summary | shortlog | log | commit | commitdiff | tree
raw | patch | inline | side by side (parent: 139e345)
raw | patch | inline | side by side (parent: 139e345)
author | Linus Torvalds <torvalds@linux-foundation.org> | |
Thu, 6 Aug 2009 03:49:41 +0000 (20:49 -0700) | ||
committer | Junio C Hamano <gitster@pobox.com> | |
Thu, 6 Aug 2009 20:56:45 +0000 (13:56 -0700) |
The mozilla-SHA1 code did this 80-word array for the 80 iterations. But
the SHA1 state is really just 512 bits, and you can actually keep it in
a kind of "circular queue" of just 16 words instead.
This requires us to do the xor updates as we go along (rather than as a
pre-phase), but that's really what we want to do anyway.
This gets me really close to the OpenSSL performance on my Nehalem.
Look ma, all C code (ok, there's the rol/ror hack, but that one doesn't
strictly even matter on my Nehalem, it's just a local optimization).
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
the SHA1 state is really just 512 bits, and you can actually keep it in
a kind of "circular queue" of just 16 words instead.
This requires us to do the xor updates as we go along (rather than as a
pre-phase), but that's really what we want to do anyway.
This gets me really close to the OpenSSL performance on my Nehalem.
Look ma, all C code (ok, there's the rol/ror hack, but that one doesn't
strictly even matter on my Nehalem, it's just a local optimization).
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
block-sha1/sha1.c | patch | blob | history |
diff --git a/block-sha1/sha1.c b/block-sha1/sha1.c
index 13da511b78a56b7bda64753247797f3b66b474b6..8c4c216f93d5c2a380e021d75810f8e55fee7a5c 100644 (file)
--- a/block-sha1/sha1.c
+++ b/block-sha1/sha1.c
static void blk_SHA1Block(blk_SHA_CTX *ctx, const unsigned int *data)
{
- int t;
unsigned int A,B,C,D,E,TEMP;
- unsigned int W[80];
+ unsigned int array[16];
A = ctx->H[0];
B = ctx->H[1];
E = ctx->H[4];
#define T_0_15(t) \
- TEMP = htonl(data[t]); W[t] = TEMP; \
- TEMP += SHA_ROL(A,5) + (((C^D)&B)^D) + E + 0x5a827999; \
+ TEMP = htonl(data[t]); array[t] = TEMP; \
+ TEMP += SHA_ROL(A,5) + (((C^D)&B)^D) + E + 0x5a827999; \
E = D; D = C; C = SHA_ROR(B, 2); B = A; A = TEMP; \
T_0_15( 0); T_0_15( 1); T_0_15( 2); T_0_15( 3); T_0_15( 4);
T_0_15(10); T_0_15(11); T_0_15(12); T_0_15(13); T_0_15(14);
T_0_15(15);
- /* Unroll it? */
- for (t = 16; t <= 79; t++)
- W[t] = SHA_ROL(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16], 1);
+/* This "rolls" over the 512-bit array */
+#define W(x) (array[(x)&15])
+#define SHA_XOR(t) \
+ TEMP = SHA_ROL(W(t+13) ^ W(t+8) ^ W(t+2) ^ W(t), 1); W(t) = TEMP;
#define T_16_19(t) \
- TEMP = SHA_ROL(A,5) + (((C^D)&B)^D) + E + W[t] + 0x5a827999; \
- E = D; D = C; C = SHA_ROR(B, 2); B = A; A = TEMP;
+ SHA_XOR(t); \
+ TEMP += SHA_ROL(A,5) + (((C^D)&B)^D) + E + 0x5a827999; \
+ E = D; D = C; C = SHA_ROR(B, 2); B = A; A = TEMP; \
T_16_19(16); T_16_19(17); T_16_19(18); T_16_19(19);
#define T_20_39(t) \
- TEMP = SHA_ROL(A,5) + (B^C^D) + E + W[t] + 0x6ed9eba1; \
+ SHA_XOR(t); \
+ TEMP += SHA_ROL(A,5) + (B^C^D) + E + 0x6ed9eba1; \
E = D; D = C; C = SHA_ROR(B, 2); B = A; A = TEMP;
T_20_39(20); T_20_39(21); T_20_39(22); T_20_39(23); T_20_39(24);
T_20_39(35); T_20_39(36); T_20_39(37); T_20_39(38); T_20_39(39);
#define T_40_59(t) \
- TEMP = SHA_ROL(A,5) + ((B&C)|(D&(B|C))) + E + W[t] + 0x8f1bbcdc; \
+ SHA_XOR(t); \
+ TEMP += SHA_ROL(A,5) + ((B&C)|(D&(B|C))) + E + 0x8f1bbcdc; \
E = D; D = C; C = SHA_ROR(B, 2); B = A; A = TEMP;
T_40_59(40); T_40_59(41); T_40_59(42); T_40_59(43); T_40_59(44);
T_40_59(55); T_40_59(56); T_40_59(57); T_40_59(58); T_40_59(59);
#define T_60_79(t) \
- TEMP = SHA_ROL(A,5) + (B^C^D) + E + W[t] + 0xca62c1d6; \
+ SHA_XOR(t); \
+ TEMP += SHA_ROL(A,5) + (B^C^D) + E + 0xca62c1d6; \
E = D; D = C; C = SHA_ROR(B, 2); B = A; A = TEMP;
T_60_79(60); T_60_79(61); T_60_79(62); T_60_79(63); T_60_79(64);