  pstr->mbs = pstr->mbs_allocated ? pstr->mbs : (unsigned char *) str;
+
+  if (icase)
+    {
+#ifdef RE_ENABLE_I18N
+      if (dfa->mb_cur_max > 1)
+       {
+         while (1)
+           {
+             ret = build_wcs_upper_buffer (pstr);
+             if (BE (ret != REG_NOERROR, 0))
+               return ret;
+             if (pstr->valid_raw_len >= len)
+               break;
+             if (pstr->bufs_len > pstr->valid_len + dfa->mb_cur_max)
+               break;
+             ret = re_string_realloc_buffers (pstr, pstr->bufs_len * 2);
+             if (BE (ret != REG_NOERROR, 0))
+               return ret;
+           }
+       }
+      else
+#endif /* RE_ENABLE_I18N  */
+       build_upper_buffer (pstr);
+    }
+  else
+    {
+#ifdef RE_ENABLE_I18N
+      if (dfa->mb_cur_max > 1)
+       build_wcs_buffer (pstr);
+      else
+#endif /* RE_ENABLE_I18N  */
+       {
+         if (trans != NULL)
+           re_string_translate_buffer (pstr);
+         else
+           {
+             pstr->valid_len = pstr->bufs_len;
+             pstr->valid_raw_len = pstr->bufs_len;
+           }
+       }
+    }
+
+  return REG_NOERROR;
+}
+
+/* Helper functions for re_string_allocate, and re_string_construct.  */
+
+static reg_errcode_t
+internal_function
+re_string_realloc_buffers (re_string_t *pstr, int new_buf_len)
+{
+#ifdef RE_ENABLE_I18N
+  if (pstr->mb_cur_max > 1)
+    {
+      wint_t *new_wcs;
+
+      /* Avoid overflow in realloc.  */
+      const size_t max_object_size = MAX (sizeof (wint_t), sizeof (int));
+      if (BE (SIZE_MAX / max_object_size < new_buf_len, 0))
+       return REG_ESPACE;
+
+      new_wcs = re_realloc (pstr->wcs, wint_t, new_buf_len);
+      if (BE (new_wcs == NULL, 0))
+       return REG_ESPACE;
+      pstr->wcs = new_wcs;
+      if (pstr->offsets != NULL)
+       {
+         int *new_offsets = re_realloc (pstr->offsets, int, new_buf_len);
+         if (BE (new_offsets == NULL, 0))
+           return REG_ESPACE;
+         pstr->offsets = new_offsets;
+       }
+    }
+#endif /* RE_ENABLE_I18N  */
+  if (pstr->mbs_allocated)
+    {
+      unsigned char *new_mbs = re_realloc (pstr->mbs, unsigned char,
+                                          new_buf_len);
+      if (BE (new_mbs == NULL, 0))
+       return REG_ESPACE;
+      pstr->mbs = new_mbs;
+    }
+  pstr->bufs_len = new_buf_len;
+  return REG_NOERROR;
+}
+
+
+static void
+internal_function
+re_string_construct_common (const char *str, int len, re_string_t *pstr,
+                           RE_TRANSLATE_TYPE trans, int icase,
+                           const re_dfa_t *dfa)
+{
+  pstr->raw_mbs = (const unsigned char *) str;
+  pstr->len = len;
+  pstr->raw_len = len;
+  pstr->trans = trans;
+  pstr->icase = icase ? 1 : 0;
+  pstr->mbs_allocated = (trans != NULL || icase);
+  pstr->mb_cur_max = dfa->mb_cur_max;
+  pstr->is_utf8 = dfa->is_utf8;
+  pstr->map_notascii = dfa->map_notascii;
+  pstr->stop = pstr->len;
+  pstr->raw_stop = pstr->stop;
+}
+
+#ifdef RE_ENABLE_I18N
+
+/* Build wide character buffer PSTR->WCS.
+   If the byte sequence of the string are:
+     <mb1>(0), <mb1>(1), <mb2>(0), <mb2>(1), <sb3>
+   Then wide character buffer will be:
+     <wc1>   , WEOF    , <wc2>   , WEOF    , <wc3>
+   We use WEOF for padding, they indicate that the position isn't
+   a first byte of a multibyte character.
+
+   Note that this function assumes PSTR->VALID_LEN elements are already
+   built and starts from PSTR->VALID_LEN.  */
+
+static void
+internal_function
+build_wcs_buffer (re_string_t *pstr)
+{
+#ifdef _LIBC
+  unsigned char buf[MB_LEN_MAX];
+  assert (MB_LEN_MAX >= pstr->mb_cur_max);
+#else
+  unsigned char buf[64];
+#endif
+  mbstate_t prev_st;
+  int byte_idx, end_idx, remain_len;
+  size_t mbclen;
+
+  /* Build the buffers from pstr->valid_len to either pstr->len or
+     pstr->bufs_len.  */
+  end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len;
+  for (byte_idx = pstr->valid_len; byte_idx < end_idx;)
+    {
+      wchar_t wc;
+      const char *p;
+
+      remain_len = end_idx - byte_idx;
+      prev_st = pstr->cur_state;
+      /* Apply the translation if we need.  */
+      if (BE (pstr->trans != NULL, 0))
+       {
+         int i, ch;
+
+         for (i = 0; i < pstr->mb_cur_max && i < remain_len; ++i)
+           {
+             ch = pstr->raw_mbs [pstr->raw_mbs_idx + byte_idx + i];
+             buf[i] = pstr->mbs[byte_idx + i] = pstr->trans[ch];
+           }
+         p = (const char *) buf;
+       }
+      else
+       p = (const char *) pstr->raw_mbs + pstr->raw_mbs_idx + byte_idx;
+      mbclen = __mbrtowc (&wc, p, remain_len, &pstr->cur_state);
+      if (BE (mbclen == (size_t) -2, 0))
+       {
+         /* The buffer doesn't have enough space, finish to build.  */
+         pstr->cur_state = prev_st;
+         break;
+       }
+      else if (BE (mbclen == (size_t) -1 || mbclen == 0, 0))
+       {
+         /* We treat these cases as a singlebyte character.  */
+         mbclen = 1;
+         wc = (wchar_t) pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx];
+         if (BE (pstr->trans != NULL, 0))
+           wc = pstr->trans[wc];
+         pstr->cur_state = prev_st;
+       }
+
+      /* Write wide character and padding.  */
+      pstr->wcs[byte_idx++] = wc;
+      /* Write paddings.  */
+      for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;)
+       pstr->wcs[byte_idx++] = WEOF;
+    }
+  pstr->valid_len = byte_idx;
+  pstr->valid_raw_len = byte_idx;
+}
+
+/* Build wide character buffer PSTR->WCS like build_wcs_buffer,
+   but for REG_ICASE.  */
+
+static reg_errcode_t
+internal_function
+build_wcs_upper_buffer (re_string_t *pstr)
+{
+  mbstate_t prev_st;
+  int src_idx, byte_idx, end_idx, remain_len;
+  size_t mbclen;
+#ifdef _LIBC
+  char buf[MB_LEN_MAX];
+  assert (MB_LEN_MAX >= pstr->mb_cur_max);
+#else
+  char buf[64];
+#endif
+
+  byte_idx = pstr->valid_len;
+  end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len;
+
+  /* The following optimization assumes that ASCII characters can be
+     mapped to wide characters with a simple cast.  */
+  if (! pstr->map_notascii && pstr->trans == NULL && !pstr->offsets_needed)
+    {
+      while (byte_idx < end_idx)
+       {
+         wchar_t wc;
+
+         if (isascii (pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx])
+             && mbsinit (&pstr->cur_state))
+           {
+             /* In case of a singlebyte character.  */
+             pstr->mbs[byte_idx]
+               = toupper (pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]);
+             /* The next step uses the assumption that wchar_t is encoded
+                ASCII-safe: all ASCII values can be converted like this.  */
+             pstr->wcs[byte_idx] = (wchar_t) pstr->mbs[byte_idx];
+             ++byte_idx;
+             continue;
+           }
+
+         remain_len = end_idx - byte_idx;
+         prev_st = pstr->cur_state;
+         mbclen = __mbrtowc (&wc,
+                             ((const char *) pstr->raw_mbs + pstr->raw_mbs_idx
+                              + byte_idx), remain_len, &pstr->cur_state);
+         if (BE (mbclen + 2 > 2, 1))
+           {
+             wchar_t wcu = wc;
+             if (iswlower (wc))
+               {
+                 size_t mbcdlen;
+
+                 wcu = towupper (wc);
+                 mbcdlen = wcrtomb (buf, wcu, &prev_st);
+                 if (BE (mbclen == mbcdlen, 1))
+                   memcpy (pstr->mbs + byte_idx, buf, mbclen);
+                 else
+                   {
+                     src_idx = byte_idx;
+                     goto offsets_needed;
+                   }
+               }
+             else
+               memcpy (pstr->mbs + byte_idx,
+                       pstr->raw_mbs + pstr->raw_mbs_idx + byte_idx, mbclen);
+             pstr->wcs[byte_idx++] = wcu;
+             /* Write paddings.  */
+             for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;)
+               pstr->wcs[byte_idx++] = WEOF;
+           }
+         else if (mbclen == (size_t) -1 || mbclen == 0)
+           {
+             /* It is an invalid character or '\0'.  Just use the byte.  */
+             int ch = pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx];
+             pstr->mbs[byte_idx] = ch;
+             /* And also cast it to wide char.  */
+             pstr->wcs[byte_idx++] = (wchar_t) ch;
+             if (BE (mbclen == (size_t) -1, 0))
+               pstr->cur_state = prev_st;
+           }
+         else
+           {
+             /* The buffer doesn't have enough space, finish to build.  */
+             pstr->cur_state = prev_st;
+             break;
+           }
+       }
+      pstr->valid_len = byte_idx;
+      pstr->valid_raw_len = byte_idx;
+      return REG_NOERROR;
+    }
+  else
+    for (src_idx = pstr->valid_raw_len; byte_idx < end_idx;)
+      {
+       wchar_t wc;
+       const char *p;
+      offsets_needed:
+       remain_len = end_idx - byte_idx;
+       prev_st = pstr->cur_state;
+       if (BE (pstr->trans != NULL, 0))
+         {
+           int i, ch;
+
+           for (i = 0; i < pstr->mb_cur_max && i < remain_len; ++i)
+             {
+               ch = pstr->raw_mbs [pstr->raw_mbs_idx + src_idx + i];
+               buf[i] = pstr->trans[ch];
+             }
+           p = (const char *) buf;
+         }
+       else
+         p = (const char *) pstr->raw_mbs + pstr->raw_mbs_idx + src_idx;
+       mbclen = __mbrtowc (&wc, p, remain_len, &pstr->cur_state);
+       if (BE (mbclen + 2 > 2, 1))
+         {
+           wchar_t wcu = wc;
+           if (iswlower (wc))
+             {
+               size_t mbcdlen;
+
+               wcu = towupper (wc);
+               mbcdlen = wcrtomb ((char *) buf, wcu, &prev_st);
+               if (BE (mbclen == mbcdlen, 1))
+                 memcpy (pstr->mbs + byte_idx, buf, mbclen);
+               else if (mbcdlen != (size_t) -1)
+                 {
+                   size_t i;
+
+                   if (byte_idx + mbcdlen > pstr->bufs_len)
+                     {
+                       pstr->cur_state = prev_st;
+                       break;
+                     }
+
+                   if (pstr->offsets == NULL)
+                     {
+                       pstr->offsets = re_malloc (int, pstr->bufs_len);
+
+                       if (pstr->offsets == NULL)
+                         return REG_ESPACE;
+                     }
+                   if (!pstr->offsets_needed)
+                     {
+                       for (i = 0; i < (size_t) byte_idx; ++i)
+                         pstr->offsets[i] = i;
+                       pstr->offsets_needed = 1;
+                     }
+
+                   memcpy (pstr->mbs + byte_idx, buf, mbcdlen);
+                   pstr->wcs[byte_idx] = wcu;
+                   pstr->offsets[byte_idx] = src_idx;
+                   for (i = 1; i < mbcdlen; ++i)
+                     {
+                       pstr->offsets[byte_idx + i]
+                         = src_idx + (i < mbclen ? i : mbclen - 1);
+                       pstr->wcs[byte_idx + i] = WEOF;
+                     }
+                   pstr->len += mbcdlen - mbclen;
+                   if (pstr->raw_stop > src_idx)
+                     pstr->stop += mbcdlen - mbclen;
+                   end_idx = (pstr->bufs_len > pstr->len)
+                             ? pstr->len : pstr->bufs_len;
+                   byte_idx += mbcdlen;
+                   src_idx += mbclen;
+                   continue;
+                 }
+               else
+                 memcpy (pstr->mbs + byte_idx, p, mbclen);
+             }
+           else
+             memcpy (pstr->mbs + byte_idx, p, mbclen);
+
+           if (BE (pstr->offsets_needed != 0, 0))
+             {
+               size_t i;
+               for (i = 0; i < mbclen; ++i)
+                 pstr->offsets[byte_idx + i] = src_idx + i;
+             }
+           src_idx += mbclen;
+
+           pstr->wcs[byte_idx++] = wcu;
+           /* Write paddings.  */
+           for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;)
+             pstr->wcs[byte_idx++] = WEOF;
+         }
+       else if (mbclen == (size_t) -1 || mbclen == 0)
+         {
+           /* It is an invalid character or '\0'.  Just use the byte.  */
+           int ch = pstr->raw_mbs[pstr->raw_mbs_idx + src_idx];
+
+           if (BE (pstr->trans != NULL, 0))
+             ch = pstr->trans [ch];
+           pstr->mbs[byte_idx] = ch;
+
+           if (BE (pstr->offsets_needed != 0, 0))
+             pstr->offsets[byte_idx] = src_idx;
+           ++src_idx;
+
+           /* And also cast it to wide char.  */
+           pstr->wcs[byte_idx++] = (wchar_t) ch;
+           if (BE (mbclen == (size_t) -1, 0))
+             pstr->cur_state = prev_st;
+         }
+       else
+         {
+           /* The buffer doesn't have enough space, finish to build.  */
+           pstr->cur_state = prev_st;
+           break;
+         }
+      }
+  pstr->valid_len = byte_idx;
+  pstr->valid_raw_len = src_idx;
+  return REG_NOERROR;
+}
+
+/* Skip characters until the index becomes greater than NEW_RAW_IDX.
+   Return the index.  */
+
+static int
+internal_function
+re_string_skip_chars (re_string_t *pstr, int new_raw_idx, wint_t *last_wc)
+{
+  mbstate_t prev_st;
+  int rawbuf_idx;
+  size_t mbclen;
+  wint_t wc = WEOF;
+
+  /* Skip the characters which are not necessary to check.  */
+  for (rawbuf_idx = pstr->raw_mbs_idx + pstr->valid_raw_len;
+       rawbuf_idx < new_raw_idx;)
+    {
+      wchar_t wc2;
+      int remain_len = pstr->len - rawbuf_idx;
+      prev_st = pstr->cur_state;
+      mbclen = __mbrtowc (&wc2, (const char *) pstr->raw_mbs + rawbuf_idx,
+                         remain_len, &pstr->cur_state);
+      if (BE (mbclen == (size_t) -2 || mbclen == (size_t) -1 || mbclen == 0, 0))
+       {
+         /* We treat these cases as a single byte character.  */
+         if (mbclen == 0 || remain_len == 0)
+           wc = L'\0';
+         else
+           wc = *(unsigned char *) (pstr->raw_mbs + rawbuf_idx);
+         mbclen = 1;
+         pstr->cur_state = prev_st;
+       }
+      else
+       wc = (wint_t) wc2;
+      /* Then proceed the next character.  */
+      rawbuf_idx += mbclen;
+    }
+  *last_wc = (wint_t) wc;
+  return rawbuf_idx;
+}
+#endif /* RE_ENABLE_I18N  */
+
+/* Build the buffer PSTR->MBS, and apply the translation if we need.
+   This function is used in case of REG_ICASE.  */
+
+static void
+internal_function
+build_upper_buffer (re_string_t *pstr)
+{
+  int char_idx, end_idx;
+  end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len;
+
+  for (char_idx = pstr->valid_len; char_idx < end_idx; ++char_idx)
+    {
+      int ch = pstr->raw_mbs[pstr->raw_mbs_idx + char_idx];
+      if (BE (pstr->trans != NULL, 0))
+       ch = pstr->trans[ch];
+      if (islower (ch))
+       pstr->mbs[char_idx] = toupper (ch);
+      else
+       pstr->mbs[char_idx] = ch;
+    }
+  pstr->valid_len = char_idx;
+  pstr->valid_raw_len = char_idx;
+}
+
+/* Apply TRANS to the buffer in PSTR.  */
+
+static void
+internal_function
+re_string_translate_buffer (re_string_t *pstr)
+{
+  int buf_idx, end_idx;
+  end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len;
+
+  for (buf_idx = pstr->valid_len; buf_idx < end_idx; ++buf_idx)
+    {
+      int ch = pstr->raw_mbs[pstr->raw_mbs_idx + buf_idx];
+      pstr->mbs[buf_idx] = pstr->trans[ch];
+    }
+
+  pstr->valid_len = buf_idx;
+  pstr->valid_raw_len = buf_idx;
+}
+
+/* This function re-construct the buffers.
+   Concretely, convert to wide character in case of pstr->mb_cur_max > 1,
+   convert to upper case in case of REG_ICASE, apply translation.  */
+
+static reg_errcode_t
+internal_function
+re_string_reconstruct (re_string_t *pstr, int idx, int eflags)
+{
+  int offset = idx - pstr->raw_mbs_idx;
+  if (BE (offset < 0, 0))
+    {
+      /* Reset buffer.  */
+#ifdef RE_ENABLE_I18N
+      if (pstr->mb_cur_max > 1)
+       memset (&pstr->cur_state, '\0', sizeof (mbstate_t));
+#endif /* RE_ENABLE_I18N */
+      pstr->len = pstr->raw_len;
+      pstr->stop = pstr->raw_stop;
+      pstr->valid_len = 0;
+      pstr->raw_mbs_idx = 0;
+      pstr->valid_raw_len = 0;
+      pstr->offsets_needed = 0;
+      pstr->tip_context = ((eflags & REG_NOTBOL) ? CONTEXT_BEGBUF
+                          : CONTEXT_NEWLINE | CONTEXT_BEGBUF);
+      if (!pstr->mbs_allocated)
+       pstr->mbs = (unsigned char *) pstr->raw_mbs;
+      offset = idx;
+    }
+
+  if (BE (offset != 0, 1))
+    {
+      /* Should the already checked characters be kept?  */
+      if (BE (offset < pstr->valid_raw_len, 1))
+       {
+         /* Yes, move them to the front of the buffer.  */
+#ifdef RE_ENABLE_I18N
+         if (BE (pstr->offsets_needed, 0))
+           {
+             int low = 0, high = pstr->valid_len, mid;
+             do
+               {
+                 mid = (high + low) / 2;
+                 if (pstr->offsets[mid] > offset)
+                   high = mid;
+                 else if (pstr->offsets[mid] < offset)
+                   low = mid + 1;
+                 else
+                   break;
+               }
+             while (low < high);
+             if (pstr->offsets[mid] < offset)
+               ++mid;
+             pstr->tip_context = re_string_context_at (pstr, mid - 1,
+                                                       eflags);
+             /* This can be quite complicated, so handle specially
+                only the common and easy case where the character with
+                different length representation of lower and upper
+                case is present at or after offset.  */
+             if (pstr->valid_len > offset
+                 && mid == offset && pstr->offsets[mid] == offset)
+               {
+                 memmove (pstr->wcs, pstr->wcs + offset,
+                          (pstr->valid_len - offset) * sizeof (wint_t));
+                 memmove (pstr->mbs, pstr->mbs + offset, pstr->valid_len - offset);
+                 pstr->valid_len -= offset;
+                 pstr->valid_raw_len -= offset;
+                 for (low = 0; low < pstr->valid_len; low++)
+                   pstr->offsets[low] = pstr->offsets[low + offset] - offset;
+               }
+             else
+               {
+                 /* Otherwise, just find out how long the partial multibyte
+                    character at offset is and fill it with WEOF/255.  */
+                 pstr->len = pstr->raw_len - idx + offset;
+                 pstr->stop = pstr->raw_stop - idx + offset;
+                 pstr->offsets_needed = 0;
+                 while (mid > 0 && pstr->offsets[mid - 1] == offset)
+                   --mid;
+                 while (mid < pstr->valid_len)
+                   if (pstr->wcs[mid] != WEOF)
+                     break;
+                   else
+                     ++mid;
+                 if (mid == pstr->valid_len)
+                   pstr->valid_len = 0;
+                 else
+                   {
+                     pstr->valid_len = pstr->offsets[mid] - offset;
+                     if (pstr->valid_len)
+                       {
+                         for (low = 0; low < pstr->valid_len; ++low)
+                           pstr->wcs[low] = WEOF;
+                         memset (pstr->mbs, 255, pstr->valid_len);
+                       }
+                   }
+                 pstr->valid_raw_len = pstr->valid_len;
+               }
+           }
+         else
+#endif
+           {
+             pstr->tip_context = re_string_context_at (pstr, offset - 1,
+                                                       eflags);
+#ifdef RE_ENABLE_I18N
+             if (pstr->mb_cur_max > 1)
+               memmove (pstr->wcs, pstr->wcs + offset,
+                        (pstr->valid_len - offset) * sizeof (wint_t));
+#endif /* RE_ENABLE_I18N */
+             if (BE (pstr->mbs_allocated, 0))
+               memmove (pstr->mbs, pstr->mbs + offset,
+                        pstr->valid_len - offset);
+             pstr->valid_len -= offset;
+             pstr->valid_raw_len -= offset;
+#if DEBUG
+             assert (pstr->valid_len > 0);
+#endif
+           }
+       }
+      else
+       {
+         /* No, skip all characters until IDX.  */
+         int prev_valid_len = pstr->valid_len;
+
+#ifdef RE_ENABLE_I18N
+         if (BE (pstr->offsets_needed, 0))
+           {
+             pstr->len = pstr->raw_len - idx + offset;
+             pstr->stop = pstr->raw_stop - idx + offset;
+             pstr->offsets_needed = 0;
+           }
+#endif
+         pstr->valid_len = 0;
+#ifdef RE_ENABLE_I18N
+         if (pstr->mb_cur_max > 1)
+           {
+             int wcs_idx;
+             wint_t wc = WEOF;
+
+             if (pstr->is_utf8)
+               {
+                 const unsigned char *raw, *p, *end;
+
+                 /* Special case UTF-8.  Multi-byte chars start with any
+                    byte other than 0x80 - 0xbf.  */
+                 raw = pstr->raw_mbs + pstr->raw_mbs_idx;
+                 end = raw + (offset - pstr->mb_cur_max);
+                 if (end < pstr->raw_mbs)
+                   end = pstr->raw_mbs;
+                 p = raw + offset - 1;
+#ifdef _LIBC
+                 /* We know the wchar_t encoding is UCS4, so for the simple
+                    case, ASCII characters, skip the conversion step.  */
+                 if (isascii (*p) && BE (pstr->trans == NULL, 1))
+                   {
+                     memset (&pstr->cur_state, '\0', sizeof (mbstate_t));
+                     /* pstr->valid_len = 0; */
+                     wc = (wchar_t) *p;
+                   }
+                 else
+#endif
+                   for (; p >= end; --p)
+                     if ((*p & 0xc0) != 0x80)
+                       {
+                         mbstate_t cur_state;
+                         wchar_t wc2;
+                         int mlen = raw + pstr->len - p;
+                         unsigned char buf[6];
+                         size_t mbclen;
+
+                         if (BE (pstr->trans != NULL, 0))
+                           {
+                             int i = mlen < 6 ? mlen : 6;
+                             while (--i >= 0)
+                               buf[i] = pstr->trans[p[i]];
+                           }
+                         /* XXX Don't use mbrtowc, we know which conversion
+                            to use (UTF-8 -> UCS4).  */
+                         memset (&cur_state, 0, sizeof (cur_state));
+                         mbclen = __mbrtowc (&wc2, (const char *) p, mlen,
+                                             &cur_state);
+                         if (raw + offset - p <= mbclen
+                             && mbclen < (size_t) -2)
+                           {
+                             memset (&pstr->cur_state, '\0',
+                                     sizeof (mbstate_t));
+                             pstr->valid_len = mbclen - (raw + offset - p);
+                             wc = wc2;
+                           }
+                         break;
+                       }
+               }
+
+             if (wc == WEOF)
+               pstr->valid_len = re_string_skip_chars (pstr, idx, &wc) - idx;
+             if (wc == WEOF)
+               pstr->tip_context
+                 = re_string_context_at (pstr, prev_valid_len - 1, eflags);
+             else
+               pstr->tip_context = ((BE (pstr->word_ops_used != 0, 0)
+                                     && IS_WIDE_WORD_CHAR (wc))
+                                    ? CONTEXT_WORD
+                                    : ((IS_WIDE_NEWLINE (wc)
+                                        && pstr->newline_anchor)
+                                       ? CONTEXT_NEWLINE : 0));
+             if (BE (pstr->valid_len, 0))
+               {
+                 for (wcs_idx = 0; wcs_idx < pstr->valid_len; ++wcs_idx)
+                   pstr->wcs[wcs_idx] = WEOF;
+                 if (pstr->mbs_allocated)
+                   memset (pstr->mbs, 255, pstr->valid_len);
+               }
+             pstr->valid_raw_len = pstr->valid_len;
+           }
+         else
+#endif /* RE_ENABLE_I18N */
+           {
+             int c = pstr->raw_mbs[pstr->raw_mbs_idx + offset - 1];
+             pstr->valid_raw_len = 0;
+             if (pstr->trans)
+               c = pstr->trans[c];
+             pstr->tip_context = (bitset_contain (pstr->word_char, c)
+                                  ? CONTEXT_WORD
+                                  : ((IS_NEWLINE (c) && pstr->newline_anchor)
+                                     ? CONTEXT_NEWLINE : 0));
+           }
+       }
+      if (!BE (pstr->mbs_allocated, 0))
+       pstr->mbs += offset;
+    }
+  pstr->raw_mbs_idx = idx;
+  pstr->len -= offset;
+  pstr->stop -= offset;
+
+  /* Then build the buffers.  */
+#ifdef RE_ENABLE_I18N
+  if (pstr->mb_cur_max > 1)
+    {
+      if (pstr->icase)
+       {
+         reg_errcode_t ret = build_wcs_upper_buffer (pstr);
+         if (BE (ret != REG_NOERROR, 0))
+           return ret;
+       }
+      else
+       build_wcs_buffer (pstr);
+    }
+  else
+#endif /* RE_ENABLE_I18N */
+    if (BE (pstr->mbs_allocated, 0))
+      {
+       if (pstr->icase)
+         build_upper_buffer (pstr);
+       else if (pstr->trans != NULL)
+         re_string_translate_buffer (pstr);
+      }
+    else
+      pstr->valid_len = pstr->len;
+
+  pstr->cur_idx = 0;
+  return REG_NOERROR;
+}
+
+static unsigned char
+internal_function __attribute ((pure))
+re_string_peek_byte_case (const re_string_t *pstr, int idx)
+{
+  int ch, off;
+
+  /* Handle the common (easiest) cases first.  */
+  if (BE (!pstr->mbs_allocated, 1))
+    return re_string_peek_byte (pstr, idx);
+
+#ifdef RE_ENABLE_I18N
+  if (pstr->mb_cur_max > 1
+      && ! re_string_is_single_byte_char (pstr, pstr->cur_idx + idx))
+    return re_string_peek_byte (pstr, idx);
+#endif
+
+  off = pstr->cur_idx + idx;
+#ifdef RE_ENABLE_I18N
+  if (pstr->offsets_needed)
+    off = pstr->offsets[off];
+#endif
+
+  ch = pstr->raw_mbs[pstr->raw_mbs_idx + off];
+
+#ifdef RE_ENABLE_I18N
+  /* Ensure that e.g. for tr_TR.UTF-8 BACKSLASH DOTLESS SMALL LETTER I
+     this function returns CAPITAL LETTER I instead of first byte of
+     DOTLESS SMALL LETTER I.  The latter would confuse the parser,
+     since peek_byte_case doesn't advance cur_idx in any way.  */
+  if (pstr->offsets_needed && !isascii (ch))
+    return re_string_peek_byte (pstr, idx);
+#endif
+
+  return ch;
+}
+
+static unsigned char
+internal_function __attribute ((pure))
+re_string_fetch_byte_case (re_string_t *pstr)
+{
+  if (BE (!pstr->mbs_allocated, 1))
+    return re_string_fetch_byte (pstr);
+
+#ifdef RE_ENABLE_I18N
+  if (pstr->offsets_needed)
+    {
+      int off, ch;
+
+      /* For tr_TR.UTF-8 [[:islower:]] there is
+        [[: CAPITAL LETTER I WITH DOT lower:]] in mbs.  Skip
+        in that case the whole multi-byte character and return
+        the original letter.  On the other side, with
+        [[: DOTLESS SMALL LETTER I return [[:I, as doing
+        anything else would complicate things too much.  */
+
+      if (!re_string_first_byte (pstr, pstr->cur_idx))
+       return re_string_fetch_byte (pstr);
+
+      off = pstr->offsets[pstr->cur_idx];
+      ch = pstr->raw_mbs[pstr->raw_mbs_idx + off];
+
+      if (! isascii (ch))
+       return re_string_fetch_byte (pstr);
+
+      re_string_skip_bytes (pstr,
+                           re_string_char_size_at (pstr, pstr->cur_idx));
+      return ch;
+    }
+#endif
+
+  return pstr->raw_mbs[pstr->raw_mbs_idx + pstr->cur_idx++];
+}
+
+static void
+internal_function
+re_string_destruct (re_string_t *pstr)
+{
+#ifdef RE_ENABLE_I18N
+  re_free (pstr->wcs);
+  re_free (pstr->offsets);
+#endif /* RE_ENABLE_I18N  */
+  if (pstr->mbs_allocated)
+    re_free (pstr->mbs);
+}
+
+/* Return the context at IDX in INPUT.  */
+
+static unsigned int
+internal_function
+re_string_context_at (const re_string_t *input, int idx, int eflags)
+{
+  int c;
+  if (BE (idx < 0, 0))
+    /* In this case, we use the value stored in input->tip_context,
+       since we can't know the character in input->mbs[-1] here.  */
+    return input->tip_context;
+  if (BE (idx == input->len, 0))
+    return ((eflags & REG_NOTEOL) ? CONTEXT_ENDBUF
+           : CONTEXT_NEWLINE | CONTEXT_ENDBUF);
+#ifdef RE_ENABLE_I18N
+  if (input->mb_cur_max > 1)
+    {
+      wint_t wc;
+      int wc_idx = idx;
+      while(input->wcs[wc_idx] == WEOF)
+       {
+#ifdef DEBUG
+         /* It must not happen.  */
+         assert (wc_idx >= 0);
+#endif
+         --wc_idx;
+         if (wc_idx < 0)
+           return input->tip_context;
+       }
+      wc = input->wcs[wc_idx];
+      if (BE (input->word_ops_used != 0, 0) && IS_WIDE_WORD_CHAR (wc))
+       return CONTEXT_WORD;
+      return (IS_WIDE_NEWLINE (wc) && input->newline_anchor
+             ? CONTEXT_NEWLINE : 0);
+    }
+  else
+#endif
+    {
+      c = re_string_byte_at (input, idx);
+      if (bitset_contain (input->word_char, c))
+       return CONTEXT_WORD;
+      return IS_NEWLINE (c) && input->newline_anchor ? CONTEXT_NEWLINE : 0;
+    }
+}
+\f
+/* Functions for set operation.  */
+
+static reg_errcode_t
+internal_function
+re_node_set_alloc (re_node_set *set, int size)
+{
+  /*
+   * ADR: valgrind says size can be 0, which then doesn't
+   * free the block of size 0.  Harumph. This seems
+   * to work ok, though.
+   */
+  if (size == 0)
+    {
+       memset(set, 0, sizeof(*set));
+       return REG_NOERROR;
+    }
+  set->alloc = size;
+  set->nelem = 0;
+  set->elems = re_malloc (int, size);
+  if (BE (set->elems == NULL, 0))
+    return REG_ESPACE;
+  return REG_NOERROR;
+}
+
+static reg_errcode_t
+internal_function
+re_node_set_init_1 (re_node_set *set, int elem)
+{
+  set->alloc = 1;
+  set->nelem = 1;
+  set->elems = re_malloc (int, 1);
+  if (BE (set->elems == NULL, 0))
+    {
+      set->alloc = set->nelem = 0;
+      return REG_ESPACE;
+    }
+  set->elems[0] = elem;
+  return REG_NOERROR;
+}
+
+static reg_errcode_t
+internal_function
+re_node_set_init_2 (re_node_set *set, int elem1, int elem2)
+{
+  set->alloc = 2;
+  set->elems = re_malloc (int, 2);
+  if (BE (set->elems == NULL, 0))
+    return REG_ESPACE;
+  if (elem1 == elem2)
+    {
+      set->nelem = 1;
+      set->elems[0] = elem1;
+    }
+  else
+    {
+      set->nelem = 2;
+      if (elem1 < elem2)
+       {
+         set->elems[0] = elem1;
+         set->elems[1] = elem2;
+       }
+      else
+       {
+         set->elems[0] = elem2;
+         set->elems[1] = elem1;
+       }
+    }
+  return REG_NOERROR;
+}
+
+static reg_errcode_t
+internal_function
+re_node_set_init_copy (re_node_set *dest, const re_node_set *src)
+{
+  dest->nelem = src->nelem;
+  if (src->nelem > 0)
+    {
+      dest->alloc = dest->nelem;
+      dest->elems = re_malloc (int, dest->alloc);
+      if (BE (dest->elems == NULL, 0))
+       {
+         dest->alloc = dest->nelem = 0;
+         return REG_ESPACE;
+       }
+      memcpy (dest->elems, src->elems, src->nelem * sizeof (int));
+    }
+  else
+    re_node_set_init_empty (dest);
+  return REG_NOERROR;
+}
+
+/* Calculate the intersection of the sets SRC1 and SRC2. And merge it to
+   DEST. Return value indicate the error code or REG_NOERROR if succeeded.
+   Note: We assume dest->elems is NULL, when dest->alloc is 0.  */
+
+static reg_errcode_t
+internal_function
+re_node_set_add_intersect (re_node_set *dest, const re_node_set *src1,
+                          const re_node_set *src2)
+{
+  int i1, i2, is, id, delta, sbase;
+  if (src1->nelem == 0 || src2->nelem == 0)
+    return REG_NOERROR;
+
+  /* We need dest->nelem + 2 * elems_in_intersection; this is a
+     conservative estimate.  */
+  if (src1->nelem + src2->nelem + dest->nelem > dest->alloc)
+    {
+      int new_alloc = src1->nelem + src2->nelem + dest->alloc;
+      int *new_elems = re_realloc (dest->elems, int, new_alloc);
+      if (BE (new_elems == NULL, 0))
+       return REG_ESPACE;
+      dest->elems = new_elems;
+      dest->alloc = new_alloc;
+    }
+
+  /* Find the items in the intersection of SRC1 and SRC2, and copy
+     into the top of DEST those that are not already in DEST itself.  */
+  sbase = dest->nelem + src1->nelem + src2->nelem;
+  i1 = src1->nelem - 1;
+  i2 = src2->nelem - 1;
+  id = dest->nelem - 1;
+  for (;;)
+    {
+      if (src1->elems[i1] == src2->elems[i2])
+       {
+         /* Try to find the item in DEST.  Maybe we could binary search?  */
+         while (id >= 0 && dest->elems[id] > src1->elems[i1])
+           --id;
+
+         if (id < 0 || dest->elems[id] != src1->elems[i1])
+           dest->elems[--sbase] = src1->elems[i1];
+
+         if (--i1 < 0 || --i2 < 0)
+           break;
+       }
+
+      /* Lower the highest of the two items.  */
+      else if (src1->elems[i1] < src2->elems[i2])
+       {
+         if (--i2 < 0)
+           break;
+       }
+      else
+       {
+         if (--i1 < 0)
+           break;
+       }
+    }
+
+  id = dest->nelem - 1;
+  is = dest->nelem + src1->nelem + src2->nelem - 1;
+  delta = is - sbase + 1;
+
+  /* Now copy.  When DELTA becomes zero, the remaining
+     DEST elements are already in place; this is more or
+     less the same loop that is in re_node_set_merge.  */
+  dest->nelem += delta;
+  if (delta > 0 && id >= 0)
+    for (;;)
+      {
+       if (dest->elems[is] > dest->elems[id])
+         {
+           /* Copy from the top.  */
+           dest->elems[id + delta--] = dest->elems[is--];
+           if (delta == 0)
+             break;
+         }
+       else
+         {
+           /* Slide from the bottom.  */
+           dest->elems[id + delta] = dest->elems[id];
+           if (--id < 0)
+             break;
+         }
+      }
+
+  /* Copy remaining SRC elements.  */
+  memcpy (dest->elems, dest->elems + sbase, delta * sizeof (int));
+
+  return REG_NOERROR;
+}
+
+/* Calculate the union set of the sets SRC1 and SRC2. And store it to
+   DEST. Return value indicate the error code or REG_NOERROR if succeeded.  */
+
+static reg_errcode_t
+internal_function
+re_node_set_init_union (re_node_set *dest, const re_node_set *src1,
+                       const re_node_set *src2)
+{
+  int i1, i2, id;
+  if (src1 != NULL && src1->nelem > 0 && src2 != NULL && src2->nelem > 0)
+    {
+      dest->alloc = src1->nelem + src2->nelem;
+      dest->elems = re_malloc (int, dest->alloc);
+      if (BE (dest->elems == NULL, 0))
+       return REG_ESPACE;
+    }
+  else
+    {
+      if (src1 != NULL && src1->nelem > 0)
+       return re_node_set_init_copy (dest, src1);
+      else if (src2 != NULL && src2->nelem > 0)
+       return re_node_set_init_copy (dest, src2);
+      else
+       re_node_set_init_empty (dest);
+      return REG_NOERROR;
+    }
+  for (i1 = i2 = id = 0 ; i1 < src1->nelem && i2 < src2->nelem ;)
+    {
+      if (src1->elems[i1] > src2->elems[i2])
+       {
+         dest->elems[id++] = src2->elems[i2++];
+         continue;
+       }
+      if (src1->elems[i1] == src2->elems[i2])
+       ++i2;
+      dest->elems[id++] = src1->elems[i1++];
+    }
+  if (i1 < src1->nelem)
+    {
+      memcpy (dest->elems + id, src1->elems + i1,
+            (src1->nelem - i1) * sizeof (int));
+      id += src1->nelem - i1;
+    }
+  else if (i2 < src2->nelem)
+    {
+      memcpy (dest->elems + id, src2->elems + i2,
+            (src2->nelem - i2) * sizeof (int));
+      id += src2->nelem - i2;
+    }
+  dest->nelem = id;
+  return REG_NOERROR;
+}
+
+/* Calculate the union set of the sets DEST and SRC. And store it to
+   DEST. Return value indicate the error code or REG_NOERROR if succeeded.  */
+
+static reg_errcode_t
+internal_function
+re_node_set_merge (re_node_set *dest, const re_node_set *src)
+{
+  int is, id, sbase, delta;
+  if (src == NULL || src->nelem == 0)
+    return REG_NOERROR;
+  if (dest->alloc < 2 * src->nelem + dest->nelem)
+    {
+      int new_alloc = 2 * (src->nelem + dest->alloc);
+      int *new_buffer = re_realloc (dest->elems, int, new_alloc);
+      if (BE (new_buffer == NULL, 0))
+       return REG_ESPACE;
+      dest->elems = new_buffer;
+      dest->alloc = new_alloc;
+    }
+
+  if (BE (dest->nelem == 0, 0))
+    {
+      dest->nelem = src->nelem;
+      memcpy (dest->elems, src->elems, src->nelem * sizeof (int));
+      return REG_NOERROR;
+    }
+
+  /* Copy into the top of DEST the items of SRC that are not
+     found in DEST.  Maybe we could binary search in DEST?  */
+  for (sbase = dest->nelem + 2 * src->nelem,
+       is = src->nelem - 1, id = dest->nelem - 1; is >= 0 && id >= 0; )
+    {
+      if (dest->elems[id] == src->elems[is])
+       is--, id--;
+      else if (dest->elems[id] < src->elems[is])
+       dest->elems[--sbase] = src->elems[is--];
+      else /* if (dest->elems[id] > src->elems[is]) */
+       --id;
+    }
+
+  if (is >= 0)
+    {
+      /* If DEST is exhausted, the remaining items of SRC must be unique.  */
+      sbase -= is + 1;
+      memcpy (dest->elems + sbase, src->elems, (is + 1) * sizeof (int));
+    }
+
+  id = dest->nelem - 1;
+  is = dest->nelem + 2 * src->nelem - 1;
+  delta = is - sbase + 1;
+  if (delta == 0)
+    return REG_NOERROR;
+
+  /* Now copy.  When DELTA becomes zero, the remaining
+     DEST elements are already in place.  */
+  dest->nelem += delta;
+  for (;;)
+    {
+      if (dest->elems[is] > dest->elems[id])
+       {
+         /* Copy from the top.  */
+         dest->elems[id + delta--] = dest->elems[is--];
+         if (delta == 0)
+           break;
+       }
+      else
+       {
+         /* Slide from the bottom.  */
+         dest->elems[id + delta] = dest->elems[id];
+         if (--id < 0)
+           {
+             /* Copy remaining SRC elements.  */
+             memcpy (dest->elems, dest->elems + sbase,
+                     delta * sizeof (int));
+             break;
+           }
+       }
+    }
+
+  return REG_NOERROR;
+}
+
+/* Insert the new element ELEM to the re_node_set* SET.
+   SET should not already have ELEM.
+   return -1 if an error is occured, return 1 otherwise.  */
+
+static int
+internal_function
+re_node_set_insert (re_node_set *set, int elem)
+{
+  int idx;
+  /* In case the set is empty.  */
+  if (set->alloc == 0)
+    {
+      if (BE (re_node_set_init_1 (set, elem) == REG_NOERROR, 1))
+       return 1;
+      else
+       return -1;
+    }
+
+  if (BE (set->nelem, 0) == 0)
+    {
+      /* We already guaranteed above that set->alloc != 0.  */
+      set->elems[0] = elem;
+      ++set->nelem;
+      return 1;
+    }
+
+  /* Realloc if we need.  */
+  if (set->alloc == set->nelem)
+    {
+      int *new_elems;
+      set->alloc = set->alloc * 2;
+      new_elems = re_realloc (set->elems, int, set->alloc);
+      if (BE (new_elems == NULL, 0))
+       return -1;
+      set->elems = new_elems;
+    }
+
+  /* Move the elements which follows the new element.  Test the
+     first element separately to skip a check in the inner loop.  */
+  if (elem < set->elems[0])
+    {
+      idx = 0;
+      for (idx = set->nelem; idx > 0; idx--)
+       set->elems[idx] = set->elems[idx - 1];
+    }
+  else
+    {
+      for (idx = set->nelem; set->elems[idx - 1] > elem; idx--)
+       set->elems[idx] = set->elems[idx - 1];
+    }
+
+  /* Insert the new element.  */
+  set->elems[idx] = elem;
+  ++set->nelem;
+  return 1;
+}
+
+/* Insert the new element ELEM to the re_node_set* SET.
+   SET should not already have any element greater than or equal to ELEM.
+   Return -1 if an error is occured, return 1 otherwise.  */
+
+static int
+internal_function
+re_node_set_insert_last (re_node_set *set, int elem)
+{
+  /* Realloc if we need.  */
+  if (set->alloc == set->nelem)
+    {
+      int *new_elems;
+      set->alloc = (set->alloc + 1) * 2;
+      new_elems = re_realloc (set->elems, int, set->alloc);
+      if (BE (new_elems == NULL, 0))
+       return -1;
+      set->elems = new_elems;
+    }
+
+  /* Insert the new element.  */
+  set->elems[set->nelem++] = elem;
+  return 1;
+}
+
+/* Compare two node sets SET1 and SET2.
+   return 1 if SET1 and SET2 are equivalent, return 0 otherwise.  */
+
+static int
+internal_function __attribute ((pure))
+re_node_set_compare (const re_node_set *set1, const re_node_set *set2)
+{
+  int i;
+  if (set1 == NULL || set2 == NULL || set1->nelem != set2->nelem)
+    return 0;
+  for (i = set1->nelem ; --i >= 0 ; )
+    if (set1->elems[i] != set2->elems[i])
+      return 0;
+  return 1;
+}
+
+/* Return (idx + 1) if SET contains the element ELEM, return 0 otherwise.  */
+
+static int
+internal_function __attribute ((pure))
+re_node_set_contains (const re_node_set *set, int elem)
+{
+  unsigned int idx, right, mid;
+  if (set->nelem <= 0)
+    return 0;
+
+  /* Binary search the element.  */
+  idx = 0;
+  right = set->nelem - 1;
+  while (idx < right)
+    {
+      mid = (idx + right) / 2;
+      if (set->elems[mid] < elem)
+       idx = mid + 1;
+      else
+       right = mid;
+    }
+  return set->elems[idx] == elem ? idx + 1 : 0;
+}
+
+static void
+internal_function
+re_node_set_remove_at (re_node_set *set, int idx)
+{
+  if (idx < 0 || idx >= set->nelem)
+    return;
+  --set->nelem;
+  for (; idx < set->nelem; idx++)
+    set->elems[idx] = set->elems[idx + 1];
+}
+\f
+
+/* Add the token TOKEN to dfa->nodes, and return the index of the token.
+   Or return -1, if an error will be occured.  */
+
+static int
+internal_function
+re_dfa_add_node (re_dfa_t *dfa, re_token_t token)
+{
+  if (BE (dfa->nodes_len >= dfa->nodes_alloc, 0))
+    {
+      size_t new_nodes_alloc = dfa->nodes_alloc * 2;
+      int *new_nexts, *new_indices;
+      re_node_set *new_edests, *new_eclosures;
+      re_token_t *new_nodes;
+
+      /* Avoid overflows in realloc.  */
+      const size_t max_object_size = MAX (sizeof (re_token_t),
+                                         MAX (sizeof (re_node_set),
+                                              sizeof (int)));
+      if (BE (SIZE_MAX / max_object_size < new_nodes_alloc, 0))
+       return -1;
+
+      new_nodes = re_realloc (dfa->nodes, re_token_t, new_nodes_alloc);
+      if (BE (new_nodes == NULL, 0))
+       return -1;
+      dfa->nodes = new_nodes;
+      new_nexts = re_realloc (dfa->nexts, int, new_nodes_alloc);
+      new_indices = re_realloc (dfa->org_indices, int, new_nodes_alloc);
+      new_edests = re_realloc (dfa->edests, re_node_set, new_nodes_alloc);
+      new_eclosures = re_realloc (dfa->eclosures, re_node_set, new_nodes_alloc);
+      if (BE (new_nexts == NULL || new_indices == NULL
+             || new_edests == NULL || new_eclosures == NULL, 0))
+       return -1;
+      dfa->nexts = new_nexts;
+      dfa->org_indices = new_indices;
+      dfa->edests = new_edests;
+      dfa->eclosures = new_eclosures;
+      dfa->nodes_alloc = new_nodes_alloc;
+    }
+  dfa->nodes[dfa->nodes_len] = token;
+  dfa->nodes[dfa->nodes_len].constraint = 0;
+#ifdef RE_ENABLE_I18N
+  dfa->nodes[dfa->nodes_len].accept_mb =
+    (token.type == OP_PERIOD && dfa->mb_cur_max > 1) || token.type == COMPLEX_BRACKET;
+#endif
+  dfa->nexts[dfa->nodes_len] = -1;
+  re_node_set_init_empty (dfa->edests + dfa->nodes_len);
+  re_node_set_init_empty (dfa->eclosures + dfa->nodes_len);
+  return dfa->nodes_len++;
+}
+
+static inline unsigned int
+internal_function
+calc_state_hash (const re_node_set *nodes, unsigned int context)
+{
+  unsigned int hash = nodes->nelem + context;
+  int i;
+  for (i = 0 ; i < nodes->nelem ; i++)
+    hash += nodes->elems[i];
+  return hash;
+}
+
+/* Search for the state whose node_set is equivalent to NODES.
+   Return the pointer to the state, if we found it in the DFA.
+   Otherwise create the new one and return it.  In case of an error
+   return NULL and set the error code in ERR.
+   Note: - We assume NULL as the invalid state, then it is possible that
+          return value is NULL and ERR is REG_NOERROR.
+        - We never return non-NULL value in case of any errors, it is for
+          optimization.  */
+
+static re_dfastate_t *
+internal_function
+re_acquire_state (reg_errcode_t *err, const re_dfa_t *dfa,
+                 const re_node_set *nodes)
+{
+  unsigned int hash;
+  re_dfastate_t *new_state;
+  struct re_state_table_entry *spot;
+  int i;
+  if (BE (nodes->nelem == 0, 0))
+    {
+      *err = REG_NOERROR;
+      return NULL;
+    }
+  hash = calc_state_hash (nodes, 0);
+  spot = dfa->state_table + (hash & dfa->state_hash_mask);
+
+  for (i = 0 ; i < spot->num ; i++)
+    {
+      re_dfastate_t *state = spot->array[i];
+      if (hash != state->hash)
+       continue;
+      if (re_node_set_compare (&state->nodes, nodes))
+       return state;
+    }
+
+  /* There are no appropriate state in the dfa, create the new one.  */
+  new_state = create_ci_newstate (dfa, nodes, hash);
+  if (BE (new_state == NULL, 0))
+    *err = REG_ESPACE;
+
+  return new_state;
+}
+
+/* Search for the state whose node_set is equivalent to NODES and
+   whose context is equivalent to CONTEXT.
+   Return the pointer to the state, if we found it in the DFA.
+   Otherwise create the new one and return it.  In case of an error
+   return NULL and set the error code in ERR.
+   Note: - We assume NULL as the invalid state, then it is possible that
+          return value is NULL and ERR is REG_NOERROR.
+        - We never return non-NULL value in case of any errors, it is for
+          optimization.  */
+
+static re_dfastate_t *
+internal_function
+re_acquire_state_context (reg_errcode_t *err, const re_dfa_t *dfa,
+                         const re_node_set *nodes, unsigned int context)
+{
+  unsigned int hash;
+  re_dfastate_t *new_state;
+  struct re_state_table_entry *spot;
+  int i;
+  if (nodes->nelem == 0)
+    {
+      *err = REG_NOERROR;
+      return NULL;
+    }
+  hash = calc_state_hash (nodes, context);
+  spot = dfa->state_table + (hash & dfa->state_hash_mask);
+
+  for (i = 0 ; i < spot->num ; i++)
+    {
+      re_dfastate_t *state = spot->array[i];
+      if (state->hash == hash
+         && state->context == context
+         && re_node_set_compare (state->entrance_nodes, nodes))
+       return state;
+    }
+  /* There are no appropriate state in `dfa', create the new one.  */
+  new_state = create_cd_newstate (dfa, nodes, context, hash);
+  if (BE (new_state == NULL, 0))
+    *err = REG_ESPACE;
+
+  return new_state;
+}
+
+/* Finish initialization of the new state NEWSTATE, and using its hash value
+   HASH put in the appropriate bucket of DFA's state table.  Return value
+   indicates the error code if failed.  */
+
+static reg_errcode_t
+register_state (const re_dfa_t *dfa, re_dfastate_t *newstate,
+               unsigned int hash)
+{
+  struct re_state_table_entry *spot;
+  reg_errcode_t err;
+  int i;
+
+  newstate->hash = hash;
+  err = re_node_set_alloc (&newstate->non_eps_nodes, newstate->nodes.nelem);
+  if (BE (err != REG_NOERROR, 0))
+    return REG_ESPACE;
+  for (i = 0; i < newstate->nodes.nelem; i++)
+    {
+      int elem = newstate->nodes.elems[i];
+      if (!IS_EPSILON_NODE (dfa->nodes[elem].type))
+       if (re_node_set_insert_last (&newstate->non_eps_nodes, elem) < 0)
+         return REG_ESPACE;
+    }
+
+  spot = dfa->state_table + (hash & dfa->state_hash_mask);
+  if (BE (spot->alloc <= spot->num, 0))
+    {
+      int new_alloc = 2 * spot->num + 2;
+      re_dfastate_t **new_array = re_realloc (spot->array, re_dfastate_t *,
+                                             new_alloc);
+      if (BE (new_array == NULL, 0))
+       return REG_ESPACE;
+      spot->array = new_array;
+      spot->alloc = new_alloc;
+    }
+  spot->array[spot->num++] = newstate;
+  return REG_NOERROR;
+}
+
+static void
+free_state (re_dfastate_t *state)
+{
+  re_node_set_free (&state->non_eps_nodes);
+  re_node_set_free (&state->inveclosure);
+  if (state->entrance_nodes != &state->nodes)
+    {
+      re_node_set_free (state->entrance_nodes);
+      re_free (state->entrance_nodes);
+    }
+  re_node_set_free (&state->nodes);
+  re_free (state->word_trtable);
+  re_free (state->trtable);
+  re_free (state);
+}
+
+/* Create the new state which is independ of contexts.
+   Return the new state if succeeded, otherwise return NULL.  */
+
+static re_dfastate_t *
+internal_function
+create_ci_newstate (const re_dfa_t *dfa, const re_node_set *nodes,
+                   unsigned int hash)
+{
+  int i;
+  reg_errcode_t err;
+  re_dfastate_t *newstate;
+
+  newstate = (re_dfastate_t *) calloc (sizeof (re_dfastate_t), 1);
+  if (BE (newstate == NULL, 0))
+    return NULL;
+  err = re_node_set_init_copy (&newstate->nodes, nodes);
+  if (BE (err != REG_NOERROR, 0))
+    {
+      re_free (newstate);
+      return NULL;
+    }
+
+  newstate->entrance_nodes = &newstate->nodes;
+  for (i = 0 ; i < nodes->nelem ; i++)
+    {
+      re_token_t *node = dfa->nodes + nodes->elems[i];
+      re_token_type_t type = node->type;
+      if (type == CHARACTER && !node->constraint)
+       continue;
+#ifdef RE_ENABLE_I18N
+      newstate->accept_mb |= node->accept_mb;
+#endif /* RE_ENABLE_I18N */
+
+      /* If the state has the halt node, the state is a halt state.  */
+      if (type == END_OF_RE)
+       newstate->halt = 1;
+      else if (type == OP_BACK_REF)
+       newstate->has_backref = 1;
+      else if (type == ANCHOR || node->constraint)
+       newstate->has_constraint = 1;
+    }
+  err = register_state (dfa, newstate, hash);
+  if (BE (err != REG_NOERROR, 0))
+    {
+      free_state (newstate);
+      newstate = NULL;
+    }
+  return newstate;
+}
+
+/* Create the new state which is depend on the context CONTEXT.
+   Return the new state if succeeded, otherwise return NULL.  */
+
+static re_dfastate_t *
+internal_function
+create_cd_newstate (const re_dfa_t *dfa, const re_node_set *nodes,
+                   unsigned int context, unsigned int hash)
+{
+  int i, nctx_nodes = 0;
+  reg_errcode_t err;
+  re_dfastate_t *newstate;
+
+  newstate = (re_dfastate_t *) calloc (sizeof (re_dfastate_t), 1);
+  if (BE (newstate == NULL, 0))
+    return NULL;
+  err = re_node_set_init_copy (&newstate->nodes, nodes);
+  if (BE (err != REG_NOERROR, 0))
+    {
+      re_free (newstate);
+      return NULL;
+    }
+
+  newstate->context = context;
+  newstate->entrance_nodes = &newstate->nodes;
+
+  for (i = 0 ; i < nodes->nelem ; i++)
+    {
+      re_token_t *node = dfa->nodes + nodes->elems[i];
+      re_token_type_t type = node->type;
+      unsigned int constraint = node->constraint;
+
+      if (type == CHARACTER && !constraint)
+       continue;
+#ifdef RE_ENABLE_I18N
+      newstate->accept_mb |= node->accept_mb;
+#endif /* RE_ENABLE_I18N */
+
+      /* If the state has the halt node, the state is a halt state.  */
+      if (type == END_OF_RE)
+       newstate->halt = 1;
+      else if (type == OP_BACK_REF)
+       newstate->has_backref = 1;
+
+      if (constraint)
+       {
+         if (newstate->entrance_nodes == &newstate->nodes)
+           {
+             newstate->entrance_nodes = re_malloc (re_node_set, 1);
+             if (BE (newstate->entrance_nodes == NULL, 0))
+               {
+                 free_state (newstate);
+                 return NULL;
+               }
+             if (re_node_set_init_copy (newstate->entrance_nodes, nodes)
+                 != REG_NOERROR)
+               return NULL;
+             nctx_nodes = 0;
+             newstate->has_constraint = 1;
+           }
+
+         if (NOT_SATISFY_PREV_CONSTRAINT (constraint,context))
+           {
+             re_node_set_remove_at (&newstate->nodes, i - nctx_nodes);
+             ++nctx_nodes;
+           }
+       }
+    }
+  err = register_state (dfa, newstate, hash);
+  if (BE (err != REG_NOERROR, 0))
+    {
+      free_state (newstate);
+      newstate = NULL;
+    }
+  return  newstate;
+}
diff --git a/compat/regex/regex_internal.h b/compat/regex/regex_internal.h
new file mode 100644 (file)
index 0000000..4184d7f
--- /dev/null
@@ -0,0 +1,810 @@
+/* Extended regular expression matching and search library.
+   Copyright (C) 2002-2005, 2007, 2008, 2010 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Lesser General Public
+   License as published by the Free Software Foundation; either
+   version 2.1 of the License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Lesser General Public License for more details.
+
+   You should have received a copy of the GNU Lesser General Public
+   License along with the GNU C Library; if not, write to the Free
+   Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
+   02111-1307 USA.  */
+
+#ifndef _REGEX_INTERNAL_H
+#define _REGEX_INTERNAL_H 1
+
+#include <assert.h>
+#include <ctype.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+#if defined HAVE_LANGINFO_H || defined HAVE_LANGINFO_CODESET || defined _LIBC
+# include <langinfo.h>
+#endif
+#if defined HAVE_LOCALE_H || defined _LIBC
+# include <locale.h>
+#endif
+#if defined HAVE_WCHAR_H || defined _LIBC
+# include <wchar.h>
+#endif /* HAVE_WCHAR_H || _LIBC */
+#if defined HAVE_WCTYPE_H || defined _LIBC
+# include <wctype.h>
+#endif /* HAVE_WCTYPE_H || _LIBC */
+#if defined HAVE_STDBOOL_H || defined _LIBC
+# include <stdbool.h>
+#endif /* HAVE_STDBOOL_H || _LIBC */
+#if !defined(ZOS_USS)
+#if defined HAVE_STDINT_H || defined _LIBC
+# include <stdint.h>
+#endif /* HAVE_STDINT_H || _LIBC */
+#endif /* !ZOS_USS */
+#if defined _LIBC
+# include <bits/libc-lock.h>
+#else
+# define __libc_lock_define(CLASS,NAME)
+# define __libc_lock_init(NAME) do { } while (0)
+# define __libc_lock_lock(NAME) do { } while (0)
+# define __libc_lock_unlock(NAME) do { } while (0)
+#endif
+
+#ifndef GAWK
+/* In case that the system doesn't have isblank().  */
+#if !defined _LIBC && !defined HAVE_ISBLANK && !defined isblank
+# define isblank(ch) ((ch) == ' ' || (ch) == '\t')
+#endif
+#else /* GAWK */
+/*
+ * This is a freaking mess. On glibc systems you have to define
+ * a magic constant to get isblank() out of <ctype.h>, since it's
+ * a C99 function.  To heck with all that and borrow a page from
+ * dfa.c's book.
+ */
+
+static int
+is_blank (int c)
+{
+   return (c == ' ' || c == '\t');
+}
+#endif /* GAWK */
+
+#ifdef _LIBC
+# ifndef _RE_DEFINE_LOCALE_FUNCTIONS
+#  define _RE_DEFINE_LOCALE_FUNCTIONS 1
+#   include <locale/localeinfo.h>
+#   include <locale/elem-hash.h>
+#   include <locale/coll-lookup.h>
+# endif
+#endif
+
+/* This is for other GNU distributions with internationalized messages.  */
+#if (HAVE_LIBINTL_H && ENABLE_NLS) || defined _LIBC
+# include <libintl.h>
+# ifdef _LIBC
+#  undef gettext
+#  define gettext(msgid) \
+  INTUSE(__dcgettext) (_libc_intl_domainname, msgid, LC_MESSAGES)
+# endif
+#else
+# define gettext(msgid) (msgid)
+#endif
+
+#ifndef gettext_noop
+/* This define is so xgettext can find the internationalizable
+   strings.  */
+# define gettext_noop(String) String
+#endif
+
+/* For loser systems without the definition.  */
+#ifndef SIZE_MAX
+# define SIZE_MAX ((size_t) -1)
+#endif
+
+#ifndef NO_MBSUPPORT
+#include "mbsupport.h" /* gawk */
+#endif
+#ifndef MB_CUR_MAX
+#define MB_CUR_MAX 1
+#endif
+
+#if (defined MBS_SUPPORT) || _LIBC
+# define RE_ENABLE_I18N
+#endif
+
+#if __GNUC__ >= 3
+# define BE(expr, val) __builtin_expect (expr, val)
+#else
+# define BE(expr, val) (expr)
+# ifdef inline
+# undef inline
+# endif
+# define inline
+#endif
+
+/* Number of single byte character.  */
+#define SBC_MAX 256
+
+#define COLL_ELEM_LEN_MAX 8
+
+/* The character which represents newline.  */
+#define NEWLINE_CHAR '\n'
+#define WIDE_NEWLINE_CHAR L'\n'
+
+/* Rename to standard API for using out of glibc.  */
+#ifndef _LIBC
+# ifdef __wctype
+# undef __wctype
+# endif
+# define __wctype wctype
+# ifdef __iswctype
+# undef __iswctype
+# endif
+# define __iswctype iswctype
+# define __btowc btowc
+# define __mbrtowc mbrtowc
+#undef __mempcpy       /* GAWK */
+# define __mempcpy mempcpy
+# define __wcrtomb wcrtomb
+# define __regfree regfree
+# define attribute_hidden
+#endif /* not _LIBC */
+
+#ifdef __GNUC__
+# define __attribute(arg) __attribute__ (arg)
+#else
+# define __attribute(arg)
+#endif
+
+extern const char __re_error_msgid[] attribute_hidden;
+extern const size_t __re_error_msgid_idx[] attribute_hidden;
+
+/* An integer used to represent a set of bits.  It must be unsigned,
+   and must be at least as wide as unsigned int.  */
+typedef unsigned long int bitset_word_t;
+/* All bits set in a bitset_word_t.  */
+#define BITSET_WORD_MAX ULONG_MAX
+/* Number of bits in a bitset_word_t.  */
+#define BITSET_WORD_BITS (sizeof (bitset_word_t) * CHAR_BIT)
+/* Number of bitset_word_t in a bit_set.  */
+#define BITSET_WORDS (SBC_MAX / BITSET_WORD_BITS)
+typedef bitset_word_t bitset_t[BITSET_WORDS];
+typedef bitset_word_t *re_bitset_ptr_t;
+typedef const bitset_word_t *re_const_bitset_ptr_t;
+
+#define bitset_set(set,i) \
+  (set[i / BITSET_WORD_BITS] |= (bitset_word_t) 1 << i % BITSET_WORD_BITS)
+#define bitset_clear(set,i) \
+  (set[i / BITSET_WORD_BITS] &= ~((bitset_word_t) 1 << i % BITSET_WORD_BITS))
+#define bitset_contain(set,i) \
+  (set[i / BITSET_WORD_BITS] & ((bitset_word_t) 1 << i % BITSET_WORD_BITS))
+#define bitset_empty(set) memset (set, '\0', sizeof (bitset_t))
+#define bitset_set_all(set) memset (set, '\xff', sizeof (bitset_t))
+#define bitset_copy(dest,src) memcpy (dest, src, sizeof (bitset_t))
+
+#define PREV_WORD_CONSTRAINT 0x0001
+#define PREV_NOTWORD_CONSTRAINT 0x0002
+#define NEXT_WORD_CONSTRAINT 0x0004
+#define NEXT_NOTWORD_CONSTRAINT 0x0008
+#define PREV_NEWLINE_CONSTRAINT 0x0010
+#define NEXT_NEWLINE_CONSTRAINT 0x0020
+#define PREV_BEGBUF_CONSTRAINT 0x0040
+#define NEXT_ENDBUF_CONSTRAINT 0x0080
+#define WORD_DELIM_CONSTRAINT 0x0100
+#define NOT_WORD_DELIM_CONSTRAINT 0x0200
+
+typedef enum
+{
+  INSIDE_WORD = PREV_WORD_CONSTRAINT | NEXT_WORD_CONSTRAINT,
+  WORD_FIRST = PREV_NOTWORD_CONSTRAINT | NEXT_WORD_CONSTRAINT,
+  WORD_LAST = PREV_WORD_CONSTRAINT | NEXT_NOTWORD_CONSTRAINT,
+  INSIDE_NOTWORD = PREV_NOTWORD_CONSTRAINT | NEXT_NOTWORD_CONSTRAINT,
+  LINE_FIRST = PREV_NEWLINE_CONSTRAINT,
+  LINE_LAST = NEXT_NEWLINE_CONSTRAINT,
+  BUF_FIRST = PREV_BEGBUF_CONSTRAINT,
+  BUF_LAST = NEXT_ENDBUF_CONSTRAINT,
+  WORD_DELIM = WORD_DELIM_CONSTRAINT,
+  NOT_WORD_DELIM = NOT_WORD_DELIM_CONSTRAINT
+} re_context_type;
+
+typedef struct
+{
+  int alloc;
+  int nelem;
+  int *elems;
+} re_node_set;
+
+typedef enum
+{
+  NON_TYPE = 0,
+
+  /* Node type, These are used by token, node, tree.  */
+  CHARACTER = 1,
+  END_OF_RE = 2,
+  SIMPLE_BRACKET = 3,
+  OP_BACK_REF = 4,
+  OP_PERIOD = 5,
+#ifdef RE_ENABLE_I18N
+  COMPLEX_BRACKET = 6,
+  OP_UTF8_PERIOD = 7,
+#endif /* RE_ENABLE_I18N */
+
+  /* We define EPSILON_BIT as a macro so that OP_OPEN_SUBEXP is used
+     when the debugger shows values of this enum type.  */
+#define EPSILON_BIT 8
+  OP_OPEN_SUBEXP = EPSILON_BIT | 0,
+  OP_CLOSE_SUBEXP = EPSILON_BIT | 1,
+  OP_ALT = EPSILON_BIT | 2,
+  OP_DUP_ASTERISK = EPSILON_BIT | 3,
+  ANCHOR = EPSILON_BIT | 4,
+
+  /* Tree type, these are used only by tree. */
+  CONCAT = 16,
+  SUBEXP = 17,
+
+  /* Token type, these are used only by token.  */
+  OP_DUP_PLUS = 18,
+  OP_DUP_QUESTION,
+  OP_OPEN_BRACKET,
+  OP_CLOSE_BRACKET,
+  OP_CHARSET_RANGE,
+  OP_OPEN_DUP_NUM,
+  OP_CLOSE_DUP_NUM,
+  OP_NON_MATCH_LIST,
+  OP_OPEN_COLL_ELEM,
+  OP_CLOSE_COLL_ELEM,
+  OP_OPEN_EQUIV_CLASS,
+  OP_CLOSE_EQUIV_CLASS,
+  OP_OPEN_CHAR_CLASS,
+  OP_CLOSE_CHAR_CLASS,
+  OP_WORD,
+  OP_NOTWORD,
+  OP_SPACE,
+  OP_NOTSPACE,
+  BACK_SLASH
+
+} re_token_type_t;
+
+#ifdef RE_ENABLE_I18N
+typedef struct
+{
+  /* Multibyte characters.  */
+  wchar_t *mbchars;
+
+  /* Collating symbols.  */
+# ifdef _LIBC
+  int32_t *coll_syms;
+# endif
+
+  /* Equivalence classes. */
+# ifdef _LIBC
+  int32_t *equiv_classes;
+# endif
+
+  /* Range expressions. */
+# ifdef _LIBC
+  uint32_t *range_starts;
+  uint32_t *range_ends;
+# else /* not _LIBC */
+  wchar_t *range_starts;
+  wchar_t *range_ends;
+# endif /* not _LIBC */
+
+  /* Character classes. */
+  wctype_t *char_classes;
+
+  /* If this character set is the non-matching list.  */
+  unsigned int non_match : 1;
+
+  /* # of multibyte characters.  */
+  int nmbchars;
+
+  /* # of collating symbols.  */
+  int ncoll_syms;
+
+  /* # of equivalence classes. */
+  int nequiv_classes;
+
+  /* # of range expressions. */
+  int nranges;
+
+  /* # of character classes. */
+  int nchar_classes;
+} re_charset_t;
+#endif /* RE_ENABLE_I18N */
+
+typedef struct
+{
+  union
+  {
+    unsigned char c;           /* for CHARACTER */
+    re_bitset_ptr_t sbcset;    /* for SIMPLE_BRACKET */
+#ifdef RE_ENABLE_I18N
+    re_charset_t *mbcset;      /* for COMPLEX_BRACKET */
+#endif /* RE_ENABLE_I18N */
+    int idx;                   /* for BACK_REF */
+    re_context_type ctx_type;  /* for ANCHOR */
+  } opr;
+#if __GNUC__ >= 2
+  re_token_type_t type : 8;
+#else
+  re_token_type_t type;
+#endif
+  unsigned int constraint : 10;        /* context constraint */
+  unsigned int duplicated : 1;
+  unsigned int opt_subexp : 1;
+#ifdef RE_ENABLE_I18N
+  unsigned int accept_mb : 1;
+  /* These 2 bits can be moved into the union if needed (e.g. if running out
+     of bits; move opr.c to opr.c.c and move the flags to opr.c.flags).  */
+  unsigned int mb_partial : 1;
+#endif
+  unsigned int word_char : 1;
+} re_token_t;
+
+#define IS_EPSILON_NODE(type) ((type) & EPSILON_BIT)
+
+struct re_string_t
+{
+  /* Indicate the raw buffer which is the original string passed as an
+     argument of regexec(), re_search(), etc..  */
+  const unsigned char *raw_mbs;
+  /* Store the multibyte string.  In case of "case insensitive mode" like
+     REG_ICASE, upper cases of the string are stored, otherwise MBS points
+     the same address that RAW_MBS points.  */
+  unsigned char *mbs;
+#ifdef RE_ENABLE_I18N
+  /* Store the wide character string which is corresponding to MBS.  */
+  wint_t *wcs;
+  int *offsets;
+  mbstate_t cur_state;
+#endif
+  /* Index in RAW_MBS.  Each character mbs[i] corresponds to
+     raw_mbs[raw_mbs_idx + i].  */
+  int raw_mbs_idx;
+  /* The length of the valid characters in the buffers.  */
+  int valid_len;
+  /* The corresponding number of bytes in raw_mbs array.  */
+  int valid_raw_len;
+  /* The length of the buffers MBS and WCS.  */
+  int bufs_len;
+  /* The index in MBS, which is updated by re_string_fetch_byte.  */
+  int cur_idx;
+  /* length of RAW_MBS array.  */
+  int raw_len;
+  /* This is RAW_LEN - RAW_MBS_IDX + VALID_LEN - VALID_RAW_LEN.  */
+  int len;
+  /* End of the buffer may be shorter than its length in the cases such
+     as re_match_2, re_search_2.  Then, we use STOP for end of the buffer
+     instead of LEN.  */
+  int raw_stop;
+  /* This is RAW_STOP - RAW_MBS_IDX adjusted through OFFSETS.  */
+  int stop;
+
+  /* The context of mbs[0].  We store the context independently, since
+     the context of mbs[0] may be different from raw_mbs[0], which is
+     the beginning of the input string.  */
+  unsigned int tip_context;
+  /* The translation passed as a part of an argument of re_compile_pattern.  */
+  RE_TRANSLATE_TYPE trans;
+  /* Copy of re_dfa_t's word_char.  */
+  re_const_bitset_ptr_t word_char;
+  /* 1 if REG_ICASE.  */
+  unsigned char icase;
+  unsigned char is_utf8;
+  unsigned char map_notascii;
+  unsigned char mbs_allocated;
+  unsigned char offsets_needed;
+  unsigned char newline_anchor;
+  unsigned char word_ops_used;
+  int mb_cur_max;
+};
+typedef struct re_string_t re_string_t;
+
+
+struct re_dfa_t;
+typedef struct re_dfa_t re_dfa_t;
+
+#ifndef _LIBC
+# ifdef __i386__
+#  define internal_function   __attribute ((regparm (3), stdcall))
+# else
+#  define internal_function
+# endif
+#endif
+
+#ifndef NOT_IN_libc
+static reg_errcode_t re_string_realloc_buffers (re_string_t *pstr,
+                                               int new_buf_len)
+     internal_function;
+# ifdef RE_ENABLE_I18N
+static void build_wcs_buffer (re_string_t *pstr) internal_function;
+static reg_errcode_t build_wcs_upper_buffer (re_string_t *pstr)
+  internal_function;
+# endif /* RE_ENABLE_I18N */
+static void build_upper_buffer (re_string_t *pstr) internal_function;
+static void re_string_translate_buffer (re_string_t *pstr) internal_function;
+static unsigned int re_string_context_at (const re_string_t *input, int idx,
+                                         int eflags)
+     internal_function __attribute ((pure));
+#endif
+#define re_string_peek_byte(pstr, offset) \
+  ((pstr)->mbs[(pstr)->cur_idx + offset])
+#define re_string_fetch_byte(pstr) \
+  ((pstr)->mbs[(pstr)->cur_idx++])
+#define re_string_first_byte(pstr, idx) \
+  ((idx) == (pstr)->valid_len || (pstr)->wcs[idx] != WEOF)
+#define re_string_is_single_byte_char(pstr, idx) \
+  ((pstr)->wcs[idx] != WEOF && ((pstr)->valid_len == (idx) + 1 \
+                               || (pstr)->wcs[(idx) + 1] != WEOF))
+#define re_string_eoi(pstr) ((pstr)->stop <= (pstr)->cur_idx)
+#define re_string_cur_idx(pstr) ((pstr)->cur_idx)
+#define re_string_get_buffer(pstr) ((pstr)->mbs)
+#define re_string_length(pstr) ((pstr)->len)
+#define re_string_byte_at(pstr,idx) ((pstr)->mbs[idx])
+#define re_string_skip_bytes(pstr,idx) ((pstr)->cur_idx += (idx))
+#define re_string_set_index(pstr,idx) ((pstr)->cur_idx = (idx))
+
+#ifndef _LIBC
+# if HAVE_ALLOCA
+#  if (_MSC_VER)
+#   include <malloc.h>
+#   define __libc_use_alloca(n) 0
+#  else
+#   include <alloca.h>
+/* The OS usually guarantees only one guard page at the bottom of the stack,
+   and a page size can be as small as 4096 bytes.  So we cannot safely
+   allocate anything larger than 4096 bytes.  Also care for the possibility
+   of a few compiler-allocated temporary stack slots.  */
+#  define __libc_use_alloca(n) ((n) < 4032)
+#  endif
+# else
+/* alloca is implemented with malloc, so just use malloc.  */
+#  define __libc_use_alloca(n) 0
+# endif
+#endif
+
+#define re_malloc(t,n) ((t *) malloc ((n) * sizeof (t)))
+/* SunOS 4.1.x realloc doesn't accept null pointers: pre-Standard C. Sigh. */
+#define re_realloc(p,t,n) ((p != NULL) ? (t *) realloc (p,(n)*sizeof(t)) : (t *) calloc(n,sizeof(t)))
+#define re_free(p) free (p)
+
+struct bin_tree_t
+{
+  struct bin_tree_t *parent;
+  struct bin_tree_t *left;
+  struct bin_tree_t *right;
+  struct bin_tree_t *first;
+  struct bin_tree_t *next;
+
+  re_token_t token;
+
+  /* `node_idx' is the index in dfa->nodes, if `type' == 0.
+     Otherwise `type' indicate the type of this node.  */
+  int node_idx;
+};
+typedef struct bin_tree_t bin_tree_t;
+
+#define BIN_TREE_STORAGE_SIZE \
+  ((1024 - sizeof (void *)) / sizeof (bin_tree_t))
+
+struct bin_tree_storage_t
+{
+  struct bin_tree_storage_t *next;
+  bin_tree_t data[BIN_TREE_STORAGE_SIZE];
+};
+typedef struct bin_tree_storage_t bin_tree_storage_t;
+
+#define CONTEXT_WORD 1
+#define CONTEXT_NEWLINE (CONTEXT_WORD << 1)
+#define CONTEXT_BEGBUF (CONTEXT_NEWLINE << 1)
+#define CONTEXT_ENDBUF (CONTEXT_BEGBUF << 1)
+
+#define IS_WORD_CONTEXT(c) ((c) & CONTEXT_WORD)
+#define IS_NEWLINE_CONTEXT(c) ((c) & CONTEXT_NEWLINE)
+#define IS_BEGBUF_CONTEXT(c) ((c) & CONTEXT_BEGBUF)
+#define IS_ENDBUF_CONTEXT(c) ((c) & CONTEXT_ENDBUF)
+#define IS_ORDINARY_CONTEXT(c) ((c) == 0)
+
+#define IS_WORD_CHAR(ch) (isalnum (ch) || (ch) == '_')
+#define IS_NEWLINE(ch) ((ch) == NEWLINE_CHAR)
+#define IS_WIDE_WORD_CHAR(ch) (iswalnum (ch) || (ch) == L'_')
+#define IS_WIDE_NEWLINE(ch) ((ch) == WIDE_NEWLINE_CHAR)
+
+#define NOT_SATISFY_PREV_CONSTRAINT(constraint,context) \
+ ((((constraint) & PREV_WORD_CONSTRAINT) && !IS_WORD_CONTEXT (context)) \
+  || ((constraint & PREV_NOTWORD_CONSTRAINT) && IS_WORD_CONTEXT (context)) \
+  || ((constraint & PREV_NEWLINE_CONSTRAINT) && !IS_NEWLINE_CONTEXT (context))\
+  || ((constraint & PREV_BEGBUF_CONSTRAINT) && !IS_BEGBUF_CONTEXT (context)))
+
+#define NOT_SATISFY_NEXT_CONSTRAINT(constraint,context) \
+ ((((constraint) & NEXT_WORD_CONSTRAINT) && !IS_WORD_CONTEXT (context)) \
+  || (((constraint) & NEXT_NOTWORD_CONSTRAINT) && IS_WORD_CONTEXT (context)) \
+  || (((constraint) & NEXT_NEWLINE_CONSTRAINT) && !IS_NEWLINE_CONTEXT (context)) \
+  || (((constraint) & NEXT_ENDBUF_CONSTRAINT) && !IS_ENDBUF_CONTEXT (context)))
+
+struct re_dfastate_t
+{
+  unsigned int hash;
+  re_node_set nodes;
+  re_node_set non_eps_nodes;
+  re_node_set inveclosure;
+  re_node_set *entrance_nodes;
+  struct re_dfastate_t **trtable, **word_trtable;
+  unsigned int context : 4;
+  unsigned int halt : 1;
+  /* If this state can accept `multi byte'.
+     Note that we refer to multibyte characters, and multi character
+     collating elements as `multi byte'.  */
+  unsigned int accept_mb : 1;
+  /* If this state has backreference node(s).  */
+  unsigned int has_backref : 1;
+  unsigned int has_constraint : 1;
+};
+typedef struct re_dfastate_t re_dfastate_t;
+
+struct re_state_table_entry
+{
+  int num;
+  int alloc;
+  re_dfastate_t **array;
+};
+
+/* Array type used in re_sub_match_last_t and re_sub_match_top_t.  */
+
+typedef struct
+{
+  int next_idx;
+  int alloc;
+  re_dfastate_t **array;
+} state_array_t;
+
+/* Store information about the node NODE whose type is OP_CLOSE_SUBEXP.  */
+
+typedef struct
+{
+  int node;
+  int str_idx; /* The position NODE match at.  */
+  state_array_t path;
+} re_sub_match_last_t;
+
+/* Store information about the node NODE whose type is OP_OPEN_SUBEXP.
+   And information about the node, whose type is OP_CLOSE_SUBEXP,
+   corresponding to NODE is stored in LASTS.  */
+
+typedef struct
+{
+  int str_idx;
+  int node;
+  state_array_t *path;
+  int alasts; /* Allocation size of LASTS.  */
+  int nlasts; /* The number of LASTS.  */
+  re_sub_match_last_t **lasts;
+} re_sub_match_top_t;
+
+struct re_backref_cache_entry
+{
+  int node;
+  int str_idx;
+  int subexp_from;
+  int subexp_to;
+  char more;
+  char unused;
+  unsigned short int eps_reachable_subexps_map;
+};
+
+typedef struct
+{
+  /* The string object corresponding to the input string.  */
+  re_string_t input;
+#if defined _LIBC || (defined __STDC_VERSION__ && __STDC_VERSION__ >= 199901L)
+  const re_dfa_t *const dfa;
+#else
+  const re_dfa_t *dfa;
+#endif
+  /* EFLAGS of the argument of regexec.  */
+  int eflags;
+  /* Where the matching ends.  */
+  int match_last;
+  int last_node;
+  /* The state log used by the matcher.  */
+  re_dfastate_t **state_log;
+  int state_log_top;
+  /* Back reference cache.  */
+  int nbkref_ents;
+  int abkref_ents;
+  struct re_backref_cache_entry *bkref_ents;
+  int max_mb_elem_len;
+  int nsub_tops;
+  int asub_tops;
+  re_sub_match_top_t **sub_tops;
+} re_match_context_t;
+
+typedef struct
+{
+  re_dfastate_t **sifted_states;
+  re_dfastate_t **limited_states;
+  int last_node;
+  int last_str_idx;
+  re_node_set limits;
+} re_sift_context_t;
+
+struct re_fail_stack_ent_t
+{
+  int idx;
+  int node;
+  regmatch_t *regs;
+  re_node_set eps_via_nodes;
+};
+
+struct re_fail_stack_t
+{
+  int num;
+  int alloc;
+  struct re_fail_stack_ent_t *stack;
+};
+
+struct re_dfa_t
+{
+  re_token_t *nodes;
+  size_t nodes_alloc;
+  size_t nodes_len;
+  int *nexts;
+  int *org_indices;
+  re_node_set *edests;
+  re_node_set *eclosures;
+  re_node_set *inveclosures;
+  struct re_state_table_entry *state_table;
+  re_dfastate_t *init_state;
+  re_dfastate_t *init_state_word;
+  re_dfastate_t *init_state_nl;
+  re_dfastate_t *init_state_begbuf;
+  bin_tree_t *str_tree;
+  bin_tree_storage_t *str_tree_storage;
+  re_bitset_ptr_t sb_char;
+  int str_tree_storage_idx;
+
+  /* number of subexpressions `re_nsub' is in regex_t.  */
+  unsigned int state_hash_mask;
+  int init_node;
+  int nbackref; /* The number of backreference in this dfa.  */
+
+  /* Bitmap expressing which backreference is used.  */
+  bitset_word_t used_bkref_map;
+  bitset_word_t completed_bkref_map;
+
+  unsigned int has_plural_match : 1;
+  /* If this dfa has "multibyte node", which is a backreference or
+     a node which can accept multibyte character or multi character
+     collating element.  */
+  unsigned int has_mb_node : 1;
+  unsigned int is_utf8 : 1;
+  unsigned int map_notascii : 1;
+  unsigned int word_ops_used : 1;
+  int mb_cur_max;
+  bitset_t word_char;
+  reg_syntax_t syntax;
+  int *subexp_map;
+#ifdef DEBUG
+  char* re_str;
+#endif
+#if defined _LIBC
+  __libc_lock_define (, lock)
+#endif
+};
+
+#define re_node_set_init_empty(set) memset (set, '\0', sizeof (re_node_set))
+#define re_node_set_remove(set,id) \
+  (re_node_set_remove_at (set, re_node_set_contains (set, id) - 1))
+#define re_node_set_empty(p) ((p)->nelem = 0)
+#define re_node_set_free(set) re_free ((set)->elems)
+\f
+
+typedef enum
+{
+  SB_CHAR,
+  MB_CHAR,
+  EQUIV_CLASS,
+  COLL_SYM,
+  CHAR_CLASS
+} bracket_elem_type;
+
+typedef struct
+{
+  bracket_elem_type type;
+  union
+  {
+    unsigned char ch;
+    unsigned char *name;
+    wchar_t wch;
+  } opr;
+} bracket_elem_t;
+
+
+/* Inline functions for bitset operation.  */
+static inline void
+bitset_not (bitset_t set)
+{
+  int bitset_i;
+  for (bitset_i = 0; bitset_i < BITSET_WORDS; ++bitset_i)
+    set[bitset_i] = ~set[bitset_i];
+}
+
+static inline void
+bitset_merge (bitset_t dest, const bitset_t src)
+{
+  int bitset_i;
+  for (bitset_i = 0; bitset_i < BITSET_WORDS; ++bitset_i)
+    dest[bitset_i] |= src[bitset_i];
+}
+
+static inline void
+bitset_mask (bitset_t dest, const bitset_t src)
+{
+  int bitset_i;
+  for (bitset_i = 0; bitset_i < BITSET_WORDS; ++bitset_i)
+    dest[bitset_i] &= src[bitset_i];
+}
+
+#ifdef RE_ENABLE_I18N
+/* Inline functions for re_string.  */
+static inline int
+internal_function __attribute ((pure))
+re_string_char_size_at (const re_string_t *pstr, int idx)
+{
+  int byte_idx;
+  if (pstr->mb_cur_max == 1)
+    return 1;
+  for (byte_idx = 1; idx + byte_idx < pstr->valid_len; ++byte_idx)
+    if (pstr->wcs[idx + byte_idx] != WEOF)
+      break;
+  return byte_idx;
+}
+
+static inline wint_t
+internal_function __attribute ((pure))
+re_string_wchar_at (const re_string_t *pstr, int idx)
+{
+  if (pstr->mb_cur_max == 1)
+    return (wint_t) pstr->mbs[idx];
+  return (wint_t) pstr->wcs[idx];
+}
+
+# ifndef NOT_IN_libc
+static int
+internal_function __attribute ((pure))
+re_string_elem_size_at (const re_string_t *pstr, int idx)
+{
+#  ifdef _LIBC
+  const unsigned char *p, *extra;
+  const int32_t *table, *indirect;
+  int32_t tmp;
+#   include <locale/weight.h>
+  uint_fast32_t nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
+
+  if (nrules != 0)
+    {
+      table = (const int32_t *) _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
+      extra = (const unsigned char *)
+       _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB);
+      indirect = (const int32_t *) _NL_CURRENT (LC_COLLATE,
+                                               _NL_COLLATE_INDIRECTMB);
+      p = pstr->mbs + idx;
+      tmp = findidx (&p);
+      return p - pstr->mbs - idx;
+    }
+  else
+#  endif /* _LIBC */
+    return 1;
+}
+# endif
+#endif /* RE_ENABLE_I18N */
+
+#endif /*  _REGEX_INTERNAL_H */
diff --git a/compat/regex/regexec.c b/compat/regex/regexec.c
new file mode 100644 (file)
index 0000000..aee502d
--- /dev/null
@@ -0,0 +1,4377 @@
+/* Extended regular expression matching and search library.
+   Copyright (C) 2002-2005, 2007, 2009, 2010 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Lesser General Public
+   License as published by the Free Software Foundation; either
+   version 2.1 of the License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Lesser General Public License for more details.
+
+   You should have received a copy of the GNU Lesser General Public
+   License along with the GNU C Library; if not, write to the Free
+   Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+   02110-1301 USA.  */
+
+static reg_errcode_t match_ctx_init (re_match_context_t *cache, int eflags,
+                                    int n) internal_function;
+static void match_ctx_clean (re_match_context_t *mctx) internal_function;
+static void match_ctx_free (re_match_context_t *cache) internal_function;
+static reg_errcode_t match_ctx_add_entry (re_match_context_t *cache, int node,
+                                         int str_idx, int from, int to)
+     internal_function;
+static int search_cur_bkref_entry (const re_match_context_t *mctx, int str_idx)
+     internal_function;
+static reg_errcode_t match_ctx_add_subtop (re_match_context_t *mctx, int node,
+                                          int str_idx) internal_function;
+static re_sub_match_last_t * match_ctx_add_sublast (re_sub_match_top_t *subtop,
+                                                  int node, int str_idx)
+     internal_function;
+static void sift_ctx_init (re_sift_context_t *sctx, re_dfastate_t **sifted_sts,
+                          re_dfastate_t **limited_sts, int last_node,
+                          int last_str_idx)
+     internal_function;
+static reg_errcode_t re_search_internal (const regex_t *preg,
+                                        const char *string, int length,
+                                        int start, int range, int stop,
+                                        size_t nmatch, regmatch_t pmatch[],
+                                        int eflags) internal_function;
+static int re_search_2_stub (struct re_pattern_buffer *bufp,
+                            const char *string1, int length1,
+                            const char *string2, int length2,
+                            int start, int range, struct re_registers *regs,
+                            int stop, int ret_len) internal_function;
+static int re_search_stub (struct re_pattern_buffer *bufp,
+                          const char *string, int length, int start,
+                          int range, int stop, struct re_registers *regs,
+                          int ret_len) internal_function;
+static unsigned re_copy_regs (struct re_registers *regs, regmatch_t *pmatch,
+                             int nregs, int regs_allocated) internal_function;
+static reg_errcode_t prune_impossible_nodes (re_match_context_t *mctx)
+     internal_function;
+static int check_matching (re_match_context_t *mctx, int fl_longest_match,
+                          int *p_match_first) internal_function;
+static int check_halt_state_context (const re_match_context_t *mctx,
+                                    const re_dfastate_t *state, int idx)
+     internal_function;
+static void update_regs (const re_dfa_t *dfa, regmatch_t *pmatch,
+                        regmatch_t *prev_idx_match, int cur_node,
+                        int cur_idx, int nmatch) internal_function;
+static reg_errcode_t push_fail_stack (struct re_fail_stack_t *fs,
+                                     int str_idx, int dest_node, int nregs,
+                                     regmatch_t *regs,
+                                     re_node_set *eps_via_nodes)
+     internal_function;
+static reg_errcode_t set_regs (const regex_t *preg,
+                              const re_match_context_t *mctx,
+                              size_t nmatch, regmatch_t *pmatch,
+                              int fl_backtrack) internal_function;
+static reg_errcode_t free_fail_stack_return (struct re_fail_stack_t *fs)
+     internal_function;
+
+#ifdef RE_ENABLE_I18N
+static int sift_states_iter_mb (const re_match_context_t *mctx,
+                               re_sift_context_t *sctx,
+                               int node_idx, int str_idx, int max_str_idx)
+     internal_function;
+#endif /* RE_ENABLE_I18N */
+static reg_errcode_t sift_states_backward (const re_match_context_t *mctx,
+                                          re_sift_context_t *sctx)
+     internal_function;
+static reg_errcode_t build_sifted_states (const re_match_context_t *mctx,
+                                         re_sift_context_t *sctx, int str_idx,
+                                         re_node_set *cur_dest)
+     internal_function;
+static reg_errcode_t update_cur_sifted_state (const re_match_context_t *mctx,
+                                             re_sift_context_t *sctx,
+                                             int str_idx,
+                                             re_node_set *dest_nodes)
+     internal_function;
+static reg_errcode_t add_epsilon_src_nodes (const re_dfa_t *dfa,
+                                           re_node_set *dest_nodes,
+                                           const re_node_set *candidates)
+     internal_function;
+static int check_dst_limits (const re_match_context_t *mctx,
+                            re_node_set *limits,
+                            int dst_node, int dst_idx, int src_node,
+                            int src_idx) internal_function;
+static int check_dst_limits_calc_pos_1 (const re_match_context_t *mctx,
+                                       int boundaries, int subexp_idx,
+                                       int from_node, int bkref_idx)
+     internal_function;
+static int check_dst_limits_calc_pos (const re_match_context_t *mctx,
+                                     int limit, int subexp_idx,
+                                     int node, int str_idx,
+                                     int bkref_idx) internal_function;
+static reg_errcode_t check_subexp_limits (const re_dfa_t *dfa,
+                                         re_node_set *dest_nodes,
+                                         const re_node_set *candidates,
+                                         re_node_set *limits,
+                                         struct re_backref_cache_entry *bkref_ents,
+                                         int str_idx) internal_function;
+static reg_errcode_t sift_states_bkref (const re_match_context_t *mctx,
+                                       re_sift_context_t *sctx,
+                                       int str_idx, const re_node_set *candidates)
+     internal_function;
+static reg_errcode_t merge_state_array (const re_dfa_t *dfa,
+                                       re_dfastate_t **dst,
+                                       re_dfastate_t **src, int num)
+     internal_function;
+static re_dfastate_t *find_recover_state (reg_errcode_t *err,
+                                        re_match_context_t *mctx) internal_function;
+static re_dfastate_t *transit_state (reg_errcode_t *err,
+                                    re_match_context_t *mctx,
+                                    re_dfastate_t *state) internal_function;
+static re_dfastate_t *merge_state_with_log (reg_errcode_t *err,
+                                           re_match_context_t *mctx,
+                                           re_dfastate_t *next_state)
+     internal_function;
+static reg_errcode_t check_subexp_matching_top (re_match_context_t *mctx,
+                                               re_node_set *cur_nodes,
+                                               int str_idx) internal_function;
+#if 0
+static re_dfastate_t *transit_state_sb (reg_errcode_t *err,
+                                       re_match_context_t *mctx,
+                                       re_dfastate_t *pstate)
+     internal_function;
+#endif
+#ifdef RE_ENABLE_I18N
+static reg_errcode_t transit_state_mb (re_match_context_t *mctx,
+                                      re_dfastate_t *pstate)
+     internal_function;
+#endif /* RE_ENABLE_I18N */
+static reg_errcode_t transit_state_bkref (re_match_context_t *mctx,
+                                         const re_node_set *nodes)
+     internal_function;
+static reg_errcode_t get_subexp (re_match_context_t *mctx,
+                                int bkref_node, int bkref_str_idx)
+     internal_function;
+static reg_errcode_t get_subexp_sub (re_match_context_t *mctx,
+                                    const re_sub_match_top_t *sub_top,
+                                    re_sub_match_last_t *sub_last,
+                                    int bkref_node, int bkref_str)
+     internal_function;
+static int find_subexp_node (const re_dfa_t *dfa, const re_node_set *nodes,
+                            int subexp_idx, int type) internal_function;
+static reg_errcode_t check_arrival (re_match_context_t *mctx,
+                                   state_array_t *path, int top_node,
+                                   int top_str, int last_node, int last_str,
+                                   int type) internal_function;
+static reg_errcode_t check_arrival_add_next_nodes (re_match_context_t *mctx,
+                                                  int str_idx,
+                                                  re_node_set *cur_nodes,
+                                                  re_node_set *next_nodes)
+     internal_function;
+static reg_errcode_t check_arrival_expand_ecl (const re_dfa_t *dfa,
+                                              re_node_set *cur_nodes,
+                                              int ex_subexp, int type)
+     internal_function;
+static reg_errcode_t check_arrival_expand_ecl_sub (const re_dfa_t *dfa,
+                                                  re_node_set *dst_nodes,
+                                                  int target, int ex_subexp,
+                                                  int type) internal_function;
+static reg_errcode_t expand_bkref_cache (re_match_context_t *mctx,
+                                        re_node_set *cur_nodes, int cur_str,
+                                        int subexp_num, int type)
+     internal_function;
+static int build_trtable (const re_dfa_t *dfa,
+                         re_dfastate_t *state) internal_function;
+#ifdef RE_ENABLE_I18N
+static int check_node_accept_bytes (const re_dfa_t *dfa, int node_idx,
+                                   const re_string_t *input, int idx)
+     internal_function;
+# ifdef _LIBC
+static unsigned int find_collation_sequence_value (const unsigned char *mbs,
+                                                  size_t name_len)
+     internal_function;
+# endif /* _LIBC */
+#endif /* RE_ENABLE_I18N */
+static int group_nodes_into_DFAstates (const re_dfa_t *dfa,
+                                      const re_dfastate_t *state,
+                                      re_node_set *states_node,
+                                      bitset_t *states_ch) internal_function;
+static int check_node_accept (const re_match_context_t *mctx,
+                             const re_token_t *node, int idx)
+     internal_function;
+static reg_errcode_t extend_buffers (re_match_context_t *mctx)
+     internal_function;
+\f
+/* Entry point for POSIX code.  */
+
+/* regexec searches for a given pattern, specified by PREG, in the
+   string STRING.
+
+   If NMATCH is zero or REG_NOSUB was set in the cflags argument to
+   `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at
+   least NMATCH elements, and we set them to the offsets of the
+   corresponding matched substrings.
+
+   EFLAGS specifies `execution flags' which affect matching: if
+   REG_NOTBOL is set, then ^ does not match at the beginning of the
+   string; if REG_NOTEOL is set, then $ does not match at the end.
+
+   We return 0 if we find a match and REG_NOMATCH if not.  */
+
+int
+regexec (preg, string, nmatch, pmatch, eflags)
+    const regex_t *__restrict preg;
+    const char *__restrict string;
+    size_t nmatch;
+    regmatch_t pmatch[];
+    int eflags;
+{
+  reg_errcode_t err;
+  int start, length;
+
+  if (eflags & ~(REG_NOTBOL | REG_NOTEOL | REG_STARTEND))
+    return REG_BADPAT;
+
+  if (eflags & REG_STARTEND)
+    {
+      start = pmatch[0].rm_so;
+      length = pmatch[0].rm_eo;
+    }
+  else
+    {
+      start = 0;
+      length = strlen (string);
+    }
+
+  __libc_lock_lock (dfa->lock);
+  if (preg->no_sub)
+    err = re_search_internal (preg, string, length, start, length - start,
+                             length, 0, NULL, eflags);
+  else
+    err = re_search_internal (preg, string, length, start, length - start,
+                             length, nmatch, pmatch, eflags);
+  __libc_lock_unlock (dfa->lock);
+  return err != REG_NOERROR;
+}
+
+#ifdef _LIBC
+# include <shlib-compat.h>
+versioned_symbol (libc, __regexec, regexec, GLIBC_2_3_4);
+
+# if SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_3_4)
+__typeof__ (__regexec) __compat_regexec;
+
+int
+attribute_compat_text_section
+__compat_regexec (const regex_t *__restrict preg,
+                 const char *__restrict string, size_t nmatch,
+                 regmatch_t pmatch[], int eflags)
+{
+  return regexec (preg, string, nmatch, pmatch,
+                 eflags & (REG_NOTBOL | REG_NOTEOL));
+}
+compat_symbol (libc, __compat_regexec, regexec, GLIBC_2_0);
+# endif
+#endif
+
+/* Entry points for GNU code.  */
+
+/* re_match, re_search, re_match_2, re_search_2
+
+   The former two functions operate on STRING with length LENGTH,
+   while the later two operate on concatenation of STRING1 and STRING2
+   with lengths LENGTH1 and LENGTH2, respectively.
+
+   re_match() matches the compiled pattern in BUFP against the string,
+   starting at index START.
+
+   re_search() first tries matching at index START, then it tries to match
+   starting from index START + 1, and so on.  The last start position tried
+   is START + RANGE.  (Thus RANGE = 0 forces re_search to operate the same
+   way as re_match().)
+
+   The parameter STOP of re_{match,search}_2 specifies that no match exceeding
+   the first STOP characters of the concatenation of the strings should be
+   concerned.
+
+   If REGS is not NULL, and BUFP->no_sub is not set, the offsets of the match
+   and all groups is stroed in REGS.  (For the "_2" variants, the offsets are
+   computed relative to the concatenation, not relative to the individual
+   strings.)
+
+   On success, re_match* functions return the length of the match, re_search*
+   return the position of the start of the match.  Return value -1 means no
+   match was found and -2 indicates an internal error.  */
+
+int
+re_match (bufp, string, length, start, regs)
+    struct re_pattern_buffer *bufp;
+    const char *string;
+    int length, start;
+    struct re_registers *regs;
+{
+  return re_search_stub (bufp, string, length, start, 0, length, regs, 1);
+}
+#ifdef _LIBC
+weak_alias (__re_match, re_match)
+#endif
+
+int
+re_search (bufp, string, length, start, range, regs)
+    struct re_pattern_buffer *bufp;
+    const char *string;
+    int length, start, range;
+    struct re_registers *regs;
+{
+  return re_search_stub (bufp, string, length, start, range, length, regs, 0);
+}
+#ifdef _LIBC
+weak_alias (__re_search, re_search)
+#endif
+
+int
+re_match_2 (bufp, string1, length1, string2, length2, start, regs, stop)
+    struct re_pattern_buffer *bufp;
+    const char *string1, *string2;
+    int length1, length2, start, stop;
+    struct re_registers *regs;
+{
+  return re_search_2_stub (bufp, string1, length1, string2, length2,
+                          start, 0, regs, stop, 1);
+}
+#ifdef _LIBC
+weak_alias (__re_match_2, re_match_2)
+#endif
+
+int
+re_search_2 (bufp, string1, length1, string2, length2, start, range, regs, stop)
+    struct re_pattern_buffer *bufp;
+    const char *string1, *string2;
+    int length1, length2, start, range, stop;
+    struct re_registers *regs;
+{
+  return re_search_2_stub (bufp, string1, length1, string2, length2,
+                          start, range, regs, stop, 0);
+}
+#ifdef _LIBC
+weak_alias (__re_search_2, re_search_2)
+#endif
+
+static int
+re_search_2_stub (bufp, string1, length1, string2, length2, start, range, regs,
+                 stop, ret_len)
+    struct re_pattern_buffer *bufp;
+    const char *string1, *string2;
+    int length1, length2, start, range, stop, ret_len;
+    struct re_registers *regs;
+{
+  const char *str;
+  int rval;
+  int len = length1 + length2;
+  int free_str = 0;
+
+  if (BE (length1 < 0 || length2 < 0 || stop < 0, 0))
+    return -2;
+
+  /* Concatenate the strings.  */
+  if (length2 > 0)
+    if (length1 > 0)
+      {
+       char *s = re_malloc (char, len);
+
+       if (BE (s == NULL, 0))
+         return -2;
+       memcpy (s, string1, length1);
+       memcpy (s + length1, string2, length2);
+       str = s;
+       free_str = 1;
+      }
+    else
+      str = string2;
+  else
+    str = string1;
+
+  rval = re_search_stub (bufp, str, len, start, range, stop, regs, ret_len);
+  if (free_str)
+    re_free ((char *) str);
+  return rval;
+}
+
+/* The parameters have the same meaning as those of re_search.
+   Additional parameters:
+   If RET_LEN is nonzero the length of the match is returned (re_match style);
+   otherwise the position of the match is returned.  */
+
+static int
+re_search_stub (bufp, string, length, start, range, stop, regs, ret_len)
+    struct re_pattern_buffer *bufp;
+    const char *string;
+    int length, start, range, stop, ret_len;
+    struct re_registers *regs;
+{
+  reg_errcode_t result;
+  regmatch_t *pmatch;
+  int nregs, rval;
+  int eflags = 0;
+
+  /* Check for out-of-range.  */
+  if (BE (start < 0 || start > length, 0))
+    return -1;
+  if (BE (start + range > length, 0))
+    range = length - start;
+  else if (BE (start + range < 0, 0))
+    range = -start;
+
+  __libc_lock_lock (dfa->lock);
+
+  eflags |= (bufp->not_bol) ? REG_NOTBOL : 0;
+  eflags |= (bufp->not_eol) ? REG_NOTEOL : 0;
+
+  /* Compile fastmap if we haven't yet.  */
+  if (range > 0 && bufp->fastmap != NULL && !bufp->fastmap_accurate)
+    re_compile_fastmap (bufp);
+
+  if (BE (bufp->no_sub, 0))
+    regs = NULL;
+
+  /* We need at least 1 register.  */
+  if (regs == NULL)
+    nregs = 1;
+  else if (BE (bufp->regs_allocated == REGS_FIXED &&
+              regs->num_regs < bufp->re_nsub + 1, 0))
+    {
+      nregs = regs->num_regs;
+      if (BE (nregs < 1, 0))
+       {
+         /* Nothing can be copied to regs.  */
+         regs = NULL;
+         nregs = 1;
+       }
+    }
+  else
+    nregs = bufp->re_nsub + 1;
+  pmatch = re_malloc (regmatch_t, nregs);
+  if (BE (pmatch == NULL, 0))
+    {
+      rval = -2;
+      goto out;
+    }
+
+  result = re_search_internal (bufp, string, length, start, range, stop,
+                              nregs, pmatch, eflags);
+
+  rval = 0;
+
+  /* I hope we needn't fill ther regs with -1's when no match was found.  */
+  if (result != REG_NOERROR)
+    rval = -1;
+  else if (regs != NULL)
+    {
+      /* If caller wants register contents data back, copy them.  */
+      bufp->regs_allocated = re_copy_regs (regs, pmatch, nregs,
+                                          bufp->regs_allocated);
+      if (BE (bufp->regs_allocated == REGS_UNALLOCATED, 0))
+       rval = -2;
+    }
+
+  if (BE (rval == 0, 1))
+    {
+      if (ret_len)
+       {
+         assert (pmatch[0].rm_so == start);
+         rval = pmatch[0].rm_eo - start;
+       }
+      else
+       rval = pmatch[0].rm_so;
+    }
+  re_free (pmatch);
+ out:
+  __libc_lock_unlock (dfa->lock);
+  return rval;
+}
+
+static unsigned
+re_copy_regs (regs, pmatch, nregs, regs_allocated)
+    struct re_registers *regs;
+    regmatch_t *pmatch;
+    int nregs, regs_allocated;
+{
+  int rval = REGS_REALLOCATE;
+  int i;
+  int need_regs = nregs + 1;
+  /* We need one extra element beyond `num_regs' for the `-1' marker GNU code
+     uses.  */
+
+  /* Have the register data arrays been allocated?  */
+  if (regs_allocated == REGS_UNALLOCATED)
+    { /* No.  So allocate them with malloc.  */
+      regs->start = re_malloc (regoff_t, need_regs);
+      if (BE (regs->start == NULL, 0))
+       return REGS_UNALLOCATED;
+      regs->end = re_malloc (regoff_t, need_regs);
+      if (BE (regs->end == NULL, 0))
+       {
+         re_free (regs->start);
+         return REGS_UNALLOCATED;
+       }
+      regs->num_regs = need_regs;
+    }
+  else if (regs_allocated == REGS_REALLOCATE)
+    { /* Yes.  If we need more elements than were already
+        allocated, reallocate them.  If we need fewer, just
+        leave it alone.  */
+      if (BE (need_regs > regs->num_regs, 0))
+       {
+         regoff_t *new_start = re_realloc (regs->start, regoff_t, need_regs);
+         regoff_t *new_end;
+         if (BE (new_start == NULL, 0))
+           return REGS_UNALLOCATED;
+         new_end = re_realloc (regs->end, regoff_t, need_regs);
+         if (BE (new_end == NULL, 0))
+           {
+             re_free (new_start);
+             return REGS_UNALLOCATED;
+           }
+         regs->start = new_start;
+         regs->end = new_end;
+         regs->num_regs = need_regs;
+       }
+    }
+  else
+    {
+      assert (regs_allocated == REGS_FIXED);
+      /* This function may not be called with REGS_FIXED and nregs too big.  */
+      assert (regs->num_regs >= nregs);
+      rval = REGS_FIXED;
+    }
+
+  /* Copy the regs.  */
+  for (i = 0; i < nregs; ++i)
+    {
+      regs->start[i] = pmatch[i].rm_so;
+      regs->end[i] = pmatch[i].rm_eo;
+    }
+  for ( ; i < regs->num_regs; ++i)
+    regs->start[i] = regs->end[i] = -1;
+
+  return rval;
+}
+
+/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
+   ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use
+   this memory for recording register information.  STARTS and ENDS
+   must be allocated using the malloc library routine, and must each
+   be at least NUM_REGS * sizeof (regoff_t) bytes long.
+
+   If NUM_REGS == 0, then subsequent matches should allocate their own
+   register data.
+
+   Unless this function is called, the first search or match using
+   PATTERN_BUFFER will allocate its own register data, without
+   freeing the old data.  */
+
+void
+re_set_registers (bufp, regs, num_regs, starts, ends)
+    struct re_pattern_buffer *bufp;
+    struct re_registers *regs;
+    unsigned num_regs;
+    regoff_t *starts, *ends;
+{
+  if (num_regs)
+    {
+      bufp->regs_allocated = REGS_REALLOCATE;
+      regs->num_regs = num_regs;
+      regs->start = starts;
+      regs->end = ends;
+    }
+  else
+    {
+      bufp->regs_allocated = REGS_UNALLOCATED;
+      regs->num_regs = 0;
+      regs->start = regs->end = (regoff_t *) 0;
+    }
+}
+#ifdef _LIBC
+weak_alias (__re_set_registers, re_set_registers)
+#endif
+\f
+/* Entry points compatible with 4.2 BSD regex library.  We don't define
+   them unless specifically requested.  */
+
+#if defined _REGEX_RE_COMP || defined _LIBC
+int
+# ifdef _LIBC
+weak_function
+# endif
+re_exec (s)
+     const char *s;
+{
+  return 0 == regexec (&re_comp_buf, s, 0, NULL, 0);
+}
+#endif /* _REGEX_RE_COMP */
+\f
+/* Internal entry point.  */
+
+/* Searches for a compiled pattern PREG in the string STRING, whose
+   length is LENGTH.  NMATCH, PMATCH, and EFLAGS have the same
+   mingings with regexec.  START, and RANGE have the same meanings
+   with re_search.
+   Return REG_NOERROR if we find a match, and REG_NOMATCH if not,
+   otherwise return the error code.
+   Note: We assume front end functions already check ranges.
+   (START + RANGE >= 0 && START + RANGE <= LENGTH)  */
+
+static reg_errcode_t
+re_search_internal (preg, string, length, start, range, stop, nmatch, pmatch,
+                   eflags)
+    const regex_t *preg;
+    const char *string;
+    int length, start, range, stop, eflags;
+    size_t nmatch;
+    regmatch_t pmatch[];
+{
+  reg_errcode_t err;
+  const re_dfa_t *dfa = (const re_dfa_t *) preg->buffer;
+  int left_lim, right_lim, incr;
+  int fl_longest_match, match_first, match_kind, match_last = -1;
+  int extra_nmatch;
+  int sb, ch;
+#if defined _LIBC || (defined __STDC_VERSION__ && __STDC_VERSION__ >= 199901L)
+  re_match_context_t mctx = { .dfa = dfa };
+#else
+  re_match_context_t mctx;
+#endif
+  char *fastmap = (preg->fastmap != NULL && preg->fastmap_accurate
+                  && range && !preg->can_be_null) ? preg->fastmap : NULL;
+  RE_TRANSLATE_TYPE t = preg->translate;
+
+#if !(defined _LIBC || (defined __STDC_VERSION__ && __STDC_VERSION__ >= 199901L))
+  memset (&mctx, '\0', sizeof (re_match_context_t));
+  mctx.dfa = dfa;
+#endif
+
+  extra_nmatch = (nmatch > preg->re_nsub) ? nmatch - (preg->re_nsub + 1) : 0;
+  nmatch -= extra_nmatch;
+
+  /* Check if the DFA haven't been compiled.  */
+  if (BE (preg->used == 0 || dfa->init_state == NULL
+         || dfa->init_state_word == NULL || dfa->init_state_nl == NULL
+         || dfa->init_state_begbuf == NULL, 0))
+    return REG_NOMATCH;
+
+#ifdef DEBUG
+  /* We assume front-end functions already check them.  */
+  assert (start + range >= 0 && start + range <= length);
+#endif
+
+  /* If initial states with non-begbuf contexts have no elements,
+     the regex must be anchored.  If preg->newline_anchor is set,
+     we'll never use init_state_nl, so do not check it.  */
+  if (dfa->init_state->nodes.nelem == 0
+      && dfa->init_state_word->nodes.nelem == 0
+      && (dfa->init_state_nl->nodes.nelem == 0
+         || !preg->newline_anchor))
+    {
+      if (start != 0 && start + range != 0)
+       return REG_NOMATCH;
+      start = range = 0;
+    }
+
+  /* We must check the longest matching, if nmatch > 0.  */
+  fl_longest_match = (nmatch != 0 || dfa->nbackref);
+
+  err = re_string_allocate (&mctx.input, string, length, dfa->nodes_len + 1,
+                           preg->translate, preg->syntax & RE_ICASE, dfa);
+  if (BE (err != REG_NOERROR, 0))
+    goto free_return;
+  mctx.input.stop = stop;
+  mctx.input.raw_stop = stop;
+  mctx.input.newline_anchor = preg->newline_anchor;
+
+  err = match_ctx_init (&mctx, eflags, dfa->nbackref * 2);
+  if (BE (err != REG_NOERROR, 0))
+    goto free_return;
+
+  /* We will log all the DFA states through which the dfa pass,
+     if nmatch > 1, or this dfa has "multibyte node", which is a
+     back-reference or a node which can accept multibyte character or
+     multi character collating element.  */
+  if (nmatch > 1 || dfa->has_mb_node)
+    {
+      /* Avoid overflow.  */
+      if (BE (SIZE_MAX / sizeof (re_dfastate_t *) <= mctx.input.bufs_len, 0))
+       {
+         err = REG_ESPACE;
+         goto free_return;
+       }
+
+      mctx.state_log = re_malloc (re_dfastate_t *, mctx.input.bufs_len + 1);
+      if (BE (mctx.state_log == NULL, 0))
+       {
+         err = REG_ESPACE;
+         goto free_return;
+       }
+    }
+  else
+    mctx.state_log = NULL;
+
+  match_first = start;
+  mctx.input.tip_context = (eflags & REG_NOTBOL) ? CONTEXT_BEGBUF
+                          : CONTEXT_NEWLINE | CONTEXT_BEGBUF;
+
+  /* Check incrementally whether of not the input string match.  */
+  incr = (range < 0) ? -1 : 1;
+  left_lim = (range < 0) ? start + range : start;
+  right_lim = (range < 0) ? start : start + range;
+  sb = dfa->mb_cur_max == 1;
+  match_kind =
+    (fastmap
+     ? ((sb || !(preg->syntax & RE_ICASE || t) ? 4 : 0)
+       | (range >= 0 ? 2 : 0)
+       | (t != NULL ? 1 : 0))
+     : 8);
+
+  for (;; match_first += incr)
+    {
+      err = REG_NOMATCH;
+      if (match_first < left_lim || right_lim < match_first)
+       goto free_return;
+
+      /* Advance as rapidly as possible through the string, until we
+        find a plausible place to start matching.  This may be done
+        with varying efficiency, so there are various possibilities:
+        only the most common of them are specialized, in order to
+        save on code size.  We use a switch statement for speed.  */
+      switch (match_kind)
+       {
+       case 8:
+         /* No fastmap.  */
+         break;
+
+       case 7:
+         /* Fastmap with single-byte translation, match forward.  */
+         while (BE (match_first < right_lim, 1)
+                && !fastmap[t[(unsigned char) string[match_first]]])
+           ++match_first;
+         goto forward_match_found_start_or_reached_end;
+
+       case 6:
+         /* Fastmap without translation, match forward.  */
+         while (BE (match_first < right_lim, 1)
+                && !fastmap[(unsigned char) string[match_first]])
+           ++match_first;
+
+       forward_match_found_start_or_reached_end:
+         if (BE (match_first == right_lim, 0))
+           {
+             ch = match_first >= length
+                      ? 0 : (unsigned char) string[match_first];
+             if (!fastmap[t ? t[ch] : ch])
+               goto free_return;
+           }
+         break;
+
+       case 4:
+       case 5:
+         /* Fastmap without multi-byte translation, match backwards.  */
+         while (match_first >= left_lim)
+           {
+             ch = match_first >= length
+                      ? 0 : (unsigned char) string[match_first];
+             if (fastmap[t ? t[ch] : ch])
+               break;
+             --match_first;
+           }
+         if (match_first < left_lim)
+           goto free_return;
+         break;
+
+       default:
+         /* In this case, we can't determine easily the current byte,
+            since it might be a component byte of a multibyte
+            character.  Then we use the constructed buffer instead.  */
+         for (;;)
+           {
+             /* If MATCH_FIRST is out of the valid range, reconstruct the
+                buffers.  */
+             unsigned int offset = match_first - mctx.input.raw_mbs_idx;
+             if (BE (offset >= (unsigned int) mctx.input.valid_raw_len, 0))
+               {
+                 err = re_string_reconstruct (&mctx.input, match_first,
+                                              eflags);
+                 if (BE (err != REG_NOERROR, 0))
+                   goto free_return;
+
+                 offset = match_first - mctx.input.raw_mbs_idx;
+               }
+             /* If MATCH_FIRST is out of the buffer, leave it as '\0'.
+                Note that MATCH_FIRST must not be smaller than 0.  */
+             ch = (match_first >= length
+                   ? 0 : re_string_byte_at (&mctx.input, offset));
+             if (fastmap[ch])
+               break;
+             match_first += incr;
+             if (match_first < left_lim || match_first > right_lim)
+               {
+                 err = REG_NOMATCH;
+                 goto free_return;
+               }
+           }
+         break;
+       }
+
+      /* Reconstruct the buffers so that the matcher can assume that
+        the matching starts from the beginning of the buffer.  */
+      err = re_string_reconstruct (&mctx.input, match_first, eflags);
+      if (BE (err != REG_NOERROR, 0))
+       goto free_return;
+
+#ifdef RE_ENABLE_I18N
+     /* Don't consider this char as a possible match start if it part,
+       yet isn't the head, of a multibyte character.  */
+      if (!sb && !re_string_first_byte (&mctx.input, 0))
+       continue;
+#endif
+
+      /* It seems to be appropriate one, then use the matcher.  */
+      /* We assume that the matching starts from 0.  */
+      mctx.state_log_top = mctx.nbkref_ents = mctx.max_mb_elem_len = 0;
+      match_last = check_matching (&mctx, fl_longest_match,
+                                  range >= 0 ? &match_first : NULL);
+      if (match_last != -1)
+       {
+         if (BE (match_last == -2, 0))
+           {
+             err = REG_ESPACE;
+             goto free_return;
+           }
+         else
+           {
+             mctx.match_last = match_last;
+             if ((!preg->no_sub && nmatch > 1) || dfa->nbackref)
+               {
+                 re_dfastate_t *pstate = mctx.state_log[match_last];
+                 mctx.last_node = check_halt_state_context (&mctx, pstate,
+                                                            match_last);
+               }
+             if ((!preg->no_sub && nmatch > 1 && dfa->has_plural_match)
+                 || dfa->nbackref)
+               {
+                 err = prune_impossible_nodes (&mctx);
+                 if (err == REG_NOERROR)
+                   break;
+                 if (BE (err != REG_NOMATCH, 0))
+                   goto free_return;
+                 match_last = -1;
+               }
+             else
+               break; /* We found a match.  */
+           }
+       }
+
+      match_ctx_clean (&mctx);
+    }
+
+#ifdef DEBUG
+  assert (match_last != -1);
+  assert (err == REG_NOERROR);
+#endif
+
+  /* Set pmatch[] if we need.  */
+  if (nmatch > 0)
+    {
+      int reg_idx;
+
+      /* Initialize registers.  */
+      for (reg_idx = 1; reg_idx < nmatch; ++reg_idx)
+       pmatch[reg_idx].rm_so = pmatch[reg_idx].rm_eo = -1;
+
+      /* Set the points where matching start/end.  */
+      pmatch[0].rm_so = 0;
+      pmatch[0].rm_eo = mctx.match_last;
+
+      if (!preg->no_sub && nmatch > 1)
+       {
+         err = set_regs (preg, &mctx, nmatch, pmatch,
+                         dfa->has_plural_match && dfa->nbackref > 0);
+         if (BE (err != REG_NOERROR, 0))
+           goto free_return;
+       }
+
+      /* At last, add the offset to the each registers, since we slided
+        the buffers so that we could assume that the matching starts
+        from 0.  */
+      for (reg_idx = 0; reg_idx < nmatch; ++reg_idx)
+       if (pmatch[reg_idx].rm_so != -1)
+         {
+#ifdef RE_ENABLE_I18N
+           if (BE (mctx.input.offsets_needed != 0, 0))
+             {
+               pmatch[reg_idx].rm_so =
+                 (pmatch[reg_idx].rm_so == mctx.input.valid_len
+                  ? mctx.input.valid_raw_len
+                  : mctx.input.offsets[pmatch[reg_idx].rm_so]);
+               pmatch[reg_idx].rm_eo =
+                 (pmatch[reg_idx].rm_eo == mctx.input.valid_len
+                  ? mctx.input.valid_raw_len
+                  : mctx.input.offsets[pmatch[reg_idx].rm_eo]);
+             }
+#else
+           assert (mctx.input.offsets_needed == 0);
+#endif
+           pmatch[reg_idx].rm_so += match_first;
+           pmatch[reg_idx].rm_eo += match_first;
+         }
+      for (reg_idx = 0; reg_idx < extra_nmatch; ++reg_idx)
+       {
+         pmatch[nmatch + reg_idx].rm_so = -1;
+         pmatch[nmatch + reg_idx].rm_eo = -1;
+       }
+
+      if (dfa->subexp_map)
+       for (reg_idx = 0; reg_idx + 1 < nmatch; reg_idx++)
+         if (dfa->subexp_map[reg_idx] != reg_idx)
+           {
+             pmatch[reg_idx + 1].rm_so
+               = pmatch[dfa->subexp_map[reg_idx] + 1].rm_so;
+             pmatch[reg_idx + 1].rm_eo
+               = pmatch[dfa->subexp_map[reg_idx] + 1].rm_eo;
+           }
+    }
+
+ free_return:
+  re_free (mctx.state_log);
+  if (dfa->nbackref)
+    match_ctx_free (&mctx);
+  re_string_destruct (&mctx.input);
+  return err;
+}
+
+static reg_errcode_t
+prune_impossible_nodes (mctx)
+     re_match_context_t *mctx;
+{
+  const re_dfa_t *const dfa = mctx->dfa;
+  int halt_node, match_last;
+  reg_errcode_t ret;
+  re_dfastate_t **sifted_states;
+  re_dfastate_t **lim_states = NULL;
+  re_sift_context_t sctx;
+#ifdef DEBUG
+  assert (mctx->state_log != NULL);
+#endif
+  match_last = mctx->match_last;
+  halt_node = mctx->last_node;
+
+  /* Avoid overflow.  */
+  if (BE (SIZE_MAX / sizeof (re_dfastate_t *) <= match_last, 0))
+    return REG_ESPACE;
+
+  sifted_states = re_malloc (re_dfastate_t *, match_last + 1);
+  if (BE (sifted_states == NULL, 0))
+    {
+      ret = REG_ESPACE;
+      goto free_return;
+    }
+  if (dfa->nbackref)
+    {
+      lim_states = re_malloc (re_dfastate_t *, match_last + 1);
+      if (BE (lim_states == NULL, 0))
+       {
+         ret = REG_ESPACE;
+         goto free_return;
+       }
+      while (1)
+       {
+         memset (lim_states, '\0',
+                 sizeof (re_dfastate_t *) * (match_last + 1));
+         sift_ctx_init (&sctx, sifted_states, lim_states, halt_node,
+                        match_last);
+         ret = sift_states_backward (mctx, &sctx);
+         re_node_set_free (&sctx.limits);
+         if (BE (ret != REG_NOERROR, 0))
+             goto free_return;
+         if (sifted_states[0] != NULL || lim_states[0] != NULL)
+           break;
+         do
+           {
+             --match_last;
+             if (match_last < 0)
+               {
+                 ret = REG_NOMATCH;
+                 goto free_return;
+               }
+           } while (mctx->state_log[match_last] == NULL
+                    || !mctx->state_log[match_last]->halt);
+         halt_node = check_halt_state_context (mctx,
+                                               mctx->state_log[match_last],
+                                               match_last);
+       }
+      ret = merge_state_array (dfa, sifted_states, lim_states,
+                              match_last + 1);
+      re_free (lim_states);
+      lim_states = NULL;
+      if (BE (ret != REG_NOERROR, 0))
+       goto free_return;
+    }
+  else
+    {
+      sift_ctx_init (&sctx, sifted_states, lim_states, halt_node, match_last);
+      ret = sift_states_backward (mctx, &sctx);
+      re_node_set_free (&sctx.limits);
+      if (BE (ret != REG_NOERROR, 0))
+       goto free_return;
+      if (sifted_states[0] == NULL)
+       {
+         ret = REG_NOMATCH;
+         goto free_return;
+       }
+    }
+  re_free (mctx->state_log);
+  mctx->state_log = sifted_states;
+  sifted_states = NULL;
+  mctx->last_node = halt_node;
+  mctx->match_last = match_last;
+  ret = REG_NOERROR;
+ free_return:
+  re_free (sifted_states);
+  re_free (lim_states);
+  return ret;
+}
+
+/* Acquire an initial state and return it.
+   We must select appropriate initial state depending on the context,
+   since initial states may have constraints like "\<", "^", etc..  */
+
+static inline re_dfastate_t *
+__attribute ((always_inline)) internal_function
+acquire_init_state_context (reg_errcode_t *err, const re_match_context_t *mctx,
+                           int idx)
+{
+  const re_dfa_t *const dfa = mctx->dfa;
+  if (dfa->init_state->has_constraint)
+    {
+      unsigned int context;
+      context = re_string_context_at (&mctx->input, idx - 1, mctx->eflags);
+      if (IS_WORD_CONTEXT (context))
+       return dfa->init_state_word;
+      else if (IS_ORDINARY_CONTEXT (context))
+       return dfa->init_state;
+      else if (IS_BEGBUF_CONTEXT (context) && IS_NEWLINE_CONTEXT (context))
+       return dfa->init_state_begbuf;
+      else if (IS_NEWLINE_CONTEXT (context))
+       return dfa->init_state_nl;
+      else if (IS_BEGBUF_CONTEXT (context))
+       {
+         /* It is relatively rare case, then calculate on demand.  */
+         return re_acquire_state_context (err, dfa,
+                                          dfa->init_state->entrance_nodes,
+                                          context);
+       }
+      else
+       /* Must not happen?  */
+       return dfa->init_state;
+    }
+  else
+    return dfa->init_state;
+}
+
+/* Check whether the regular expression match input string INPUT or not,
+   and return the index where the matching end, return -1 if not match,
+   or return -2 in case of an error.
+   FL_LONGEST_MATCH means we want the POSIX longest matching.
+   If P_MATCH_FIRST is not NULL, and the match fails, it is set to the
+   next place where we may want to try matching.
+   Note that the matcher assume that the maching starts from the current
+   index of the buffer.  */
+
+static int
+internal_function
+check_matching (re_match_context_t *mctx, int fl_longest_match,
+               int *p_match_first)
+{
+  const re_dfa_t *const dfa = mctx->dfa;
+  reg_errcode_t err;
+  int match = 0;
+  int match_last = -1;
+  int cur_str_idx = re_string_cur_idx (&mctx->input);
+  re_dfastate_t *cur_state;
+  int at_init_state = p_match_first != NULL;
+  int next_start_idx = cur_str_idx;
+
+  err = REG_NOERROR;
+  cur_state = acquire_init_state_context (&err, mctx, cur_str_idx);
+  /* An initial state must not be NULL (invalid).  */
+  if (BE (cur_state == NULL, 0))
+    {
+      assert (err == REG_ESPACE);
+      return -2;
+    }
+
+  if (mctx->state_log != NULL)
+    {
+      mctx->state_log[cur_str_idx] = cur_state;
+
+      /* Check OP_OPEN_SUBEXP in the initial state in case that we use them
+        later.  E.g. Processing back references.  */
+      if (BE (dfa->nbackref, 0))
+       {
+         at_init_state = 0;
+         err = check_subexp_matching_top (mctx, &cur_state->nodes, 0);
+         if (BE (err != REG_NOERROR, 0))
+           return err;
+
+         if (cur_state->has_backref)
+           {
+             err = transit_state_bkref (mctx, &cur_state->nodes);
+             if (BE (err != REG_NOERROR, 0))
+               return err;
+           }
+       }
+    }
+
+  /* If the RE accepts NULL string.  */
+  if (BE (cur_state->halt, 0))
+    {
+      if (!cur_state->has_constraint
+         || check_halt_state_context (mctx, cur_state, cur_str_idx))
+       {
+         if (!fl_longest_match)
+           return cur_str_idx;
+         else
+           {
+             match_last = cur_str_idx;
+             match = 1;
+           }
+       }
+    }
+
+  while (!re_string_eoi (&mctx->input))
+    {
+      re_dfastate_t *old_state = cur_state;
+      int next_char_idx = re_string_cur_idx (&mctx->input) + 1;
+
+      if (BE (next_char_idx >= mctx->input.bufs_len, 0)
+         || (BE (next_char_idx >= mctx->input.valid_len, 0)
+             && mctx->input.valid_len < mctx->input.len))
+       {
+         err = extend_buffers (mctx);
+         if (BE (err != REG_NOERROR, 0))
+           {
+             assert (err == REG_ESPACE);
+             return -2;
+           }
+       }
+
+      cur_state = transit_state (&err, mctx, cur_state);
+      if (mctx->state_log != NULL)
+       cur_state = merge_state_with_log (&err, mctx, cur_state);
+
+      if (cur_state == NULL)
+       {
+         /* Reached the invalid state or an error.  Try to recover a valid
+            state using the state log, if available and if we have not
+            already found a valid (even if not the longest) match.  */
+         if (BE (err != REG_NOERROR, 0))
+           return -2;
+
+         if (mctx->state_log == NULL
+             || (match && !fl_longest_match)
+             || (cur_state = find_recover_state (&err, mctx)) == NULL)
+           break;
+       }
+
+      if (BE (at_init_state, 0))
+       {
+         if (old_state == cur_state)
+           next_start_idx = next_char_idx;
+         else
+           at_init_state = 0;
+       }
+
+      if (cur_state->halt)
+       {
+         /* Reached a halt state.
+            Check the halt state can satisfy the current context.  */
+         if (!cur_state->has_constraint
+             || check_halt_state_context (mctx, cur_state,
+                                          re_string_cur_idx (&mctx->input)))
+           {
+             /* We found an appropriate halt state.  */
+             match_last = re_string_cur_idx (&mctx->input);
+             match = 1;
+
+             /* We found a match, do not modify match_first below.  */
+             p_match_first = NULL;
+             if (!fl_longest_match)
+               break;
+           }
+       }
+    }
+
+  if (p_match_first)
+    *p_match_first += next_start_idx;
+
+  return match_last;
+}
+
+/* Check NODE match the current context.  */
+
+static int
+internal_function
+check_halt_node_context (const re_dfa_t *dfa, int node, unsigned int context)
+{
+  re_token_type_t type = dfa->nodes[node].type;
+  unsigned int constraint = dfa->nodes[node].constraint;
+  if (type != END_OF_RE)
+    return 0;
+  if (!constraint)
+    return 1;
+  if (NOT_SATISFY_NEXT_CONSTRAINT (constraint, context))
+    return 0;
+  return 1;
+}
+
+/* Check the halt state STATE match the current context.
+   Return 0 if not match, if the node, STATE has, is a halt node and
+   match the context, return the node.  */
+
+static int
+internal_function
+check_halt_state_context (const re_match_context_t *mctx,
+                         const re_dfastate_t *state, int idx)
+{
+  int i;
+  unsigned int context;
+#ifdef DEBUG
+  assert (state->halt);
+#endif
+  context = re_string_context_at (&mctx->input, idx, mctx->eflags);
+  for (i = 0; i < state->nodes.nelem; ++i)
+    if (check_halt_node_context (mctx->dfa, state->nodes.elems[i], context))
+      return state->nodes.elems[i];
+  return 0;
+}
+
+/* Compute the next node to which "NFA" transit from NODE("NFA" is a NFA
+   corresponding to the DFA).
+   Return the destination node, and update EPS_VIA_NODES, return -1 in case
+   of errors.  */
+
+static int
+internal_function
+proceed_next_node (const re_match_context_t *mctx, int nregs, regmatch_t *regs,
+                  int *pidx, int node, re_node_set *eps_via_nodes,
+                  struct re_fail_stack_t *fs)
+{
+  const re_dfa_t *const dfa = mctx->dfa;
+  int i, err;
+  if (IS_EPSILON_NODE (dfa->nodes[node].type))
+    {
+      re_node_set *cur_nodes = &mctx->state_log[*pidx]->nodes;
+      re_node_set *edests = &dfa->edests[node];
+      int dest_node;
+      err = re_node_set_insert (eps_via_nodes, node);
+      if (BE (err < 0, 0))
+       return -2;
+      /* Pick up a valid destination, or return -1 if none is found.  */
+      for (dest_node = -1, i = 0; i < edests->nelem; ++i)
+       {
+         int candidate = edests->elems[i];
+         if (!re_node_set_contains (cur_nodes, candidate))
+           continue;
+         if (dest_node == -1)
+           dest_node = candidate;
+
+         else
+           {
+             /* In order to avoid infinite loop like "(a*)*", return the second
+                epsilon-transition if the first was already considered.  */
+             if (re_node_set_contains (eps_via_nodes, dest_node))
+               return candidate;
+
+             /* Otherwise, push the second epsilon-transition on the fail stack.  */
+             else if (fs != NULL
+                      && push_fail_stack (fs, *pidx, candidate, nregs, regs,
+                                          eps_via_nodes))
+               return -2;
+
+             /* We know we are going to exit.  */
+             break;
+           }
+       }
+      return dest_node;
+    }
+  else
+    {
+      int naccepted = 0;
+      re_token_type_t type = dfa->nodes[node].type;
+
+#ifdef RE_ENABLE_I18N
+      if (dfa->nodes[node].accept_mb)
+       naccepted = check_node_accept_bytes (dfa, node, &mctx->input, *pidx);
+      else
+#endif /* RE_ENABLE_I18N */
+      if (type == OP_BACK_REF)
+       {
+         int subexp_idx = dfa->nodes[node].opr.idx + 1;
+         naccepted = regs[subexp_idx].rm_eo - regs[subexp_idx].rm_so;
+         if (fs != NULL)
+           {
+             if (regs[subexp_idx].rm_so == -1 || regs[subexp_idx].rm_eo == -1)
+               return -1;
+             else if (naccepted)
+               {
+                 char *buf = (char *) re_string_get_buffer (&mctx->input);
+                 if (memcmp (buf + regs[subexp_idx].rm_so, buf + *pidx,
+                             naccepted) != 0)
+                   return -1;
+               }
+           }
+
+         if (naccepted == 0)
+           {
+             int dest_node;
+             err = re_node_set_insert (eps_via_nodes, node);
+             if (BE (err < 0, 0))
+               return -2;
+             dest_node = dfa->edests[node].elems[0];
+             if (re_node_set_contains (&mctx->state_log[*pidx]->nodes,
+                                       dest_node))
+               return dest_node;
+           }
+       }
+
+      if (naccepted != 0
+         || check_node_accept (mctx, dfa->nodes + node, *pidx))
+       {
+         int dest_node = dfa->nexts[node];
+         *pidx = (naccepted == 0) ? *pidx + 1 : *pidx + naccepted;
+         if (fs && (*pidx > mctx->match_last || mctx->state_log[*pidx] == NULL
+                    || !re_node_set_contains (&mctx->state_log[*pidx]->nodes,
+                                              dest_node)))
+           return -1;
+         re_node_set_empty (eps_via_nodes);
+         return dest_node;
+       }
+    }
+  return -1;
+}
+
+static reg_errcode_t
+internal_function
+push_fail_stack (struct re_fail_stack_t *fs, int str_idx, int dest_node,
+                int nregs, regmatch_t *regs, re_node_set *eps_via_nodes)
+{
+  reg_errcode_t err;
+  int num = fs->num++;
+  if (fs->num == fs->alloc)
+    {
+      struct re_fail_stack_ent_t *new_array;
+      new_array = realloc (fs->stack, (sizeof (struct re_fail_stack_ent_t)
+                                      * fs->alloc * 2));
+      if (new_array == NULL)
+       return REG_ESPACE;
+      fs->alloc *= 2;
+      fs->stack = new_array;
+    }
+  fs->stack[num].idx = str_idx;
+  fs->stack[num].node = dest_node;
+  fs->stack[num].regs = re_malloc (regmatch_t, nregs);
+  if (fs->stack[num].regs == NULL)
+    return REG_ESPACE;
+  memcpy (fs->stack[num].regs, regs, sizeof (regmatch_t) * nregs);
+  err = re_node_set_init_copy (&fs->stack[num].eps_via_nodes, eps_via_nodes);
+  return err;
+}
+
+static int
+internal_function
+pop_fail_stack (struct re_fail_stack_t *fs, int *pidx, int nregs,
+               regmatch_t *regs, re_node_set *eps_via_nodes)
+{
+  int num = --fs->num;
+  assert (num >= 0);
+  *pidx = fs->stack[num].idx;
+  memcpy (regs, fs->stack[num].regs, sizeof (regmatch_t) * nregs);
+  re_node_set_free (eps_via_nodes);
+  re_free (fs->stack[num].regs);
+  *eps_via_nodes = fs->stack[num].eps_via_nodes;
+  return fs->stack[num].node;
+}
+
+/* Set the positions where the subexpressions are starts/ends to registers
+   PMATCH.
+   Note: We assume that pmatch[0] is already set, and
+   pmatch[i].rm_so == pmatch[i].rm_eo == -1 for 0 < i < nmatch.  */
+
+static reg_errcode_t
+internal_function
+set_regs (const regex_t *preg, const re_match_context_t *mctx, size_t nmatch,
+         regmatch_t *pmatch, int fl_backtrack)
+{
+  const re_dfa_t *dfa = (const re_dfa_t *) preg->buffer;
+  int idx, cur_node;
+  re_node_set eps_via_nodes;
+  struct re_fail_stack_t *fs;
+  struct re_fail_stack_t fs_body = { 0, 2, NULL };
+  regmatch_t *prev_idx_match;
+  int prev_idx_match_malloced = 0;
+
+#ifdef DEBUG
+  assert (nmatch > 1);
+  assert (mctx->state_log != NULL);
+#endif
+  if (fl_backtrack)
+    {
+      fs = &fs_body;
+      fs->stack = re_malloc (struct re_fail_stack_ent_t, fs->alloc);
+      if (fs->stack == NULL)
+       return REG_ESPACE;
+    }
+  else
+    fs = NULL;
+
+  cur_node = dfa->init_node;
+  re_node_set_init_empty (&eps_via_nodes);
+
+#ifdef HAVE_ALLOCA
+  if (__libc_use_alloca (nmatch * sizeof (regmatch_t)))
+    prev_idx_match = (regmatch_t *) alloca (nmatch * sizeof (regmatch_t));
+  else
+#endif
+    {
+      prev_idx_match = re_malloc (regmatch_t, nmatch);
+      if (prev_idx_match == NULL)
+       {
+         free_fail_stack_return (fs);
+         return REG_ESPACE;
+       }
+      prev_idx_match_malloced = 1;
+    }
+  memcpy (prev_idx_match, pmatch, sizeof (regmatch_t) * nmatch);
+
+  for (idx = pmatch[0].rm_so; idx <= pmatch[0].rm_eo ;)
+    {
+      update_regs (dfa, pmatch, prev_idx_match, cur_node, idx, nmatch);
+
+      if (idx == pmatch[0].rm_eo && cur_node == mctx->last_node)
+       {
+         int reg_idx;
+         if (fs)
+           {
+             for (reg_idx = 0; reg_idx < nmatch; ++reg_idx)
+               if (pmatch[reg_idx].rm_so > -1 && pmatch[reg_idx].rm_eo == -1)
+                 break;
+             if (reg_idx == nmatch)
+               {
+                 re_node_set_free (&eps_via_nodes);
+                 if (prev_idx_match_malloced)
+                   re_free (prev_idx_match);
+                 return free_fail_stack_return (fs);
+               }
+             cur_node = pop_fail_stack (fs, &idx, nmatch, pmatch,
+                                        &eps_via_nodes);
+           }
+         else
+           {
+             re_node_set_free (&eps_via_nodes);
+             if (prev_idx_match_malloced)
+               re_free (prev_idx_match);
+             return REG_NOERROR;
+           }
+       }
+
+      /* Proceed to next node.  */
+      cur_node = proceed_next_node (mctx, nmatch, pmatch, &idx, cur_node,
+                                   &eps_via_nodes, fs);
+
+      if (BE (cur_node < 0, 0))
+       {
+         if (BE (cur_node == -2, 0))
+           {
+             re_node_set_free (&eps_via_nodes);
+             if (prev_idx_match_malloced)
+               re_free (prev_idx_match);
+             free_fail_stack_return (fs);
+             return REG_ESPACE;
+           }
+         if (fs)
+           cur_node = pop_fail_stack (fs, &idx, nmatch, pmatch,
+                                      &eps_via_nodes);
+         else
+           {
+             re_node_set_free (&eps_via_nodes);
+             if (prev_idx_match_malloced)
+               re_free (prev_idx_match);
+             return REG_NOMATCH;
+           }
+       }
+    }
+  re_node_set_free (&eps_via_nodes);
+  if (prev_idx_match_malloced)
+    re_free (prev_idx_match);
+  return free_fail_stack_return (fs);
+}
+
+static reg_errcode_t
+internal_function
+free_fail_stack_return (struct re_fail_stack_t *fs)
+{
+  if (fs)
+    {
+      int fs_idx;
+      for (fs_idx = 0; fs_idx < fs->num; ++fs_idx)
+       {
+         re_node_set_free (&fs->stack[fs_idx].eps_via_nodes);
+         re_free (fs->stack[fs_idx].regs);
+       }
+      re_free (fs->stack);
+    }
+  return REG_NOERROR;
+}
+
+static void
+internal_function
+update_regs (const re_dfa_t *dfa, regmatch_t *pmatch,
+            regmatch_t *prev_idx_match, int cur_node, int cur_idx, int nmatch)
+{
+  int type = dfa->nodes[cur_node].type;
+  if (type == OP_OPEN_SUBEXP)
+    {
+      int reg_num = dfa->nodes[cur_node].opr.idx + 1;
+
+      /* We are at the first node of this sub expression.  */
+      if (reg_num < nmatch)
+       {
+         pmatch[reg_num].rm_so = cur_idx;
+         pmatch[reg_num].rm_eo = -1;
+       }
+    }
+  else if (type == OP_CLOSE_SUBEXP)
+    {
+      int reg_num = dfa->nodes[cur_node].opr.idx + 1;
+      if (reg_num < nmatch)
+       {
+         /* We are at the last node of this sub expression.  */
+         if (pmatch[reg_num].rm_so < cur_idx)
+           {
+             pmatch[reg_num].rm_eo = cur_idx;
+             /* This is a non-empty match or we are not inside an optional
+                subexpression.  Accept this right away.  */
+             memcpy (prev_idx_match, pmatch, sizeof (regmatch_t) * nmatch);
+           }
+         else
+           {
+             if (dfa->nodes[cur_node].opt_subexp
+                 && prev_idx_match[reg_num].rm_so != -1)
+               /* We transited through an empty match for an optional
+                  subexpression, like (a?)*, and this is not the subexp's
+                  first match.  Copy back the old content of the registers
+                  so that matches of an inner subexpression are undone as
+                  well, like in ((a?))*.  */
+               memcpy (pmatch, prev_idx_match, sizeof (regmatch_t) * nmatch);
+             else
+               /* We completed a subexpression, but it may be part of
+                  an optional one, so do not update PREV_IDX_MATCH.  */
+               pmatch[reg_num].rm_eo = cur_idx;
+           }
+       }
+    }
+}
+
+/* This function checks the STATE_LOG from the SCTX->last_str_idx to 0
+   and sift the nodes in each states according to the following rules.
+   Updated state_log will be wrote to STATE_LOG.
+
+   Rules: We throw away the Node `a' in the STATE_LOG[STR_IDX] if...
+     1. When STR_IDX == MATCH_LAST(the last index in the state_log):
+       If `a' isn't the LAST_NODE and `a' can't epsilon transit to
+       the LAST_NODE, we throw away the node `a'.
+     2. When 0 <= STR_IDX < MATCH_LAST and `a' accepts
+       string `s' and transit to `b':
+       i. If 'b' isn't in the STATE_LOG[STR_IDX+strlen('s')], we throw
+          away the node `a'.
+       ii. If 'b' is in the STATE_LOG[STR_IDX+strlen('s')] but 'b' is
+           thrown away, we throw away the node `a'.
+     3. When 0 <= STR_IDX < MATCH_LAST and 'a' epsilon transit to 'b':
+       i. If 'b' isn't in the STATE_LOG[STR_IDX], we throw away the
+          node `a'.
+       ii. If 'b' is in the STATE_LOG[STR_IDX] but 'b' is thrown away,
+           we throw away the node `a'.  */
+
+#define STATE_NODE_CONTAINS(state,node) \
+  ((state) != NULL && re_node_set_contains (&(state)->nodes, node))
+
+static reg_errcode_t
+internal_function
+sift_states_backward (const re_match_context_t *mctx, re_sift_context_t *sctx)
+{
+  reg_errcode_t err;
+  int null_cnt = 0;
+  int str_idx = sctx->last_str_idx;
+  re_node_set cur_dest;
+
+#ifdef DEBUG
+  assert (mctx->state_log != NULL && mctx->state_log[str_idx] != NULL);
+#endif
+
+  /* Build sifted state_log[str_idx].  It has the nodes which can epsilon
+     transit to the last_node and the last_node itself.  */
+  err = re_node_set_init_1 (&cur_dest, sctx->last_node);
+  if (BE (err != REG_NOERROR, 0))
+    return err;
+  err = update_cur_sifted_state (mctx, sctx, str_idx, &cur_dest);
+  if (BE (err != REG_NOERROR, 0))
+    goto free_return;
+
+  /* Then check each states in the state_log.  */
+  while (str_idx > 0)
+    {
+      /* Update counters.  */
+      null_cnt = (sctx->sifted_states[str_idx] == NULL) ? null_cnt + 1 : 0;
+      if (null_cnt > mctx->max_mb_elem_len)
+       {
+         memset (sctx->sifted_states, '\0',
+                 sizeof (re_dfastate_t *) * str_idx);
+         re_node_set_free (&cur_dest);
+         return REG_NOERROR;
+       }
+      re_node_set_empty (&cur_dest);
+      --str_idx;
+
+      if (mctx->state_log[str_idx])
+       {
+         err = build_sifted_states (mctx, sctx, str_idx, &cur_dest);
+         if (BE (err != REG_NOERROR, 0))
+           goto free_return;
+       }
+
+      /* Add all the nodes which satisfy the following conditions:
+        - It can epsilon transit to a node in CUR_DEST.
+        - It is in CUR_SRC.
+        And update state_log.  */
+      err = update_cur_sifted_state (mctx, sctx, str_idx, &cur_dest);
+      if (BE (err != REG_NOERROR, 0))
+       goto free_return;
+    }
+  err = REG_NOERROR;
+ free_return:
+  re_node_set_free (&cur_dest);
+  return err;
+}
+
+static reg_errcode_t
+internal_function
+build_sifted_states (const re_match_context_t *mctx, re_sift_context_t *sctx,
+                    int str_idx, re_node_set *cur_dest)
+{
+  const re_dfa_t *const dfa = mctx->dfa;
+  const re_node_set *cur_src = &mctx->state_log[str_idx]->non_eps_nodes;
+  int i;
+
+  /* Then build the next sifted state.
+     We build the next sifted state on `cur_dest', and update
+     `sifted_states[str_idx]' with `cur_dest'.
+     Note:
+     `cur_dest' is the sifted state from `state_log[str_idx + 1]'.
+     `cur_src' points the node_set of the old `state_log[str_idx]'
+     (with the epsilon nodes pre-filtered out).  */
+  for (i = 0; i < cur_src->nelem; i++)
+    {
+      int prev_node = cur_src->elems[i];
+      int naccepted = 0;
+      int ret;
+
+#ifdef DEBUG
+      re_token_type_t type = dfa->nodes[prev_node].type;
+      assert (!IS_EPSILON_NODE (type));
+#endif
+#ifdef RE_ENABLE_I18N
+      /* If the node may accept `multi byte'.  */
+      if (dfa->nodes[prev_node].accept_mb)
+       naccepted = sift_states_iter_mb (mctx, sctx, prev_node,
+                                        str_idx, sctx->last_str_idx);
+#endif /* RE_ENABLE_I18N */
+
+      /* We don't check backreferences here.
+        See update_cur_sifted_state().  */
+      if (!naccepted
+         && check_node_accept (mctx, dfa->nodes + prev_node, str_idx)
+         && STATE_NODE_CONTAINS (sctx->sifted_states[str_idx + 1],
+                                 dfa->nexts[prev_node]))
+       naccepted = 1;
+
+      if (naccepted == 0)
+       continue;
+
+      if (sctx->limits.nelem)
+       {
+         int to_idx = str_idx + naccepted;
+         if (check_dst_limits (mctx, &sctx->limits,
+                               dfa->nexts[prev_node], to_idx,
+                               prev_node, str_idx))
+           continue;
+       }
+      ret = re_node_set_insert (cur_dest, prev_node);
+      if (BE (ret == -1, 0))
+       return REG_ESPACE;
+    }
+
+  return REG_NOERROR;
+}
+
+/* Helper functions.  */
+
+static reg_errcode_t
+internal_function
+clean_state_log_if_needed (re_match_context_t *mctx, int next_state_log_idx)
+{
+  int top = mctx->state_log_top;
+
+  if (next_state_log_idx >= mctx->input.bufs_len
+      || (next_state_log_idx >= mctx->input.valid_len
+         && mctx->input.valid_len < mctx->input.len))
+    {
+      reg_errcode_t err;
+      err = extend_buffers (mctx);
+      if (BE (err != REG_NOERROR, 0))
+       return err;
+    }
+
+  if (top < next_state_log_idx)
+    {
+      memset (mctx->state_log + top + 1, '\0',
+             sizeof (re_dfastate_t *) * (next_state_log_idx - top));
+      mctx->state_log_top = next_state_log_idx;
+    }
+  return REG_NOERROR;
+}
+
+static reg_errcode_t
+internal_function
+merge_state_array (const re_dfa_t *dfa, re_dfastate_t **dst,
+                  re_dfastate_t **src, int num)
+{
+  int st_idx;
+  reg_errcode_t err;
+  for (st_idx = 0; st_idx < num; ++st_idx)
+    {
+      if (dst[st_idx] == NULL)
+       dst[st_idx] = src[st_idx];
+      else if (src[st_idx] != NULL)
+       {
+         re_node_set merged_set;
+         err = re_node_set_init_union (&merged_set, &dst[st_idx]->nodes,
+                                       &src[st_idx]->nodes);
+         if (BE (err != REG_NOERROR, 0))
+           return err;
+         dst[st_idx] = re_acquire_state (&err, dfa, &merged_set);
+         re_node_set_free (&merged_set);
+         if (BE (err != REG_NOERROR, 0))
+           return err;
+       }
+    }
+  return REG_NOERROR;
+}
+
+static reg_errcode_t
+internal_function
+update_cur_sifted_state (const re_match_context_t *mctx,
+                        re_sift_context_t *sctx, int str_idx,
+                        re_node_set *dest_nodes)
+{
+  const re_dfa_t *const dfa = mctx->dfa;
+  reg_errcode_t err = REG_NOERROR;
+  const re_node_set *candidates;
+  candidates = ((mctx->state_log[str_idx] == NULL) ? NULL
+               : &mctx->state_log[str_idx]->nodes);
+
+  if (dest_nodes->nelem == 0)
+    sctx->sifted_states[str_idx] = NULL;
+  else
+    {
+      if (candidates)
+       {
+         /* At first, add the nodes which can epsilon transit to a node in
+            DEST_NODE.  */
+         err = add_epsilon_src_nodes (dfa, dest_nodes, candidates);
+         if (BE (err != REG_NOERROR, 0))
+           return err;
+
+         /* Then, check the limitations in the current sift_context.  */
+         if (sctx->limits.nelem)
+           {
+             err = check_subexp_limits (dfa, dest_nodes, candidates, &sctx->limits,
+                                        mctx->bkref_ents, str_idx);
+             if (BE (err != REG_NOERROR, 0))
+               return err;
+           }
+       }
+
+      sctx->sifted_states[str_idx] = re_acquire_state (&err, dfa, dest_nodes);
+      if (BE (err != REG_NOERROR, 0))
+       return err;
+    }
+
+  if (candidates && mctx->state_log[str_idx]->has_backref)
+    {
+      err = sift_states_bkref (mctx, sctx, str_idx, candidates);
+      if (BE (err != REG_NOERROR, 0))
+       return err;
+    }
+  return REG_NOERROR;
+}
+
+static reg_errcode_t
+internal_function
+add_epsilon_src_nodes (const re_dfa_t *dfa, re_node_set *dest_nodes,
+                      const re_node_set *candidates)
+{
+  reg_errcode_t err = REG_NOERROR;
+  int i;
+
+  re_dfastate_t *state = re_acquire_state (&err, dfa, dest_nodes);
+  if (BE (err != REG_NOERROR, 0))
+    return err;
+
+  if (!state->inveclosure.alloc)
+    {
+      err = re_node_set_alloc (&state->inveclosure, dest_nodes->nelem);
+      if (BE (err != REG_NOERROR, 0))
+       return REG_ESPACE;
+      for (i = 0; i < dest_nodes->nelem; i++)
+       {
+         err = re_node_set_merge (&state->inveclosure,
+                                  dfa->inveclosures + dest_nodes->elems[i]);
+         if (BE (err != REG_NOERROR, 0))
+           return REG_ESPACE;
+       }
+    }
+  return re_node_set_add_intersect (dest_nodes, candidates,
+                                   &state->inveclosure);
+}
+
+static reg_errcode_t
+internal_function
+sub_epsilon_src_nodes (const re_dfa_t *dfa, int node, re_node_set *dest_nodes,
+                      const re_node_set *candidates)
+{
+    int ecl_idx;
+    reg_errcode_t err;
+    re_node_set *inv_eclosure = dfa->inveclosures + node;
+    re_node_set except_nodes;
+    re_node_set_init_empty (&except_nodes);
+    for (ecl_idx = 0; ecl_idx < inv_eclosure->nelem; ++ecl_idx)
+      {
+       int cur_node = inv_eclosure->elems[ecl_idx];
+       if (cur_node == node)
+         continue;
+       if (IS_EPSILON_NODE (dfa->nodes[cur_node].type))
+         {
+           int edst1 = dfa->edests[cur_node].elems[0];
+           int edst2 = ((dfa->edests[cur_node].nelem > 1)
+                        ? dfa->edests[cur_node].elems[1] : -1);
+           if ((!re_node_set_contains (inv_eclosure, edst1)
+                && re_node_set_contains (dest_nodes, edst1))
+               || (edst2 > 0
+                   && !re_node_set_contains (inv_eclosure, edst2)
+                   && re_node_set_contains (dest_nodes, edst2)))
+             {
+               err = re_node_set_add_intersect (&except_nodes, candidates,
+                                                dfa->inveclosures + cur_node);
+               if (BE (err != REG_NOERROR, 0))
+                 {
+                   re_node_set_free (&except_nodes);
+                   return err;
+                 }
+             }
+         }
+      }
+    for (ecl_idx = 0; ecl_idx < inv_eclosure->nelem; ++ecl_idx)
+      {
+       int cur_node = inv_eclosure->elems[ecl_idx];
+       if (!re_node_set_contains (&except_nodes, cur_node))
+         {
+           int idx = re_node_set_contains (dest_nodes, cur_node) - 1;
+           re_node_set_remove_at (dest_nodes, idx);
+         }
+      }
+    re_node_set_free (&except_nodes);
+    return REG_NOERROR;
+}
+
+static int
+internal_function
+check_dst_limits (const re_match_context_t *mctx, re_node_set *limits,
+                 int dst_node, int dst_idx, int src_node, int src_idx)
+{
+  const re_dfa_t *const dfa = mctx->dfa;
+  int lim_idx, src_pos, dst_pos;
+
+  int dst_bkref_idx = search_cur_bkref_entry (mctx, dst_idx);
+  int src_bkref_idx = search_cur_bkref_entry (mctx, src_idx);
+  for (lim_idx = 0; lim_idx < limits->nelem; ++lim_idx)
+    {
+      int subexp_idx;
+      struct re_backref_cache_entry *ent;
+      ent = mctx->bkref_ents + limits->elems[lim_idx];
+      subexp_idx = dfa->nodes[ent->node].opr.idx;
+
+      dst_pos = check_dst_limits_calc_pos (mctx, limits->elems[lim_idx],
+                                          subexp_idx, dst_node, dst_idx,
+                                          dst_bkref_idx);
+      src_pos = check_dst_limits_calc_pos (mctx, limits->elems[lim_idx],
+                                          subexp_idx, src_node, src_idx,
+                                          src_bkref_idx);
+
+      /* In case of:
+        <src> <dst> ( <subexp> )
+        ( <subexp> ) <src> <dst>
+        ( <subexp1> <src> <subexp2> <dst> <subexp3> )  */
+      if (src_pos == dst_pos)
+       continue; /* This is unrelated limitation.  */
+      else
+       return 1;
+    }
+  return 0;
+}
+
+static int
+internal_function
+check_dst_limits_calc_pos_1 (const re_match_context_t *mctx, int boundaries,
+                            int subexp_idx, int from_node, int bkref_idx)
+{
+  const re_dfa_t *const dfa = mctx->dfa;
+  const re_node_set *eclosures = dfa->eclosures + from_node;
+  int node_idx;
+
+  /* Else, we are on the boundary: examine the nodes on the epsilon
+     closure.  */
+  for (node_idx = 0; node_idx < eclosures->nelem; ++node_idx)
+    {
+      int node = eclosures->elems[node_idx];
+      switch (dfa->nodes[node].type)
+       {
+       case OP_BACK_REF:
+         if (bkref_idx != -1)
+           {
+             struct re_backref_cache_entry *ent = mctx->bkref_ents + bkref_idx;
+             do
+               {
+                 int dst, cpos;
+
+                 if (ent->node != node)
+                   continue;
+
+                 if (subexp_idx < BITSET_WORD_BITS
+                     && !(ent->eps_reachable_subexps_map
+                          & ((bitset_word_t) 1 << subexp_idx)))
+                   continue;
+
+                 /* Recurse trying to reach the OP_OPEN_SUBEXP and
+                    OP_CLOSE_SUBEXP cases below.  But, if the
+                    destination node is the same node as the source
+                    node, don't recurse because it would cause an
+                    infinite loop: a regex that exhibits this behavior
+                    is ()\1*\1*  */
+                 dst = dfa->edests[node].elems[0];
+                 if (dst == from_node)
+                   {
+                     if (boundaries & 1)
+                       return -1;
+                     else /* if (boundaries & 2) */
+                       return 0;
+                   }
+
+                 cpos =
+                   check_dst_limits_calc_pos_1 (mctx, boundaries, subexp_idx,
+                                                dst, bkref_idx);
+                 if (cpos == -1 /* && (boundaries & 1) */)
+                   return -1;
+                 if (cpos == 0 && (boundaries & 2))
+                   return 0;
+
+                 if (subexp_idx < BITSET_WORD_BITS)
+                   ent->eps_reachable_subexps_map
+                     &= ~((bitset_word_t) 1 << subexp_idx);
+               }
+             while (ent++->more);
+           }
+         break;
+
+       case OP_OPEN_SUBEXP:
+         if ((boundaries & 1) && subexp_idx == dfa->nodes[node].opr.idx)
+           return -1;
+         break;
+
+       case OP_CLOSE_SUBEXP:
+         if ((boundaries & 2) && subexp_idx == dfa->nodes[node].opr.idx)
+           return 0;
+         break;
+
+       default:
+           break;
+       }
+    }
+
+  return (boundaries & 2) ? 1 : 0;
+}
+
+static int
+internal_function
+check_dst_limits_calc_pos (const re_match_context_t *mctx, int limit,
+                          int subexp_idx, int from_node, int str_idx,
+                          int bkref_idx)
+{
+  struct re_backref_cache_entry *lim = mctx->bkref_ents + limit;
+  int boundaries;
+
+  /* If we are outside the range of the subexpression, return -1 or 1.  */
+  if (str_idx < lim->subexp_from)
+    return -1;
+
+  if (lim->subexp_to < str_idx)
+    return 1;
+
+  /* If we are within the subexpression, return 0.  */
+  boundaries = (str_idx == lim->subexp_from);
+  boundaries |= (str_idx == lim->subexp_to) << 1;
+  if (boundaries == 0)
+    return 0;
+
+  /* Else, examine epsilon closure.  */
+  return check_dst_limits_calc_pos_1 (mctx, boundaries, subexp_idx,
+                                     from_node, bkref_idx);
+}
+
+/* Check the limitations of sub expressions LIMITS, and remove the nodes
+   which are against limitations from DEST_NODES. */
+
+static reg_errcode_t
+internal_function
+check_subexp_limits (const re_dfa_t *dfa, re_node_set *dest_nodes,
+                    const re_node_set *candidates, re_node_set *limits,
+                    struct re_backref_cache_entry *bkref_ents, int str_idx)
+{
+  reg_errcode_t err;
+  int node_idx, lim_idx;
+
+  for (lim_idx = 0; lim_idx < limits->nelem; ++lim_idx)
+    {
+      int subexp_idx;
+      struct re_backref_cache_entry *ent;
+      ent = bkref_ents + limits->elems[lim_idx];
+
+      if (str_idx <= ent->subexp_from || ent->str_idx < str_idx)
+       continue; /* This is unrelated limitation.  */
+
+      subexp_idx = dfa->nodes[ent->node].opr.idx;
+      if (ent->subexp_to == str_idx)
+       {
+         int ops_node = -1;
+         int cls_node = -1;
+         for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx)
+           {
+             int node = dest_nodes->elems[node_idx];
+             re_token_type_t type = dfa->nodes[node].type;
+             if (type == OP_OPEN_SUBEXP
+                 && subexp_idx == dfa->nodes[node].opr.idx)
+               ops_node = node;
+             else if (type == OP_CLOSE_SUBEXP
+                      && subexp_idx == dfa->nodes[node].opr.idx)
+               cls_node = node;
+           }
+
+         /* Check the limitation of the open subexpression.  */
+         /* Note that (ent->subexp_to = str_idx != ent->subexp_from).  */
+         if (ops_node >= 0)
+           {
+             err = sub_epsilon_src_nodes (dfa, ops_node, dest_nodes,
+                                          candidates);
+             if (BE (err != REG_NOERROR, 0))
+               return err;
+           }
+
+         /* Check the limitation of the close subexpression.  */
+         if (cls_node >= 0)
+           for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx)
+             {
+               int node = dest_nodes->elems[node_idx];
+               if (!re_node_set_contains (dfa->inveclosures + node,
+                                          cls_node)
+                   && !re_node_set_contains (dfa->eclosures + node,
+                                             cls_node))
+                 {
+                   /* It is against this limitation.
+                      Remove it form the current sifted state.  */
+                   err = sub_epsilon_src_nodes (dfa, node, dest_nodes,
+                                                candidates);
+                   if (BE (err != REG_NOERROR, 0))
+                     return err;
+                   --node_idx;
+                 }
+             }
+       }
+      else /* (ent->subexp_to != str_idx)  */
+       {
+         for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx)
+           {
+             int node = dest_nodes->elems[node_idx];
+             re_token_type_t type = dfa->nodes[node].type;
+             if (type == OP_CLOSE_SUBEXP || type == OP_OPEN_SUBEXP)
+               {
+                 if (subexp_idx != dfa->nodes[node].opr.idx)
+                   continue;
+                 /* It is against this limitation.
+                    Remove it form the current sifted state.  */
+                 err = sub_epsilon_src_nodes (dfa, node, dest_nodes,
+                                              candidates);
+                 if (BE (err != REG_NOERROR, 0))
+                   return err;
+               }
+           }
+       }
+    }
+  return REG_NOERROR;
+}
+
+static reg_errcode_t
+internal_function
+sift_states_bkref (const re_match_context_t *mctx, re_sift_context_t *sctx,
+                  int str_idx, const re_node_set *candidates)
+{
+  const re_dfa_t *const dfa = mctx->dfa;
+  reg_errcode_t err;
+  int node_idx, node;
+  re_sift_context_t local_sctx;
+  int first_idx = search_cur_bkref_entry (mctx, str_idx);
+
+  if (first_idx == -1)
+    return REG_NOERROR;
+
+  local_sctx.sifted_states = NULL; /* Mark that it hasn't been initialized.  */
+
+  for (node_idx = 0; node_idx < candidates->nelem; ++node_idx)
+    {
+      int enabled_idx;
+      re_token_type_t type;
+      struct re_backref_cache_entry *entry;
+      node = candidates->elems[node_idx];
+      type = dfa->nodes[node].type;
+      /* Avoid infinite loop for the REs like "()\1+".  */
+      if (node == sctx->last_node && str_idx == sctx->last_str_idx)
+       continue;
+      if (type != OP_BACK_REF)
+       continue;
+
+      entry = mctx->bkref_ents + first_idx;
+      enabled_idx = first_idx;
+      do
+       {
+         int subexp_len;
+         int to_idx;
+         int dst_node;
+         int ret;
+         re_dfastate_t *cur_state;
+
+         if (entry->node != node)
+           continue;
+         subexp_len = entry->subexp_to - entry->subexp_from;
+         to_idx = str_idx + subexp_len;
+         dst_node = (subexp_len ? dfa->nexts[node]
+                     : dfa->edests[node].elems[0]);
+
+         if (to_idx > sctx->last_str_idx
+             || sctx->sifted_states[to_idx] == NULL
+             || !STATE_NODE_CONTAINS (sctx->sifted_states[to_idx], dst_node)
+             || check_dst_limits (mctx, &sctx->limits, node,
+                                  str_idx, dst_node, to_idx))
+           continue;
+
+         if (local_sctx.sifted_states == NULL)
+           {
+             local_sctx = *sctx;
+             err = re_node_set_init_copy (&local_sctx.limits, &sctx->limits);
+             if (BE (err != REG_NOERROR, 0))
+               goto free_return;
+           }
+         local_sctx.last_node = node;
+         local_sctx.last_str_idx = str_idx;
+         ret = re_node_set_insert (&local_sctx.limits, enabled_idx);
+         if (BE (ret < 0, 0))
+           {
+             err = REG_ESPACE;
+             goto free_return;
+           }
+         cur_state = local_sctx.sifted_states[str_idx];
+         err = sift_states_backward (mctx, &local_sctx);
+         if (BE (err != REG_NOERROR, 0))
+           goto free_return;
+         if (sctx->limited_states != NULL)
+           {
+             err = merge_state_array (dfa, sctx->limited_states,
+                                      local_sctx.sifted_states,
+                                      str_idx + 1);
+             if (BE (err != REG_NOERROR, 0))
+               goto free_return;
+           }
+         local_sctx.sifted_states[str_idx] = cur_state;
+         re_node_set_remove (&local_sctx.limits, enabled_idx);
+
+         /* mctx->bkref_ents may have changed, reload the pointer.  */
+         entry = mctx->bkref_ents + enabled_idx;
+       }
+      while (enabled_idx++, entry++->more);
+    }
+  err = REG_NOERROR;
+ free_return:
+  if (local_sctx.sifted_states != NULL)
+    {
+      re_node_set_free (&local_sctx.limits);
+    }
+
+  return err;
+}
+
+
+#ifdef RE_ENABLE_I18N
+static int
+internal_function
+sift_states_iter_mb (const re_match_context_t *mctx, re_sift_context_t *sctx,
+                    int node_idx, int str_idx, int max_str_idx)
+{
+  const re_dfa_t *const dfa = mctx->dfa;
+  int naccepted;
+  /* Check the node can accept `multi byte'.  */
+  naccepted = check_node_accept_bytes (dfa, node_idx, &mctx->input, str_idx);
+  if (naccepted > 0 && str_idx + naccepted <= max_str_idx &&
+      !STATE_NODE_CONTAINS (sctx->sifted_states[str_idx + naccepted],
+                           dfa->nexts[node_idx]))
+    /* The node can't accept the `multi byte', or the
+       destination was already thrown away, then the node
+       could't accept the current input `multi byte'.   */
+    naccepted = 0;
+  /* Otherwise, it is sure that the node could accept
+     `naccepted' bytes input.  */
+  return naccepted;
+}
+#endif /* RE_ENABLE_I18N */
+
+\f
+/* Functions for state transition.  */
+
+/* Return the next state to which the current state STATE will transit by
+   accepting the current input byte, and update STATE_LOG if necessary.
+   If STATE can accept a multibyte char/collating element/back reference
+   update the destination of STATE_LOG.  */
+
+static re_dfastate_t *
+internal_function
+transit_state (reg_errcode_t *err, re_match_context_t *mctx,
+              re_dfastate_t *state)
+{
+  re_dfastate_t **trtable;
+  unsigned char ch;
+
+#ifdef RE_ENABLE_I18N
+  /* If the current state can accept multibyte.  */
+  if (BE (state->accept_mb, 0))
+    {
+      *err = transit_state_mb (mctx, state);
+      if (BE (*err != REG_NOERROR, 0))
+       return NULL;
+    }
+#endif /* RE_ENABLE_I18N */
+
+  /* Then decide the next state with the single byte.  */
+#if 0
+  if (0)
+    /* don't use transition table  */
+    return transit_state_sb (err, mctx, state);
+#endif
+
+  /* Use transition table  */
+  ch = re_string_fetch_byte (&mctx->input);
+  for (;;)
+    {
+      trtable = state->trtable;
+      if (BE (trtable != NULL, 1))
+       return trtable[ch];
+
+      trtable = state->word_trtable;
+      if (BE (trtable != NULL, 1))
+       {
+         unsigned int context;
+         context
+           = re_string_context_at (&mctx->input,
+                                   re_string_cur_idx (&mctx->input) - 1,
+                                   mctx->eflags);
+         if (IS_WORD_CONTEXT (context))
+           return trtable[ch + SBC_MAX];
+         else
+           return trtable[ch];
+       }
+
+      if (!build_trtable (mctx->dfa, state))
+       {
+         *err = REG_ESPACE;
+         return NULL;
+       }
+
+      /* Retry, we now have a transition table.  */
+    }
+}
+
+/* Update the state_log if we need */
+re_dfastate_t *
+internal_function
+merge_state_with_log (reg_errcode_t *err, re_match_context_t *mctx,
+                     re_dfastate_t *next_state)
+{
+  const re_dfa_t *const dfa = mctx->dfa;
+  int cur_idx = re_string_cur_idx (&mctx->input);
+
+  if (cur_idx > mctx->state_log_top)
+    {
+      mctx->state_log[cur_idx] = next_state;
+      mctx->state_log_top = cur_idx;
+    }
+  else if (mctx->state_log[cur_idx] == 0)
+    {
+      mctx->state_log[cur_idx] = next_state;
+    }
+  else
+    {
+      re_dfastate_t *pstate;
+      unsigned int context;
+      re_node_set next_nodes, *log_nodes, *table_nodes = NULL;
+      /* If (state_log[cur_idx] != 0), it implies that cur_idx is
+        the destination of a multibyte char/collating element/
+        back reference.  Then the next state is the union set of
+        these destinations and the results of the transition table.  */
+      pstate = mctx->state_log[cur_idx];
+      log_nodes = pstate->entrance_nodes;
+      if (next_state != NULL)
+       {
+         table_nodes = next_state->entrance_nodes;
+         *err = re_node_set_init_union (&next_nodes, table_nodes,
+                                            log_nodes);
+         if (BE (*err != REG_NOERROR, 0))
+           return NULL;
+       }
+      else
+       next_nodes = *log_nodes;
+      /* Note: We already add the nodes of the initial state,
+        then we don't need to add them here.  */
+
+      context = re_string_context_at (&mctx->input,
+                                     re_string_cur_idx (&mctx->input) - 1,
+                                     mctx->eflags);
+      next_state = mctx->state_log[cur_idx]
+       = re_acquire_state_context (err, dfa, &next_nodes, context);
+      /* We don't need to check errors here, since the return value of
+        this function is next_state and ERR is already set.  */
+
+      if (table_nodes != NULL)
+       re_node_set_free (&next_nodes);
+    }
+
+  if (BE (dfa->nbackref, 0) && next_state != NULL)
+    {
+      /* Check OP_OPEN_SUBEXP in the current state in case that we use them
+        later.  We must check them here, since the back references in the
+        next state might use them.  */
+      *err = check_subexp_matching_top (mctx, &next_state->nodes,
+                                       cur_idx);
+      if (BE (*err != REG_NOERROR, 0))
+       return NULL;
+
+      /* If the next state has back references.  */
+      if (next_state->has_backref)
+       {
+         *err = transit_state_bkref (mctx, &next_state->nodes);
+         if (BE (*err != REG_NOERROR, 0))
+           return NULL;
+         next_state = mctx->state_log[cur_idx];
+       }
+    }
+
+  return next_state;
+}
+
+/* Skip bytes in the input that correspond to part of a
+   multi-byte match, then look in the log for a state
+   from which to restart matching.  */
+re_dfastate_t *
+internal_function
+find_recover_state (reg_errcode_t *err, re_match_context_t *mctx)
+{
+  re_dfastate_t *cur_state;
+  do
+    {
+      int max = mctx->state_log_top;
+      int cur_str_idx = re_string_cur_idx (&mctx->input);
+
+      do
+       {
+         if (++cur_str_idx > max)
+           return NULL;
+         re_string_skip_bytes (&mctx->input, 1);
+       }
+      while (mctx->state_log[cur_str_idx] == NULL);
+
+      cur_state = merge_state_with_log (err, mctx, NULL);
+    }
+  while (*err == REG_NOERROR && cur_state == NULL);
+  return cur_state;
+}
+
+/* Helper functions for transit_state.  */
+
+/* From the node set CUR_NODES, pick up the nodes whose types are
+   OP_OPEN_SUBEXP and which have corresponding back references in the regular
+   expression. And register them to use them later for evaluating the
+   correspoding back references.  */
+
+static reg_errcode_t
+internal_function
+check_subexp_matching_top (re_match_context_t *mctx, re_node_set *cur_nodes,
+                          int str_idx)
+{
+  const re_dfa_t *const dfa = mctx->dfa;
+  int node_idx;
+  reg_errcode_t err;
+
+  /* TODO: This isn't efficient.
+          Because there might be more than one nodes whose types are
+          OP_OPEN_SUBEXP and whose index is SUBEXP_IDX, we must check all
+          nodes.
+          E.g. RE: (a){2}  */
+  for (node_idx = 0; node_idx < cur_nodes->nelem; ++node_idx)
+    {
+      int node = cur_nodes->elems[node_idx];
+      if (dfa->nodes[node].type == OP_OPEN_SUBEXP
+         && dfa->nodes[node].opr.idx < BITSET_WORD_BITS
+         && (dfa->used_bkref_map
+             & ((bitset_word_t) 1 << dfa->nodes[node].opr.idx)))
+       {
+         err = match_ctx_add_subtop (mctx, node, str_idx);
+         if (BE (err != REG_NOERROR, 0))
+           return err;
+       }
+    }
+  return REG_NOERROR;
+}
+
+#if 0
+/* Return the next state to which the current state STATE will transit by
+   accepting the current input byte.  */
+
+static re_dfastate_t *
+transit_state_sb (reg_errcode_t *err, re_match_context_t *mctx,
+                 re_dfastate_t *state)
+{
+  const re_dfa_t *const dfa = mctx->dfa;
+  re_node_set next_nodes;
+  re_dfastate_t *next_state;
+  int node_cnt, cur_str_idx = re_string_cur_idx (&mctx->input);
+  unsigned int context;
+
+  *err = re_node_set_alloc (&next_nodes, state->nodes.nelem + 1);
+  if (BE (*err != REG_NOERROR, 0))
+    return NULL;
+  for (node_cnt = 0; node_cnt < state->nodes.nelem; ++node_cnt)
+    {
+      int cur_node = state->nodes.elems[node_cnt];
+      if (check_node_accept (mctx, dfa->nodes + cur_node, cur_str_idx))
+       {
+         *err = re_node_set_merge (&next_nodes,
+                                   dfa->eclosures + dfa->nexts[cur_node]);
+         if (BE (*err != REG_NOERROR, 0))
+           {
+             re_node_set_free (&next_nodes);
+             return NULL;
+           }
+       }
+    }
+  context = re_string_context_at (&mctx->input, cur_str_idx, mctx->eflags);
+  next_state = re_acquire_state_context (err, dfa, &next_nodes, context);
+  /* We don't need to check errors here, since the return value of
+     this function is next_state and ERR is already set.  */
+
+  re_node_set_free (&next_nodes);
+  re_string_skip_bytes (&mctx->input, 1);
+  return next_state;
+}
+#endif
+
+#ifdef RE_ENABLE_I18N
+static reg_errcode_t
+internal_function
+transit_state_mb (re_match_context_t *mctx, re_dfastate_t *pstate)
+{
+  const re_dfa_t *const dfa = mctx->dfa;
+  reg_errcode_t err;
+  int i;
+
+  for (i = 0; i < pstate->nodes.nelem; ++i)
+    {
+      re_node_set dest_nodes, *new_nodes;
+      int cur_node_idx = pstate->nodes.elems[i];
+      int naccepted, dest_idx;
+      unsigned int context;
+      re_dfastate_t *dest_state;
+
+      if (!dfa->nodes[cur_node_idx].accept_mb)
+       continue;
+
+      if (dfa->nodes[cur_node_idx].constraint)
+       {
+         context = re_string_context_at (&mctx->input,
+                                         re_string_cur_idx (&mctx->input),
+                                         mctx->eflags);
+         if (NOT_SATISFY_NEXT_CONSTRAINT (dfa->nodes[cur_node_idx].constraint,
+                                          context))
+           continue;
+       }
+
+      /* How many bytes the node can accept?  */
+      naccepted = check_node_accept_bytes (dfa, cur_node_idx, &mctx->input,
+                                          re_string_cur_idx (&mctx->input));
+      if (naccepted == 0)
+       continue;
+
+      /* The node can accepts `naccepted' bytes.  */
+      dest_idx = re_string_cur_idx (&mctx->input) + naccepted;
+      mctx->max_mb_elem_len = ((mctx->max_mb_elem_len < naccepted) ? naccepted
+                              : mctx->max_mb_elem_len);
+      err = clean_state_log_if_needed (mctx, dest_idx);
+      if (BE (err != REG_NOERROR, 0))
+       return err;
+#ifdef DEBUG
+      assert (dfa->nexts[cur_node_idx] != -1);
+#endif
+      new_nodes = dfa->eclosures + dfa->nexts[cur_node_idx];
+
+      dest_state = mctx->state_log[dest_idx];
+      if (dest_state == NULL)
+       dest_nodes = *new_nodes;
+      else
+       {
+         err = re_node_set_init_union (&dest_nodes,
+                                       dest_state->entrance_nodes, new_nodes);
+         if (BE (err != REG_NOERROR, 0))
+           return err;
+       }
+      context = re_string_context_at (&mctx->input, dest_idx - 1,
+                                     mctx->eflags);
+      mctx->state_log[dest_idx]
+       = re_acquire_state_context (&err, dfa, &dest_nodes, context);
+      if (dest_state != NULL)
+       re_node_set_free (&dest_nodes);
+      if (BE (mctx->state_log[dest_idx] == NULL && err != REG_NOERROR, 0))
+       return err;
+    }
+  return REG_NOERROR;
+}
+#endif /* RE_ENABLE_I18N */
+
+static reg_errcode_t
+internal_function
+transit_state_bkref (re_match_context_t *mctx, const re_node_set *nodes)
+{
+  const re_dfa_t *const dfa = mctx->dfa;
+  reg_errcode_t err;
+  int i;
+  int cur_str_idx = re_string_cur_idx (&mctx->input);
+
+  for (i = 0; i < nodes->nelem; ++i)
+    {
+      int dest_str_idx, prev_nelem, bkc_idx;
+      int node_idx = nodes->elems[i];
+      unsigned int context;
+      const re_token_t *node = dfa->nodes + node_idx;
+      re_node_set *new_dest_nodes;
+
+      /* Check whether `node' is a backreference or not.  */
+      if (node->type != OP_BACK_REF)
+       continue;
+
+      if (node->constraint)
+       {
+         context = re_string_context_at (&mctx->input, cur_str_idx,
+                                         mctx->eflags);
+         if (NOT_SATISFY_NEXT_CONSTRAINT (node->constraint, context))
+           continue;
+       }
+
+      /* `node' is a backreference.
+        Check the substring which the substring matched.  */
+      bkc_idx = mctx->nbkref_ents;
+      err = get_subexp (mctx, node_idx, cur_str_idx);
+      if (BE (err != REG_NOERROR, 0))
+       goto free_return;
+
+      /* And add the epsilon closures (which is `new_dest_nodes') of
+        the backreference to appropriate state_log.  */
+#ifdef DEBUG
+      assert (dfa->nexts[node_idx] != -1);
+#endif
+      for (; bkc_idx < mctx->nbkref_ents; ++bkc_idx)
+       {
+         int subexp_len;
+         re_dfastate_t *dest_state;
+         struct re_backref_cache_entry *bkref_ent;
+         bkref_ent = mctx->bkref_ents + bkc_idx;
+         if (bkref_ent->node != node_idx || bkref_ent->str_idx != cur_str_idx)
+           continue;
+         subexp_len = bkref_ent->subexp_to - bkref_ent->subexp_from;
+         new_dest_nodes = (subexp_len == 0
+                           ? dfa->eclosures + dfa->edests[node_idx].elems[0]
+                           : dfa->eclosures + dfa->nexts[node_idx]);
+         dest_str_idx = (cur_str_idx + bkref_ent->subexp_to
+                         - bkref_ent->subexp_from);
+         context = re_string_context_at (&mctx->input, dest_str_idx - 1,
+                                         mctx->eflags);
+         dest_state = mctx->state_log[dest_str_idx];
+         prev_nelem = ((mctx->state_log[cur_str_idx] == NULL) ? 0
+                       : mctx->state_log[cur_str_idx]->nodes.nelem);
+         /* Add `new_dest_node' to state_log.  */
+         if (dest_state == NULL)
+           {
+             mctx->state_log[dest_str_idx]
+               = re_acquire_state_context (&err, dfa, new_dest_nodes,
+                                           context);
+             if (BE (mctx->state_log[dest_str_idx] == NULL
+                     && err != REG_NOERROR, 0))
+               goto free_return;
+           }
+         else
+           {
+             re_node_set dest_nodes;
+             err = re_node_set_init_union (&dest_nodes,
+                                           dest_state->entrance_nodes,
+                                           new_dest_nodes);
+             if (BE (err != REG_NOERROR, 0))
+               {
+                 re_node_set_free (&dest_nodes);
+                 goto free_return;
+               }
+             mctx->state_log[dest_str_idx]
+               = re_acquire_state_context (&err, dfa, &dest_nodes, context);
+             re_node_set_free (&dest_nodes);
+             if (BE (mctx->state_log[dest_str_idx] == NULL
+                     && err != REG_NOERROR, 0))
+               goto free_return;
+           }
+         /* We need to check recursively if the backreference can epsilon
+            transit.  */
+         if (subexp_len == 0
+             && mctx->state_log[cur_str_idx]->nodes.nelem > prev_nelem)
+           {
+             err = check_subexp_matching_top (mctx, new_dest_nodes,
+                                              cur_str_idx);
+             if (BE (err != REG_NOERROR, 0))
+               goto free_return;
+             err = transit_state_bkref (mctx, new_dest_nodes);
+             if (BE (err != REG_NOERROR, 0))
+               goto free_return;
+           }
+       }
+    }
+  err = REG_NOERROR;
+ free_return:
+  return err;
+}
+
+/* Enumerate all the candidates which the backreference BKREF_NODE can match
+   at BKREF_STR_IDX, and register them by match_ctx_add_entry().
+   Note that we might collect inappropriate candidates here.
+   However, the cost of checking them strictly here is too high, then we
+   delay these checking for prune_impossible_nodes().  */
+
+static reg_errcode_t
+internal_function
+get_subexp (re_match_context_t *mctx, int bkref_node, int bkref_str_idx)
+{
+  const re_dfa_t *const dfa = mctx->dfa;
+  int subexp_num, sub_top_idx;
+  const char *buf = (const char *) re_string_get_buffer (&mctx->input);
+  /* Return if we have already checked BKREF_NODE at BKREF_STR_IDX.  */
+  int cache_idx = search_cur_bkref_entry (mctx, bkref_str_idx);
+  if (cache_idx != -1)
+    {
+      const struct re_backref_cache_entry *entry
+       = mctx->bkref_ents + cache_idx;
+      do
+       if (entry->node == bkref_node)
+         return REG_NOERROR; /* We already checked it.  */
+      while (entry++->more);
+    }
+
+  subexp_num = dfa->nodes[bkref_node].opr.idx;
+
+  /* For each sub expression  */
+  for (sub_top_idx = 0; sub_top_idx < mctx->nsub_tops; ++sub_top_idx)
+    {
+      reg_errcode_t err;
+      re_sub_match_top_t *sub_top = mctx->sub_tops[sub_top_idx];
+      re_sub_match_last_t *sub_last;
+      int sub_last_idx, sl_str, bkref_str_off;
+
+      if (dfa->nodes[sub_top->node].opr.idx != subexp_num)
+       continue; /* It isn't related.  */
+
+      sl_str = sub_top->str_idx;
+      bkref_str_off = bkref_str_idx;
+      /* At first, check the last node of sub expressions we already
+        evaluated.  */
+      for (sub_last_idx = 0; sub_last_idx < sub_top->nlasts; ++sub_last_idx)
+       {
+         int sl_str_diff;
+         sub_last = sub_top->lasts[sub_last_idx];
+         sl_str_diff = sub_last->str_idx - sl_str;
+         /* The matched string by the sub expression match with the substring
+            at the back reference?  */
+         if (sl_str_diff > 0)
+           {
+             if (BE (bkref_str_off + sl_str_diff > mctx->input.valid_len, 0))
+               {
+                 /* Not enough chars for a successful match.  */
+                 if (bkref_str_off + sl_str_diff > mctx->input.len)
+                   break;
+
+                 err = clean_state_log_if_needed (mctx,
+                                                  bkref_str_off
+                                                  + sl_str_diff);
+                 if (BE (err != REG_NOERROR, 0))
+                   return err;
+                 buf = (const char *) re_string_get_buffer (&mctx->input);
+               }
+             if (memcmp (buf + bkref_str_off, buf + sl_str, sl_str_diff) != 0)
+               /* We don't need to search this sub expression any more.  */
+               break;
+           }
+         bkref_str_off += sl_str_diff;
+         sl_str += sl_str_diff;
+         err = get_subexp_sub (mctx, sub_top, sub_last, bkref_node,
+                               bkref_str_idx);
+
+         /* Reload buf, since the preceding call might have reallocated
+            the buffer.  */
+         buf = (const char *) re_string_get_buffer (&mctx->input);
+
+         if (err == REG_NOMATCH)
+           continue;
+         if (BE (err != REG_NOERROR, 0))
+           return err;
+       }
+
+      if (sub_last_idx < sub_top->nlasts)
+       continue;
+      if (sub_last_idx > 0)
+       ++sl_str;
+      /* Then, search for the other last nodes of the sub expression.  */
+      for (; sl_str <= bkref_str_idx; ++sl_str)
+       {
+         int cls_node, sl_str_off;
+         const re_node_set *nodes;
+         sl_str_off = sl_str - sub_top->str_idx;
+         /* The matched string by the sub expression match with the substring
+            at the back reference?  */
+         if (sl_str_off > 0)
+           {
+             if (BE (bkref_str_off >= mctx->input.valid_len, 0))
+               {
+                 /* If we are at the end of the input, we cannot match.  */
+                 if (bkref_str_off >= mctx->input.len)
+                   break;
+
+                 err = extend_buffers (mctx);
+                 if (BE (err != REG_NOERROR, 0))
+                   return err;
+
+                 buf = (const char *) re_string_get_buffer (&mctx->input);
+               }
+             if (buf [bkref_str_off++] != buf[sl_str - 1])
+               break; /* We don't need to search this sub expression
+                         any more.  */
+           }
+         if (mctx->state_log[sl_str] == NULL)
+           continue;
+         /* Does this state have a ')' of the sub expression?  */
+         nodes = &mctx->state_log[sl_str]->nodes;
+         cls_node = find_subexp_node (dfa, nodes, subexp_num,
+                                      OP_CLOSE_SUBEXP);
+         if (cls_node == -1)
+           continue; /* No.  */
+         if (sub_top->path == NULL)
+           {
+             sub_top->path = calloc (sizeof (state_array_t),
+                                     sl_str - sub_top->str_idx + 1);
+             if (sub_top->path == NULL)
+               return REG_ESPACE;
+           }
+         /* Can the OP_OPEN_SUBEXP node arrive the OP_CLOSE_SUBEXP node
+            in the current context?  */
+         err = check_arrival (mctx, sub_top->path, sub_top->node,
+                              sub_top->str_idx, cls_node, sl_str,
+                              OP_CLOSE_SUBEXP);
+         if (err == REG_NOMATCH)
+             continue;
+         if (BE (err != REG_NOERROR, 0))
+             return err;
+         sub_last = match_ctx_add_sublast (sub_top, cls_node, sl_str);
+         if (BE (sub_last == NULL, 0))
+           return REG_ESPACE;
+         err = get_subexp_sub (mctx, sub_top, sub_last, bkref_node,
+                               bkref_str_idx);
+         if (err == REG_NOMATCH)
+           continue;
+       }
+    }
+  return REG_NOERROR;
+}
+
+/* Helper functions for get_subexp().  */
+
+/* Check SUB_LAST can arrive to the back reference BKREF_NODE at BKREF_STR.
+   If it can arrive, register the sub expression expressed with SUB_TOP
+   and SUB_LAST.  */
+
+static reg_errcode_t
+internal_function
+get_subexp_sub (re_match_context_t *mctx, const re_sub_match_top_t *sub_top,
+               re_sub_match_last_t *sub_last, int bkref_node, int bkref_str)
+{
+  reg_errcode_t err;
+  int to_idx;
+  /* Can the subexpression arrive the back reference?  */
+  err = check_arrival (mctx, &sub_last->path, sub_last->node,
+                      sub_last->str_idx, bkref_node, bkref_str,
+                      OP_OPEN_SUBEXP);
+  if (err != REG_NOERROR)
+    return err;
+  err = match_ctx_add_entry (mctx, bkref_node, bkref_str, sub_top->str_idx,
+                            sub_last->str_idx);
+  if (BE (err != REG_NOERROR, 0))
+    return err;
+  to_idx = bkref_str + sub_last->str_idx - sub_top->str_idx;
+  return clean_state_log_if_needed (mctx, to_idx);
+}
+
+/* Find the first node which is '(' or ')' and whose index is SUBEXP_IDX.
+   Search '(' if FL_OPEN, or search ')' otherwise.
+   TODO: This function isn't efficient...
+        Because there might be more than one nodes whose types are
+        OP_OPEN_SUBEXP and whose index is SUBEXP_IDX, we must check all
+        nodes.
+        E.g. RE: (a){2}  */
+
+static int
+internal_function
+find_subexp_node (const re_dfa_t *dfa, const re_node_set *nodes,
+                 int subexp_idx, int type)
+{
+  int cls_idx;
+  for (cls_idx = 0; cls_idx < nodes->nelem; ++cls_idx)
+    {
+      int cls_node = nodes->elems[cls_idx];
+      const re_token_t *node = dfa->nodes + cls_node;
+      if (node->type == type
+         && node->opr.idx == subexp_idx)
+       return cls_node;
+    }
+  return -1;
+}
+
+/* Check whether the node TOP_NODE at TOP_STR can arrive to the node
+   LAST_NODE at LAST_STR.  We record the path onto PATH since it will be
+   heavily reused.
+   Return REG_NOERROR if it can arrive, or REG_NOMATCH otherwise.  */
+
+static reg_errcode_t
+internal_function
+check_arrival (re_match_context_t *mctx, state_array_t *path, int top_node,
+              int top_str, int last_node, int last_str, int type)
+{
+  const re_dfa_t *const dfa = mctx->dfa;
+  reg_errcode_t err = REG_NOERROR;
+  int subexp_num, backup_cur_idx, str_idx, null_cnt;
+  re_dfastate_t *cur_state = NULL;
+  re_node_set *cur_nodes, next_nodes;
+  re_dfastate_t **backup_state_log;
+  unsigned int context;
+
+  subexp_num = dfa->nodes[top_node].opr.idx;
+  /* Extend the buffer if we need.  */
+  if (BE (path->alloc < last_str + mctx->max_mb_elem_len + 1, 0))
+    {
+      re_dfastate_t **new_array;
+      int old_alloc = path->alloc;
+      path->alloc += last_str + mctx->max_mb_elem_len + 1;
+      new_array = re_realloc (path->array, re_dfastate_t *, path->alloc);
+      if (BE (new_array == NULL, 0))
+       {
+         path->alloc = old_alloc;
+         return REG_ESPACE;
+       }
+      path->array = new_array;
+      memset (new_array + old_alloc, '\0',
+             sizeof (re_dfastate_t *) * (path->alloc - old_alloc));
+    }
+
+  str_idx = path->next_idx ? path->next_idx : top_str;
+
+  /* Temporary modify MCTX.  */
+  backup_state_log = mctx->state_log;
+  backup_cur_idx = mctx->input.cur_idx;
+  mctx->state_log = path->array;
+  mctx->input.cur_idx = str_idx;
+
+  /* Setup initial node set.  */
+  context = re_string_context_at (&mctx->input, str_idx - 1, mctx->eflags);
+  if (str_idx == top_str)
+    {
+      err = re_node_set_init_1 (&next_nodes, top_node);
+      if (BE (err != REG_NOERROR, 0))
+       return err;
+      err = check_arrival_expand_ecl (dfa, &next_nodes, subexp_num, type);
+      if (BE (err != REG_NOERROR, 0))
+       {
+         re_node_set_free (&next_nodes);
+         return err;
+       }
+    }
+  else
+    {
+      cur_state = mctx->state_log[str_idx];
+      if (cur_state && cur_state->has_backref)
+       {
+         err = re_node_set_init_copy (&next_nodes, &cur_state->nodes);
+         if (BE (err != REG_NOERROR, 0))
+           return err;
+       }
+      else
+       re_node_set_init_empty (&next_nodes);
+    }
+  if (str_idx == top_str || (cur_state && cur_state->has_backref))
+    {
+      if (next_nodes.nelem)
+       {
+         err = expand_bkref_cache (mctx, &next_nodes, str_idx,
+                                   subexp_num, type);
+         if (BE (err != REG_NOERROR, 0))
+           {
+             re_node_set_free (&next_nodes);
+             return err;
+           }
+       }
+      cur_state = re_acquire_state_context (&err, dfa, &next_nodes, context);
+      if (BE (cur_state == NULL && err != REG_NOERROR, 0))
+       {
+         re_node_set_free (&next_nodes);
+         return err;
+       }
+      mctx->state_log[str_idx] = cur_state;
+    }
+
+  for (null_cnt = 0; str_idx < last_str && null_cnt <= mctx->max_mb_elem_len;)
+    {
+      re_node_set_empty (&next_nodes);
+      if (mctx->state_log[str_idx + 1])
+       {
+         err = re_node_set_merge (&next_nodes,
+                                  &mctx->state_log[str_idx + 1]->nodes);
+         if (BE (err != REG_NOERROR, 0))
+           {
+             re_node_set_free (&next_nodes);
+             return err;
+           }
+       }
+      if (cur_state)
+       {
+         err = check_arrival_add_next_nodes (mctx, str_idx,
+                                             &cur_state->non_eps_nodes,
+                                             &next_nodes);
+         if (BE (err != REG_NOERROR, 0))
+           {
+             re_node_set_free (&next_nodes);
+             return err;
+           }
+       }
+      ++str_idx;
+      if (next_nodes.nelem)
+       {
+         err = check_arrival_expand_ecl (dfa, &next_nodes, subexp_num, type);
+         if (BE (err != REG_NOERROR, 0))
+           {
+             re_node_set_free (&next_nodes);
+             return err;
+           }
+         err = expand_bkref_cache (mctx, &next_nodes, str_idx,
+                                   subexp_num, type);
+         if (BE (err != REG_NOERROR, 0))
+           {
+             re_node_set_free (&next_nodes);
+             return err;
+           }
+       }
+      context = re_string_context_at (&mctx->input, str_idx - 1, mctx->eflags);
+      cur_state = re_acquire_state_context (&err, dfa, &next_nodes, context);
+      if (BE (cur_state == NULL && err != REG_NOERROR, 0))
+       {
+         re_node_set_free (&next_nodes);
+         return err;
+       }
+      mctx->state_log[str_idx] = cur_state;
+      null_cnt = cur_state == NULL ? null_cnt + 1 : 0;
+    }
+  re_node_set_free (&next_nodes);
+  cur_nodes = (mctx->state_log[last_str] == NULL ? NULL
+              : &mctx->state_log[last_str]->nodes);
+  path->next_idx = str_idx;
+
+  /* Fix MCTX.  */
+  mctx->state_log = backup_state_log;
+  mctx->input.cur_idx = backup_cur_idx;
+
+  /* Then check the current node set has the node LAST_NODE.  */
+  if (cur_nodes != NULL && re_node_set_contains (cur_nodes, last_node))
+    return REG_NOERROR;
+
+  return REG_NOMATCH;
+}
+
+/* Helper functions for check_arrival.  */
+
+/* Calculate the destination nodes of CUR_NODES at STR_IDX, and append them
+   to NEXT_NODES.
+   TODO: This function is similar to the functions transit_state*(),
+        however this function has many additional works.
+        Can't we unify them?  */
+
+static reg_errcode_t
+internal_function
+check_arrival_add_next_nodes (re_match_context_t *mctx, int str_idx,
+                             re_node_set *cur_nodes, re_node_set *next_nodes)
+{
+  const re_dfa_t *const dfa = mctx->dfa;
+  int result;
+  int cur_idx;
+  reg_errcode_t err = REG_NOERROR;
+  re_node_set union_set;
+  re_node_set_init_empty (&union_set);
+  for (cur_idx = 0; cur_idx < cur_nodes->nelem; ++cur_idx)
+    {
+      int naccepted = 0;
+      int cur_node = cur_nodes->elems[cur_idx];
+#ifdef DEBUG
+      re_token_type_t type = dfa->nodes[cur_node].type;
+      assert (!IS_EPSILON_NODE (type));
+#endif
+#ifdef RE_ENABLE_I18N
+      /* If the node may accept `multi byte'.  */
+      if (dfa->nodes[cur_node].accept_mb)
+       {
+         naccepted = check_node_accept_bytes (dfa, cur_node, &mctx->input,
+                                              str_idx);
+         if (naccepted > 1)
+           {
+             re_dfastate_t *dest_state;
+             int next_node = dfa->nexts[cur_node];
+             int next_idx = str_idx + naccepted;
+             dest_state = mctx->state_log[next_idx];
+             re_node_set_empty (&union_set);
+             if (dest_state)
+               {
+                 err = re_node_set_merge (&union_set, &dest_state->nodes);
+                 if (BE (err != REG_NOERROR, 0))
+                   {
+                     re_node_set_free (&union_set);
+                     return err;
+                   }
+               }
+             result = re_node_set_insert (&union_set, next_node);
+             if (BE (result < 0, 0))
+               {
+                 re_node_set_free (&union_set);
+                 return REG_ESPACE;
+               }
+             mctx->state_log[next_idx] = re_acquire_state (&err, dfa,
+                                                           &union_set);
+             if (BE (mctx->state_log[next_idx] == NULL
+                     && err != REG_NOERROR, 0))
+               {
+                 re_node_set_free (&union_set);
+                 return err;
+               }
+           }
+       }
+#endif /* RE_ENABLE_I18N */
+      if (naccepted
+         || check_node_accept (mctx, dfa->nodes + cur_node, str_idx))
+       {
+         result = re_node_set_insert (next_nodes, dfa->nexts[cur_node]);
+         if (BE (result < 0, 0))
+           {
+             re_node_set_free (&union_set);
+             return REG_ESPACE;
+           }
+       }
+    }
+  re_node_set_free (&union_set);
+  return REG_NOERROR;
+}
+
+/* For all the nodes in CUR_NODES, add the epsilon closures of them to
+   CUR_NODES, however exclude the nodes which are:
+    - inside the sub expression whose number is EX_SUBEXP, if FL_OPEN.
+    - out of the sub expression whose number is EX_SUBEXP, if !FL_OPEN.
+*/
+
+static reg_errcode_t
+internal_function
+check_arrival_expand_ecl (const re_dfa_t *dfa, re_node_set *cur_nodes,
+                         int ex_subexp, int type)
+{
+  reg_errcode_t err;
+  int idx, outside_node;
+  re_node_set new_nodes;
+#ifdef DEBUG
+  assert (cur_nodes->nelem);
+#endif
+  err = re_node_set_alloc (&new_nodes, cur_nodes->nelem);
+  if (BE (err != REG_NOERROR, 0))
+    return err;
+  /* Create a new node set NEW_NODES with the nodes which are epsilon
+     closures of the node in CUR_NODES.  */
+
+  for (idx = 0; idx < cur_nodes->nelem; ++idx)
+    {
+      int cur_node = cur_nodes->elems[idx];
+      const re_node_set *eclosure = dfa->eclosures + cur_node;
+      outside_node = find_subexp_node (dfa, eclosure, ex_subexp, type);
+      if (outside_node == -1)
+       {
+         /* There are no problematic nodes, just merge them.  */
+         err = re_node_set_merge (&new_nodes, eclosure);
+         if (BE (err != REG_NOERROR, 0))
+           {
+             re_node_set_free (&new_nodes);
+             return err;
+           }
+       }
+      else
+       {
+         /* There are problematic nodes, re-calculate incrementally.  */
+         err = check_arrival_expand_ecl_sub (dfa, &new_nodes, cur_node,
+                                             ex_subexp, type);
+         if (BE (err != REG_NOERROR, 0))
+           {
+             re_node_set_free (&new_nodes);
+             return err;
+           }
+       }
+    }
+  re_node_set_free (cur_nodes);
+  *cur_nodes = new_nodes;
+  return REG_NOERROR;
+}
+
+/* Helper function for check_arrival_expand_ecl.
+   Check incrementally the epsilon closure of TARGET, and if it isn't
+   problematic append it to DST_NODES.  */
+
+static reg_errcode_t
+internal_function
+check_arrival_expand_ecl_sub (const re_dfa_t *dfa, re_node_set *dst_nodes,
+                             int target, int ex_subexp, int type)
+{
+  int cur_node;
+  for (cur_node = target; !re_node_set_contains (dst_nodes, cur_node);)
+    {
+      int err;
+
+      if (dfa->nodes[cur_node].type == type
+         && dfa->nodes[cur_node].opr.idx == ex_subexp)
+       {
+         if (type == OP_CLOSE_SUBEXP)
+           {
+             err = re_node_set_insert (dst_nodes, cur_node);
+             if (BE (err == -1, 0))
+               return REG_ESPACE;
+           }
+         break;
+       }
+      err = re_node_set_insert (dst_nodes, cur_node);
+      if (BE (err == -1, 0))
+       return REG_ESPACE;
+      if (dfa->edests[cur_node].nelem == 0)
+       break;
+      if (dfa->edests[cur_node].nelem == 2)
+       {
+         err = check_arrival_expand_ecl_sub (dfa, dst_nodes,
+                                             dfa->edests[cur_node].elems[1],
+                                             ex_subexp, type);
+         if (BE (err != REG_NOERROR, 0))
+           return err;
+       }
+      cur_node = dfa->edests[cur_node].elems[0];
+    }
+  return REG_NOERROR;
+}
+
+
+/* For all the back references in the current state, calculate the
+   destination of the back references by the appropriate entry
+   in MCTX->BKREF_ENTS.  */
+
+static reg_errcode_t
+internal_function
+expand_bkref_cache (re_match_context_t *mctx, re_node_set *cur_nodes,
+                   int cur_str, int subexp_num, int type)
+{
+  const re_dfa_t *const dfa = mctx->dfa;
+  reg_errcode_t err;
+  int cache_idx_start = search_cur_bkref_entry (mctx, cur_str);
+  struct re_backref_cache_entry *ent;
+
+  if (cache_idx_start == -1)
+    return REG_NOERROR;
+
+ restart:
+  ent = mctx->bkref_ents + cache_idx_start;
+  do
+    {
+      int to_idx, next_node;
+
+      /* Is this entry ENT is appropriate?  */
+      if (!re_node_set_contains (cur_nodes, ent->node))
+       continue; /* No.  */
+
+      to_idx = cur_str + ent->subexp_to - ent->subexp_from;
+      /* Calculate the destination of the back reference, and append it
+        to MCTX->STATE_LOG.  */
+      if (to_idx == cur_str)
+       {
+         /* The backreference did epsilon transit, we must re-check all the
+            node in the current state.  */
+         re_node_set new_dests;
+         reg_errcode_t err2, err3;
+         next_node = dfa->edests[ent->node].elems[0];
+         if (re_node_set_contains (cur_nodes, next_node))
+           continue;
+         err = re_node_set_init_1 (&new_dests, next_node);
+         err2 = check_arrival_expand_ecl (dfa, &new_dests, subexp_num, type);
+         err3 = re_node_set_merge (cur_nodes, &new_dests);
+         re_node_set_free (&new_dests);
+         if (BE (err != REG_NOERROR || err2 != REG_NOERROR
+                 || err3 != REG_NOERROR, 0))
+           {
+             err = (err != REG_NOERROR ? err
+                    : (err2 != REG_NOERROR ? err2 : err3));
+             return err;
+           }
+         /* TODO: It is still inefficient...  */
+         goto restart;
+       }
+      else
+       {
+         re_node_set union_set;
+         next_node = dfa->nexts[ent->node];
+         if (mctx->state_log[to_idx])
+           {
+             int ret;
+             if (re_node_set_contains (&mctx->state_log[to_idx]->nodes,
+                                       next_node))
+               continue;
+             err = re_node_set_init_copy (&union_set,
+                                          &mctx->state_log[to_idx]->nodes);
+             ret = re_node_set_insert (&union_set, next_node);
+             if (BE (err != REG_NOERROR || ret < 0, 0))
+               {
+                 re_node_set_free (&union_set);
+                 err = err != REG_NOERROR ? err : REG_ESPACE;
+                 return err;
+               }
+           }
+         else
+           {
+             err = re_node_set_init_1 (&union_set, next_node);
+             if (BE (err != REG_NOERROR, 0))
+               return err;
+           }
+         mctx->state_log[to_idx] = re_acquire_state (&err, dfa, &union_set);
+         re_node_set_free (&union_set);
+         if (BE (mctx->state_log[to_idx] == NULL
+                 && err != REG_NOERROR, 0))
+           return err;
+       }
+    }
+  while (ent++->more);
+  return REG_NOERROR;
+}
+
+/* Build transition table for the state.
+   Return 1 if succeeded, otherwise return NULL.  */
+
+static int
+internal_function
+build_trtable (const re_dfa_t *dfa, re_dfastate_t *state)
+{
+  reg_errcode_t err;
+  int i, j, ch, need_word_trtable = 0;
+  bitset_word_t elem, mask;
+  bool dests_node_malloced = false;
+  bool dest_states_malloced = false;
+  int ndests; /* Number of the destination states from `state'.  */
+  re_dfastate_t **trtable;
+  re_dfastate_t **dest_states = NULL, **dest_states_word, **dest_states_nl;
+  re_node_set follows, *dests_node;
+  bitset_t *dests_ch;
+  bitset_t acceptable;
+
+  struct dests_alloc
+  {
+    re_node_set dests_node[SBC_MAX];
+    bitset_t dests_ch[SBC_MAX];
+  } *dests_alloc;
+
+  /* We build DFA states which corresponds to the destination nodes
+     from `state'.  `dests_node[i]' represents the nodes which i-th
+     destination state contains, and `dests_ch[i]' represents the
+     characters which i-th destination state accepts.  */
+#ifdef HAVE_ALLOCA
+  if (__libc_use_alloca (sizeof (struct dests_alloc)))
+    dests_alloc = (struct dests_alloc *) alloca (sizeof (struct dests_alloc));
+  else
+#endif
+    {
+      dests_alloc = re_malloc (struct dests_alloc, 1);
+      if (BE (dests_alloc == NULL, 0))
+       return 0;
+      dests_node_malloced = true;
+    }
+  dests_node = dests_alloc->dests_node;
+  dests_ch = dests_alloc->dests_ch;
+
+  /* Initialize transiton table.  */
+  state->word_trtable = state->trtable = NULL;
+
+  /* At first, group all nodes belonging to `state' into several
+     destinations.  */
+  ndests = group_nodes_into_DFAstates (dfa, state, dests_node, dests_ch);
+  if (BE (ndests <= 0, 0))
+    {
+      if (dests_node_malloced)
+       free (dests_alloc);
+      /* Return 0 in case of an error, 1 otherwise.  */
+      if (ndests == 0)
+       {
+         state->trtable = (re_dfastate_t **)
+           calloc (sizeof (re_dfastate_t *), SBC_MAX);
+         return 1;
+       }
+      return 0;
+    }
+
+  err = re_node_set_alloc (&follows, ndests + 1);
+  if (BE (err != REG_NOERROR, 0))
+    goto out_free;
+
+  /* Avoid arithmetic overflow in size calculation.  */
+  if (BE ((((SIZE_MAX - (sizeof (re_node_set) + sizeof (bitset_t)) * SBC_MAX)
+           / (3 * sizeof (re_dfastate_t *)))
+          < ndests),
+         0))
+    goto out_free;
+
+#ifdef HAVE_ALLOCA
+  if (__libc_use_alloca ((sizeof (re_node_set) + sizeof (bitset_t)) * SBC_MAX
+                        + ndests * 3 * sizeof (re_dfastate_t *)))
+    dest_states = (re_dfastate_t **)
+      alloca (ndests * 3 * sizeof (re_dfastate_t *));
+  else
+#endif
+    {
+      dest_states = (re_dfastate_t **)
+       malloc (ndests * 3 * sizeof (re_dfastate_t *));
+      if (BE (dest_states == NULL, 0))
+       {
+out_free:
+         if (dest_states_malloced)
+           free (dest_states);
+         re_node_set_free (&follows);
+         for (i = 0; i < ndests; ++i)
+           re_node_set_free (dests_node + i);
+         if (dests_node_malloced)
+           free (dests_alloc);
+         return 0;
+       }
+      dest_states_malloced = true;
+    }
+  dest_states_word = dest_states + ndests;
+  dest_states_nl = dest_states_word + ndests;
+  bitset_empty (acceptable);
+
+  /* Then build the states for all destinations.  */
+  for (i = 0; i < ndests; ++i)
+    {
+      int next_node;
+      re_node_set_empty (&follows);
+      /* Merge the follows of this destination states.  */
+      for (j = 0; j < dests_node[i].nelem; ++j)
+       {
+         next_node = dfa->nexts[dests_node[i].elems[j]];
+         if (next_node != -1)
+           {
+             err = re_node_set_merge (&follows, dfa->eclosures + next_node);
+             if (BE (err != REG_NOERROR, 0))
+               goto out_free;
+           }
+       }
+      dest_states[i] = re_acquire_state_context (&err, dfa, &follows, 0);
+      if (BE (dest_states[i] == NULL && err != REG_NOERROR, 0))
+       goto out_free;
+      /* If the new state has context constraint,
+        build appropriate states for these contexts.  */
+      if (dest_states[i]->has_constraint)
+       {
+         dest_states_word[i] = re_acquire_state_context (&err, dfa, &follows,
+                                                         CONTEXT_WORD);
+         if (BE (dest_states_word[i] == NULL && err != REG_NOERROR, 0))
+           goto out_free;
+
+         if (dest_states[i] != dest_states_word[i] && dfa->mb_cur_max > 1)
+           need_word_trtable = 1;
+
+         dest_states_nl[i] = re_acquire_state_context (&err, dfa, &follows,
+                                                       CONTEXT_NEWLINE);
+         if (BE (dest_states_nl[i] == NULL && err != REG_NOERROR, 0))
+           goto out_free;
+       }
+      else
+       {
+         dest_states_word[i] = dest_states[i];
+         dest_states_nl[i] = dest_states[i];
+       }
+      bitset_merge (acceptable, dests_ch[i]);
+    }
+
+  if (!BE (need_word_trtable, 0))
+    {
+      /* We don't care about whether the following character is a word
+        character, or we are in a single-byte character set so we can
+        discern by looking at the character code: allocate a
+        256-entry transition table.  */
+      trtable = state->trtable =
+       (re_dfastate_t **) calloc (sizeof (re_dfastate_t *), SBC_MAX);
+      if (BE (trtable == NULL, 0))
+       goto out_free;
+
+      /* For all characters ch...:  */
+      for (i = 0; i < BITSET_WORDS; ++i)
+       for (ch = i * BITSET_WORD_BITS, elem = acceptable[i], mask = 1;
+            elem;
+            mask <<= 1, elem >>= 1, ++ch)
+         if (BE (elem & 1, 0))
+           {
+             /* There must be exactly one destination which accepts
+                character ch.  See group_nodes_into_DFAstates.  */
+             for (j = 0; (dests_ch[j][i] & mask) == 0; ++j)
+               ;
+
+             /* j-th destination accepts the word character ch.  */
+             if (dfa->word_char[i] & mask)
+               trtable[ch] = dest_states_word[j];
+             else
+               trtable[ch] = dest_states[j];
+           }
+    }
+  else
+    {
+      /* We care about whether the following character is a word
+        character, and we are in a multi-byte character set: discern
+        by looking at the character code: build two 256-entry
+        transition tables, one starting at trtable[0] and one
+        starting at trtable[SBC_MAX].  */
+      trtable = state->word_trtable =
+       (re_dfastate_t **) calloc (sizeof (re_dfastate_t *), 2 * SBC_MAX);
+      if (BE (trtable == NULL, 0))
+       goto out_free;
+
+      /* For all characters ch...:  */
+      for (i = 0; i < BITSET_WORDS; ++i)
+       for (ch = i * BITSET_WORD_BITS, elem = acceptable[i], mask = 1;
+            elem;
+            mask <<= 1, elem >>= 1, ++ch)
+         if (BE (elem & 1, 0))
+           {
+             /* There must be exactly one destination which accepts
+                character ch.  See group_nodes_into_DFAstates.  */
+             for (j = 0; (dests_ch[j][i] & mask) == 0; ++j)
+               ;
+
+             /* j-th destination accepts the word character ch.  */
+             trtable[ch] = dest_states[j];
+             trtable[ch + SBC_MAX] = dest_states_word[j];
+           }
+    }
+
+  /* new line */
+  if (bitset_contain (acceptable, NEWLINE_CHAR))
+    {
+      /* The current state accepts newline character.  */
+      for (j = 0; j < ndests; ++j)
+       if (bitset_contain (dests_ch[j], NEWLINE_CHAR))
+         {
+           /* k-th destination accepts newline character.  */
+           trtable[NEWLINE_CHAR] = dest_states_nl[j];
+           if (need_word_trtable)
+             trtable[NEWLINE_CHAR + SBC_MAX] = dest_states_nl[j];
+           /* There must be only one destination which accepts
+              newline.  See group_nodes_into_DFAstates.  */
+           break;
+         }
+    }
+
+  if (dest_states_malloced)
+    free (dest_states);
+
+  re_node_set_free (&follows);
+  for (i = 0; i < ndests; ++i)
+    re_node_set_free (dests_node + i);
+
+  if (dests_node_malloced)
+    free (dests_alloc);
+
+  return 1;
+}
+
+/* Group all nodes belonging to STATE into several destinations.
+   Then for all destinations, set the nodes belonging to the destination
+   to DESTS_NODE[i] and set the characters accepted by the destination
+   to DEST_CH[i].  This function return the number of destinations.  */
+
+static int
+internal_function
+group_nodes_into_DFAstates (const re_dfa_t *dfa, const re_dfastate_t *state,
+                           re_node_set *dests_node, bitset_t *dests_ch)
+{
+  reg_errcode_t err;
+  int result;
+  int i, j, k;
+  int ndests; /* Number of the destinations from `state'.  */
+  bitset_t accepts; /* Characters a node can accept.  */
+  const re_node_set *cur_nodes = &state->nodes;
+  bitset_empty (accepts);
+  ndests = 0;
+
+  /* For all the nodes belonging to `state',  */
+  for (i = 0; i < cur_nodes->nelem; ++i)
+    {
+      re_token_t *node = &dfa->nodes[cur_nodes->elems[i]];
+      re_token_type_t type = node->type;
+      unsigned int constraint = node->constraint;
+
+      /* Enumerate all single byte character this node can accept.  */
+      if (type == CHARACTER)
+       bitset_set (accepts, node->opr.c);
+      else if (type == SIMPLE_BRACKET)
+       {
+         bitset_merge (accepts, node->opr.sbcset);
+       }
+      else if (type == OP_PERIOD)
+       {
+#ifdef RE_ENABLE_I18N
+         if (dfa->mb_cur_max > 1)
+           bitset_merge (accepts, dfa->sb_char);
+         else
+#endif
+           bitset_set_all (accepts);
+         if (!(dfa->syntax & RE_DOT_NEWLINE))
+           bitset_clear (accepts, '\n');
+         if (dfa->syntax & RE_DOT_NOT_NULL)
+           bitset_clear (accepts, '\0');
+       }
+#ifdef RE_ENABLE_I18N
+      else if (type == OP_UTF8_PERIOD)
+       {
+         memset (accepts, '\xff', sizeof (bitset_t) / 2);
+         if (!(dfa->syntax & RE_DOT_NEWLINE))
+           bitset_clear (accepts, '\n');
+         if (dfa->syntax & RE_DOT_NOT_NULL)
+           bitset_clear (accepts, '\0');
+       }
+#endif
+      else
+       continue;
+
+      /* Check the `accepts' and sift the characters which are not
+        match it the context.  */
+      if (constraint)
+       {
+         if (constraint & NEXT_NEWLINE_CONSTRAINT)
+           {
+             bool accepts_newline = bitset_contain (accepts, NEWLINE_CHAR);
+             bitset_empty (accepts);
+             if (accepts_newline)
+               bitset_set (accepts, NEWLINE_CHAR);
+             else
+               continue;
+           }
+         if (constraint & NEXT_ENDBUF_CONSTRAINT)
+           {
+             bitset_empty (accepts);
+             continue;
+           }
+
+         if (constraint & NEXT_WORD_CONSTRAINT)
+           {
+             bitset_word_t any_set = 0;
+             if (type == CHARACTER && !node->word_char)
+               {
+                 bitset_empty (accepts);
+                 continue;
+               }
+#ifdef RE_ENABLE_I18N
+             if (dfa->mb_cur_max > 1)
+               for (j = 0; j < BITSET_WORDS; ++j)
+                 any_set |= (accepts[j] &= (dfa->word_char[j] | ~dfa->sb_char[j]));
+             else
+#endif
+               for (j = 0; j < BITSET_WORDS; ++j)
+                 any_set |= (accepts[j] &= dfa->word_char[j]);
+             if (!any_set)
+               continue;
+           }
+         if (constraint & NEXT_NOTWORD_CONSTRAINT)
+           {
+             bitset_word_t any_set = 0;
+             if (type == CHARACTER && node->word_char)
+               {
+                 bitset_empty (accepts);
+                 continue;
+               }
+#ifdef RE_ENABLE_I18N
+             if (dfa->mb_cur_max > 1)
+               for (j = 0; j < BITSET_WORDS; ++j)
+                 any_set |= (accepts[j] &= ~(dfa->word_char[j] & dfa->sb_char[j]));
+             else
+#endif
+               for (j = 0; j < BITSET_WORDS; ++j)
+                 any_set |= (accepts[j] &= ~dfa->word_char[j]);
+             if (!any_set)
+               continue;
+           }
+       }
+
+      /* Then divide `accepts' into DFA states, or create a new
+        state.  Above, we make sure that accepts is not empty.  */
+      for (j = 0; j < ndests; ++j)
+       {
+         bitset_t intersec; /* Intersection sets, see below.  */
+         bitset_t remains;
+         /* Flags, see below.  */
+         bitset_word_t has_intersec, not_subset, not_consumed;
+
+         /* Optimization, skip if this state doesn't accept the character.  */
+         if (type == CHARACTER && !bitset_contain (dests_ch[j], node->opr.c))
+           continue;
+
+         /* Enumerate the intersection set of this state and `accepts'.  */
+         has_intersec = 0;
+         for (k = 0; k < BITSET_WORDS; ++k)
+           has_intersec |= intersec[k] = accepts[k] & dests_ch[j][k];
+         /* And skip if the intersection set is empty.  */
+         if (!has_intersec)
+           continue;
+
+         /* Then check if this state is a subset of `accepts'.  */
+         not_subset = not_consumed = 0;
+         for (k = 0; k < BITSET_WORDS; ++k)
+           {
+             not_subset |= remains[k] = ~accepts[k] & dests_ch[j][k];
+             not_consumed |= accepts[k] = accepts[k] & ~dests_ch[j][k];
+           }
+
+         /* If this state isn't a subset of `accepts', create a
+            new group state, which has the `remains'. */
+         if (not_subset)
+           {
+             bitset_copy (dests_ch[ndests], remains);
+             bitset_copy (dests_ch[j], intersec);
+             err = re_node_set_init_copy (dests_node + ndests, &dests_node[j]);
+             if (BE (err != REG_NOERROR, 0))
+               goto error_return;
+             ++ndests;
+           }
+
+         /* Put the position in the current group. */
+         result = re_node_set_insert (&dests_node[j], cur_nodes->elems[i]);
+         if (BE (result < 0, 0))
+           goto error_return;
+
+         /* If all characters are consumed, go to next node. */
+         if (!not_consumed)
+           break;
+       }
+      /* Some characters remain, create a new group. */
+      if (j == ndests)
+       {
+         bitset_copy (dests_ch[ndests], accepts);
+         err = re_node_set_init_1 (dests_node + ndests, cur_nodes->elems[i]);
+         if (BE (err != REG_NOERROR, 0))
+           goto error_return;
+         ++ndests;
+         bitset_empty (accepts);
+       }
+    }
+  return ndests;
+ error_return:
+  for (j = 0; j < ndests; ++j)
+    re_node_set_free (dests_node + j);
+  return -1;
+}
+
+#ifdef RE_ENABLE_I18N
+/* Check how many bytes the node `dfa->nodes[node_idx]' accepts.
+   Return the number of the bytes the node accepts.
+   STR_IDX is the current index of the input string.
+
+   This function handles the nodes which can accept one character, or
+   one collating element like '.', '[a-z]', opposite to the other nodes
+   can only accept one byte.  */
+
+static int
+internal_function
+check_node_accept_bytes (const re_dfa_t *dfa, int node_idx,
+                        const re_string_t *input, int str_idx)
+{
+  const re_token_t *node = dfa->nodes + node_idx;
+  int char_len, elem_len;
+  int i;
+  wint_t wc;
+
+  if (BE (node->type == OP_UTF8_PERIOD, 0))
+    {
+      unsigned char c = re_string_byte_at (input, str_idx), d;
+      if (BE (c < 0xc2, 1))
+       return 0;
+
+      if (str_idx + 2 > input->len)
+       return 0;
+
+      d = re_string_byte_at (input, str_idx + 1);
+      if (c < 0xe0)
+       return (d < 0x80 || d > 0xbf) ? 0 : 2;
+      else if (c < 0xf0)
+       {
+         char_len = 3;
+         if (c == 0xe0 && d < 0xa0)
+           return 0;
+       }
+      else if (c < 0xf8)
+       {
+         char_len = 4;
+         if (c == 0xf0 && d < 0x90)
+           return 0;
+       }
+      else if (c < 0xfc)
+       {
+         char_len = 5;
+         if (c == 0xf8 && d < 0x88)
+           return 0;
+       }
+      else if (c < 0xfe)
+       {
+         char_len = 6;
+         if (c == 0xfc && d < 0x84)
+           return 0;
+       }
+      else
+       return 0;
+
+      if (str_idx + char_len > input->len)
+       return 0;
+
+      for (i = 1; i < char_len; ++i)
+       {
+         d = re_string_byte_at (input, str_idx + i);
+         if (d < 0x80 || d > 0xbf)
+           return 0;
+       }
+      return char_len;
+    }
+
+  char_len = re_string_char_size_at (input, str_idx);
+  if (node->type == OP_PERIOD)
+    {
+      if (char_len <= 1)
+       return 0;
+      /* FIXME: I don't think this if is needed, as both '\n'
+        and '\0' are char_len == 1.  */
+      /* '.' accepts any one character except the following two cases.  */
+      if ((!(dfa->syntax & RE_DOT_NEWLINE) &&
+          re_string_byte_at (input, str_idx) == '\n') ||
+         ((dfa->syntax & RE_DOT_NOT_NULL) &&
+          re_string_byte_at (input, str_idx) == '\0'))
+       return 0;
+      return char_len;
+    }
+
+  elem_len = re_string_elem_size_at (input, str_idx);
+  wc = __btowc(*(input->mbs+str_idx));
+  if (((elem_len <= 1 && char_len <= 1) || char_len == 0) && (wc != WEOF && wc < SBC_MAX))
+    return 0;
+
+  if (node->type == COMPLEX_BRACKET)
+    {
+      const re_charset_t *cset = node->opr.mbcset;
+# ifdef _LIBC
+      const unsigned char *pin
+       = ((const unsigned char *) re_string_get_buffer (input) + str_idx);
+      int j;
+      uint32_t nrules;
+# endif /* _LIBC */
+      int match_len = 0;
+      wchar_t wc = ((cset->nranges || cset->nchar_classes || cset->nmbchars)
+                   ? re_string_wchar_at (input, str_idx) : 0);
+
+      /* match with multibyte character?  */
+      for (i = 0; i < cset->nmbchars; ++i)
+       if (wc == cset->mbchars[i])
+         {
+           match_len = char_len;
+           goto check_node_accept_bytes_match;
+         }
+      /* match with character_class?  */
+      for (i = 0; i < cset->nchar_classes; ++i)
+       {
+         wctype_t wt = cset->char_classes[i];
+         if (__iswctype (wc, wt))
+           {
+             match_len = char_len;
+             goto check_node_accept_bytes_match;
+           }
+       }
+
+# ifdef _LIBC
+      nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
+      if (nrules != 0)
+       {
+         unsigned int in_collseq = 0;
+         const int32_t *table, *indirect;
+         const unsigned char *weights, *extra;
+         const char *collseqwc;
+         /* This #include defines a local function!  */
+#  include <locale/weight.h>
+
+         /* match with collating_symbol?  */
+         if (cset->ncoll_syms)
+           extra = (const unsigned char *)
+             _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
+         for (i = 0; i < cset->ncoll_syms; ++i)
+           {
+             const unsigned char *coll_sym = extra + cset->coll_syms[i];
+             /* Compare the length of input collating element and
+                the length of current collating element.  */
+             if (*coll_sym != elem_len)
+               continue;
+             /* Compare each bytes.  */
+             for (j = 0; j < *coll_sym; j++)
+               if (pin[j] != coll_sym[1 + j])
+                 break;
+             if (j == *coll_sym)
+               {
+                 /* Match if every bytes is equal.  */
+                 match_len = j;
+                 goto check_node_accept_bytes_match;
+               }
+           }
+
+         if (cset->nranges)
+           {
+             if (elem_len <= char_len)
+               {
+                 collseqwc = _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQWC);
+                 in_collseq = __collseq_table_lookup (collseqwc, wc);
+               }
+             else
+               in_collseq = find_collation_sequence_value (pin, elem_len);
+           }
+         /* match with range expression?  */
+         for (i = 0; i < cset->nranges; ++i)
+           if (cset->range_starts[i] <= in_collseq
+               && in_collseq <= cset->range_ends[i])
+             {
+               match_len = elem_len;
+               goto check_node_accept_bytes_match;
+             }
+
+         /* match with equivalence_class?  */
+         if (cset->nequiv_classes)
+           {
+             const unsigned char *cp = pin;
+             table = (const int32_t *)
+               _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
+             weights = (const unsigned char *)
+               _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB);
+             extra = (const unsigned char *)
+               _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB);
+             indirect = (const int32_t *)
+               _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB);
+             int32_t idx = findidx (&cp);
+             if (idx > 0)
+               for (i = 0; i < cset->nequiv_classes; ++i)
+                 {
+                   int32_t equiv_class_idx = cset->equiv_classes[i];
+                   size_t weight_len = weights[idx & 0xffffff];
+                   if (weight_len == weights[equiv_class_idx & 0xffffff]
+                       && (idx >> 24) == (equiv_class_idx >> 24))
+                     {
+                       int cnt = 0;
+
+                       idx &= 0xffffff;
+                       equiv_class_idx &= 0xffffff;
+
+                       while (cnt <= weight_len
+                              && (weights[equiv_class_idx + 1 + cnt]
+                                  == weights[idx + 1 + cnt]))
+                         ++cnt;
+                       if (cnt > weight_len)
+                         {
+                           match_len = elem_len;
+                           goto check_node_accept_bytes_match;
+                         }
+                     }
+                 }
+           }
+       }
+      else
+# endif /* _LIBC */
+       {
+         /* match with range expression?  */
+#if __GNUC__ >= 2
+         wchar_t cmp_buf[] = {L'\0', L'\0', wc, L'\0', L'\0', L'\0'};
+#else
+         wchar_t cmp_buf[] = {L'\0', L'\0', L'\0', L'\0', L'\0', L'\0'};
+         cmp_buf[2] = wc;
+#endif
+         for (i = 0; i < cset->nranges; ++i)
+           {
+             cmp_buf[0] = cset->range_starts[i];
+             cmp_buf[4] = cset->range_ends[i];
+             if (wcscoll (cmp_buf, cmp_buf + 2) <= 0
+                 && wcscoll (cmp_buf + 2, cmp_buf + 4) <= 0)
+               {
+                 match_len = char_len;
+                 goto check_node_accept_bytes_match;
+               }
+           }
+       }
+    check_node_accept_bytes_match:
+      if (!cset->non_match)
+       return match_len;
+      else
+       {
+         if (match_len > 0)
+           return 0;
+         else
+           return (elem_len > char_len) ? elem_len : char_len;
+       }
+    }
+  return 0;
+}
+
+# ifdef _LIBC
+static unsigned int
+internal_function
+find_collation_sequence_value (const unsigned char *mbs, size_t mbs_len)
+{
+  uint32_t nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
+  if (nrules == 0)
+    {
+      if (mbs_len == 1)
+       {
+         /* No valid character.  Match it as a single byte character.  */
+         const unsigned char *collseq = (const unsigned char *)
+           _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQMB);
+         return collseq[mbs[0]];
+       }
+      return UINT_MAX;
+    }
+  else
+    {
+      int32_t idx;
+      const unsigned char *extra = (const unsigned char *)
+       _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
+      int32_t extrasize = (const unsigned char *)
+       _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB + 1) - extra;
+
+      for (idx = 0; idx < extrasize;)
+       {
+         int mbs_cnt, found = 0;
+         int32_t elem_mbs_len;
+         /* Skip the name of collating element name.  */
+         idx = idx + extra[idx] + 1;
+         elem_mbs_len = extra[idx++];
+         if (mbs_len == elem_mbs_len)
+           {
+             for (mbs_cnt = 0; mbs_cnt < elem_mbs_len; ++mbs_cnt)
+               if (extra[idx + mbs_cnt] != mbs[mbs_cnt])
+                 break;
+             if (mbs_cnt == elem_mbs_len)
+               /* Found the entry.  */
+               found = 1;
+           }
+         /* Skip the byte sequence of the collating element.  */
+         idx += elem_mbs_len;
+         /* Adjust for the alignment.  */
+         idx = (idx + 3) & ~3;
+         /* Skip the collation sequence value.  */
+         idx += sizeof (uint32_t);
+         /* Skip the wide char sequence of the collating element.  */
+         idx = idx + sizeof (uint32_t) * (extra[idx] + 1);
+         /* If we found the entry, return the sequence value.  */
+         if (found)
+           return *(uint32_t *) (extra + idx);
+         /* Skip the collation sequence value.  */
+         idx += sizeof (uint32_t);
+       }
+      return UINT_MAX;
+    }
+}
+# endif /* _LIBC */
+#endif /* RE_ENABLE_I18N */
+
+/* Check whether the node accepts the byte which is IDX-th
+   byte of the INPUT.  */
+
+static int
+internal_function
+check_node_accept (const re_match_context_t *mctx, const re_token_t *node,
+                  int idx)
+{
+  unsigned char ch;
+  ch = re_string_byte_at (&mctx->input, idx);
+  switch (node->type)
+    {
+    case CHARACTER:
+      if (node->opr.c != ch)
+       return 0;
+      break;
+
+    case SIMPLE_BRACKET:
+      if (!bitset_contain (node->opr.sbcset, ch))
+       return 0;
+      break;
+
+#ifdef RE_ENABLE_I18N
+    case OP_UTF8_PERIOD:
+      if (ch >= 0x80)
+       return 0;
+      /* FALLTHROUGH */
+#endif
+    case OP_PERIOD:
+      if ((ch == '\n' && !(mctx->dfa->syntax & RE_DOT_NEWLINE))
+         || (ch == '\0' && (mctx->dfa->syntax & RE_DOT_NOT_NULL)))
+       return 0;
+      break;
+
+    default:
+      return 0;
+    }
+
+  if (node->constraint)
+    {
+      /* The node has constraints.  Check whether the current context
+        satisfies the constraints.  */
+      unsigned int context = re_string_context_at (&mctx->input, idx,
+                                                  mctx->eflags);
+      if (NOT_SATISFY_NEXT_CONSTRAINT (node->constraint, context))
+       return 0;
+    }
+
+  return 1;
+}
+
+/* Extend the buffers, if the buffers have run out.  */
+
+static reg_errcode_t
+internal_function
+extend_buffers (re_match_context_t *mctx)
+{
+  reg_errcode_t ret;
+  re_string_t *pstr = &mctx->input;
+
+  /* Avoid overflow.  */
+  if (BE (INT_MAX / 2 / sizeof (re_dfastate_t *) <= pstr->bufs_len, 0))
+    return REG_ESPACE;
+
+  /* Double the lengthes of the buffers.  */
+  ret = re_string_realloc_buffers (pstr, pstr->bufs_len * 2);
+  if (BE (ret != REG_NOERROR, 0))
+    return ret;
+
+  if (mctx->state_log != NULL)
+    {
+      /* And double the length of state_log.  */
+      /* XXX We have no indication of the size of this buffer.  If this
+        allocation fail we have no indication that the state_log array
+        does not have the right size.  */
+      re_dfastate_t **new_array = re_realloc (mctx->state_log, re_dfastate_t *,
+                                             pstr->bufs_len + 1);
+      if (BE (new_array == NULL, 0))
+       return REG_ESPACE;
+      mctx->state_log = new_array;
+    }
+
+  /* Then reconstruct the buffers.  */
+  if (pstr->icase)
+    {
+#ifdef RE_ENABLE_I18N
+      if (pstr->mb_cur_max > 1)
+       {
+         ret = build_wcs_upper_buffer (pstr);
+         if (BE (ret != REG_NOERROR, 0))
+           return ret;
+       }
+      else
+#endif /* RE_ENABLE_I18N  */
+       build_upper_buffer (pstr);
+    }
+  else
+    {
+#ifdef RE_ENABLE_I18N
+      if (pstr->mb_cur_max > 1)
+       build_wcs_buffer (pstr);
+      else
+#endif /* RE_ENABLE_I18N  */
+       {
+         if (pstr->trans != NULL)
+           re_string_translate_buffer (pstr);
+       }
+    }
+  return REG_NOERROR;
+}
+
+\f
+/* Functions for matching context.  */
+
+/* Initialize MCTX.  */
+
+static reg_errcode_t
+internal_function
+match_ctx_init (re_match_context_t *mctx, int eflags, int n)
+{
+  mctx->eflags = eflags;
+  mctx->match_last = -1;
+  if (n > 0)
+    {
+      mctx->bkref_ents = re_malloc (struct re_backref_cache_entry, n);
+      mctx->sub_tops = re_malloc (re_sub_match_top_t *, n);
+      if (BE (mctx->bkref_ents == NULL || mctx->sub_tops == NULL, 0))
+       return REG_ESPACE;
+    }
+  /* Already zero-ed by the caller.
+     else
+       mctx->bkref_ents = NULL;
+     mctx->nbkref_ents = 0;
+     mctx->nsub_tops = 0;  */
+  mctx->abkref_ents = n;
+  mctx->max_mb_elem_len = 1;
+  mctx->asub_tops = n;
+  return REG_NOERROR;
+}
+
+/* Clean the entries which depend on the current input in MCTX.
+   This function must be invoked when the matcher changes the start index
+   of the input, or changes the input string.  */
+
+static void
+internal_function
+match_ctx_clean (re_match_context_t *mctx)
+{
+  int st_idx;
+  for (st_idx = 0; st_idx < mctx->nsub_tops; ++st_idx)
+    {
+      int sl_idx;
+      re_sub_match_top_t *top = mctx->sub_tops[st_idx];
+      for (sl_idx = 0; sl_idx < top->nlasts; ++sl_idx)
+       {
+         re_sub_match_last_t *last = top->lasts[sl_idx];
+         re_free (last->path.array);
+         re_free (last);
+       }
+      re_free (top->lasts);
+      if (top->path)
+       {
+         re_free (top->path->array);
+         re_free (top->path);
+       }
+      free (top);
+    }
+
+  mctx->nsub_tops = 0;
+  mctx->nbkref_ents = 0;
+}
+
+/* Free all the memory associated with MCTX.  */
+
+static void
+internal_function
+match_ctx_free (re_match_context_t *mctx)
+{
+  /* First, free all the memory associated with MCTX->SUB_TOPS.  */
+  match_ctx_clean (mctx);
+  re_free (mctx->sub_tops);
+  re_free (mctx->bkref_ents);
+}
+
+/* Add a new backreference entry to MCTX.
+   Note that we assume that caller never call this function with duplicate
+   entry, and call with STR_IDX which isn't smaller than any existing entry.
+*/
+
+static reg_errcode_t
+internal_function
+match_ctx_add_entry (re_match_context_t *mctx, int node, int str_idx, int from,
+                    int to)
+{
+  if (mctx->nbkref_ents >= mctx->abkref_ents)
+    {
+      struct re_backref_cache_entry* new_entry;
+      new_entry = re_realloc (mctx->bkref_ents, struct re_backref_cache_entry,
+                             mctx->abkref_ents * 2);
+      if (BE (new_entry == NULL, 0))
+       {
+         re_free (mctx->bkref_ents);
+         return REG_ESPACE;
+       }
+      mctx->bkref_ents = new_entry;
+      memset (mctx->bkref_ents + mctx->nbkref_ents, '\0',
+             sizeof (struct re_backref_cache_entry) * mctx->abkref_ents);
+      mctx->abkref_ents *= 2;
+    }
+  if (mctx->nbkref_ents > 0
+      && mctx->bkref_ents[mctx->nbkref_ents - 1].str_idx == str_idx)
+    mctx->bkref_ents[mctx->nbkref_ents - 1].more = 1;
+
+  mctx->bkref_ents[mctx->nbkref_ents].node = node;
+  mctx->bkref_ents[mctx->nbkref_ents].str_idx = str_idx;
+  mctx->bkref_ents[mctx->nbkref_ents].subexp_from = from;
+  mctx->bkref_ents[mctx->nbkref_ents].subexp_to = to;
+
+  /* This is a cache that saves negative results of check_dst_limits_calc_pos.
+     If bit N is clear, means that this entry won't epsilon-transition to
+     an OP_OPEN_SUBEXP or OP_CLOSE_SUBEXP for the N+1-th subexpression.  If
+     it is set, check_dst_limits_calc_pos_1 will recurse and try to find one
+     such node.
+
+     A backreference does not epsilon-transition unless it is empty, so set
+     to all zeros if FROM != TO.  */
+  mctx->bkref_ents[mctx->nbkref_ents].eps_reachable_subexps_map
+    = (from == to ? ~0 : 0);
+
+  mctx->bkref_ents[mctx->nbkref_ents++].more = 0;
+  if (mctx->max_mb_elem_len < to - from)
+    mctx->max_mb_elem_len = to - from;
+  return REG_NOERROR;
+}
+
+/* Search for the first entry which has the same str_idx, or -1 if none is
+   found.  Note that MCTX->BKREF_ENTS is already sorted by MCTX->STR_IDX.  */
+
+static int
+internal_function
+search_cur_bkref_entry (const re_match_context_t *mctx, int str_idx)
+{
+  int left, right, mid, last;
+  last = right = mctx->nbkref_ents;
+  for (left = 0; left < right;)
+    {
+      mid = (left + right) / 2;
+      if (mctx->bkref_ents[mid].str_idx < str_idx)
+       left = mid + 1;
+      else
+       right = mid;
+    }
+  if (left < last && mctx->bkref_ents[left].str_idx == str_idx)
+    return left;
+  else
+    return -1;
+}
+
+/* Register the node NODE, whose type is OP_OPEN_SUBEXP, and which matches
+   at STR_IDX.  */
+
+static reg_errcode_t
+internal_function
+match_ctx_add_subtop (re_match_context_t *mctx, int node, int str_idx)
+{
+#ifdef DEBUG
+  assert (mctx->sub_tops != NULL);
+  assert (mctx->asub_tops > 0);
+#endif
+  if (BE (mctx->nsub_tops == mctx->asub_tops, 0))
+    {
+      int new_asub_tops = mctx->asub_tops * 2;
+      re_sub_match_top_t **new_array = re_realloc (mctx->sub_tops,
+                                                  re_sub_match_top_t *,
+                                                  new_asub_tops);
+      if (BE (new_array == NULL, 0))
+       return REG_ESPACE;
+      mctx->sub_tops = new_array;
+      mctx->asub_tops = new_asub_tops;
+    }
+  mctx->sub_tops[mctx->nsub_tops] = calloc (1, sizeof (re_sub_match_top_t));
+  if (BE (mctx->sub_tops[mctx->nsub_tops] == NULL, 0))
+    return REG_ESPACE;
+  mctx->sub_tops[mctx->nsub_tops]->node = node;
+  mctx->sub_tops[mctx->nsub_tops++]->str_idx = str_idx;
+  return REG_NOERROR;
+}
+
+/* Register the node NODE, whose type is OP_CLOSE_SUBEXP, and which matches
+   at STR_IDX, whose corresponding OP_OPEN_SUBEXP is SUB_TOP.  */
+
+static re_sub_match_last_t *
+internal_function
+match_ctx_add_sublast (re_sub_match_top_t *subtop, int node, int str_idx)
+{
+  re_sub_match_last_t *new_entry;
+  if (BE (subtop->nlasts == subtop->alasts, 0))
+    {
+      int new_alasts = 2 * subtop->alasts + 1;
+      re_sub_match_last_t **new_array = re_realloc (subtop->lasts,
+                                                   re_sub_match_last_t *,
+                                                   new_alasts);
+      if (BE (new_array == NULL, 0))
+       return NULL;
+      subtop->lasts = new_array;
+      subtop->alasts = new_alasts;
+    }
+  new_entry = calloc (1, sizeof (re_sub_match_last_t));
+  if (BE (new_entry != NULL, 1))
+    {
+      subtop->lasts[subtop->nlasts] = new_entry;
+      new_entry->node = node;
+      new_entry->str_idx = str_idx;
+      ++subtop->nlasts;
+    }
+  return new_entry;
+}
+
+static void
+internal_function
+sift_ctx_init (re_sift_context_t *sctx, re_dfastate_t **sifted_sts,
+              re_dfastate_t **limited_sts, int last_node, int last_str_idx)
+{
+  sctx->sifted_states = sifted_sts;
+  sctx->limited_states = limited_sts;
+  sctx->last_node = last_node;
+  sctx->last_str_idx = last_str_idx;
+  re_node_set_init_empty (&sctx->limits);
+}