summary | shortlog | log | commit | commitdiff | tree
raw | patch | inline | side by side (parent: e0b04ec)
raw | patch | inline | side by side (parent: e0b04ec)
author | oetiker <oetiker@a5681a0c-68f1-0310-ab6d-d61299d08faa> | |
Mon, 13 Aug 2007 20:06:10 +0000 (20:06 +0000) | ||
committer | oetiker <oetiker@a5681a0c-68f1-0310-ab6d-d61299d08faa> | |
Mon, 13 Aug 2007 20:06:10 +0000 (20:06 +0000) |
problem -- Evan Miller
git-svn-id: svn://svn.oetiker.ch/rrdtool/trunk@1191 a5681a0c-68f1-0310-ab6d-d61299d08faa
git-svn-id: svn://svn.oetiker.ch/rrdtool/trunk@1191 a5681a0c-68f1-0310-ab6d-d61299d08faa
program/src/rrd_update.c | patch | blob | history |
index 1e5397935ec9f4b5f76c245321caa579a7f6e7a7..45f635bfaa46774f533e2453fb5f31dc17e32b30 100644 (file)
--- a/program/src/rrd_update.c
+++ b/program/src/rrd_update.c
}
#endif
+
+/* FUNCTION PROTOTYPES */
+
+int rrd_update_r(
+ const char *filename,
+ const char *tmplt,
+ int argc,
+ const char **argv);
+int _rrd_update(
+ const char *filename,
+ const char *tmplt,
+ int argc,
+ const char **argv,
+ info_t *);
+
+static int allocate_data_structures(
+ rrd_t *rrd, char ***updvals, rrd_value_t **pdp_temp,
+ const char *tmplt, long **tmpl_idx, unsigned long *tmpl_cnt,
+ unsigned long **rra_step_cnt, rrd_value_t **pdp_new);
+
+static int parse_template(rrd_t *rrd, const char *tmplt,
+ unsigned long *tmpl_cnt, long *tmpl_idx);
+
+static int process_arg(
+ char *step_start,
+ rrd_t *rrd,
+ rrd_file_t *rrd_file,
+ unsigned long rra_begin,
+ unsigned long *rra_current,
+ time_t *current_time,
+ unsigned long *current_time_usec,
+ rrd_value_t *pdp_temp,
+ rrd_value_t *pdp_new,
+ unsigned long *rra_step_cnt,
+ char **updvals,
+ long *tmpl_idx,
+ unsigned long tmpl_cnt,
+ info_t **pcdp_summary,
+ int version,
+ int *schedule_smooth);
+
+static int parse_ds(rrd_t *rrd, char **updvals, long *tmpl_idx, char *input,
+ unsigned long tmpl_cnt, time_t *current_time, unsigned long *current_time_usec,
+ int version);
+
+static int get_time_from_reading(rrd_t *rrd, char timesyntax, char **updvals,
+ time_t *current_time, unsigned long *current_time_usec, int version);
+
+static int update_pdp_prep(rrd_t *rrd, char **updvals,
+ rrd_value_t *pdp_new, double interval);
+
+static int calculate_elapsed_steps(rrd_t *rrd,
+ unsigned long current_time, unsigned long current_time_usec,
+ double interval, double *pre_int, double *post_int,
+ unsigned long *proc_pdp_cnt);
+
+static void simple_update(rrd_t *rrd, double interval, rrd_value_t *pdp_new);
+
+static int process_all_pdp_st(rrd_t *rrd, double interval,
+ double pre_int, double post_int, unsigned long elapsed_pdp_st,
+ rrd_value_t *pdp_new, rrd_value_t *pdp_temp);
+
+static int process_pdp_st(rrd_t *rrd, unsigned long ds_idx, double interval,
+ double pre_int, double post_int, long diff_pdp_st, rrd_value_t *pdp_new,
+ rrd_value_t *pdp_temp);
+
+static int update_all_cdp_prep(
+ rrd_t *rrd, unsigned long *rra_step_cnt, unsigned long rra_begin,
+ rrd_file_t *rrd_file, unsigned long elapsed_pdp_st, unsigned long proc_pdp_cnt,
+ rrd_value_t **last_seasonal_coef, rrd_value_t **seasonal_coef,
+ rrd_value_t *pdp_temp, unsigned long *rra_current, int *schedule_smooth);
+
+static int do_schedule_smooth(rrd_t *rrd, unsigned long rra_idx,
+ unsigned long elapsed_pdp_st);
+
+static int update_cdp_prep(rrd_t *rrd, unsigned long elapsed_pdp_st,
+ unsigned long start_pdp_offset, unsigned long *rra_step_cnt,
+ int rra_idx, rrd_value_t *pdp_temp, rrd_value_t *last_seasonal_coef,
+ rrd_value_t *seasonal_coef, int current_cf);
+
+static void update_cdp(unival *scratch, int current_cf,
+ rrd_value_t pdp_temp_val, unsigned long rra_step_cnt,
+ unsigned long elapsed_pdp_st, unsigned long start_pdp_offset,
+ unsigned long pdp_cnt, rrd_value_t xff, int i, int ii);
+
+static void initialize_cdp_val(unival *scratch, int current_cf,
+ rrd_value_t pdp_temp_val, unsigned long elapsed_pdp_st,
+ unsigned long start_pdp_offset, unsigned long pdp_cnt);
+
+static void reset_cdp(rrd_t *rrd, unsigned long elapsed_pdp_st,
+ rrd_value_t *pdp_temp, rrd_value_t *last_seasonal_coef,
+ rrd_value_t *seasonal_coef,
+ int rra_idx, int ds_idx, int cdp_idx, enum cf_en current_cf);
+
+static rrd_value_t initialize_average_carry_over(rrd_value_t pdp_temp_val,
+ unsigned long elapsed_pdp_st, unsigned long start_pdp_offset,
+ unsigned long pdp_cnt);
+
+static rrd_value_t calculate_cdp_val(
+ rrd_value_t cdp_val, rrd_value_t pdp_temp_val,
+ unsigned long elapsed_pdp_st, int current_cf, int i, int ii);
+
+static int update_aberrant_cdps(rrd_t *rrd, rrd_file_t *rrd_file,
+ unsigned long rra_begin, unsigned long *rra_current,
+ unsigned long elapsed_pdp_st, rrd_value_t *pdp_temp, rrd_value_t **seasonal_coef);
+
+static int write_to_rras(rrd_t *rrd, rrd_file_t *rrd_file,
+ unsigned long *rra_step_cnt, unsigned long rra_begin,
+ unsigned long *rra_current, time_t current_time, info_t **pcdp_summary);
+
+static int write_RRA_row(rrd_file_t *rrd_file, rrd_t *rrd, unsigned long rra_idx,
+ unsigned long *rra_current, unsigned short CDP_scratch_idx, info_t **pcdp_summary,
+ time_t *rra_time);
+
+static int smooth_all_rras(rrd_t *rrd, rrd_file_t *rrd_file,
+ unsigned long rra_begin);
+
+#ifndef HAVE_MMAP
+static int write_changes_to_disk(rrd_t *rrd, rrd_file_t *rrd_file,
+ int version);
+#endif
+
/*
* normalize time as returned by gettimeofday. usec part must
* be always >= 0
{
if (t->tv_usec < 0) {
t->tv_sec--;
- t->tv_usec += 1000000L;
+ t->tv_usec += 1e6L;
}
}
-static inline info_t *write_RRA_row(
- rrd_file_t *rrd_file,
- rrd_t *rrd,
- unsigned long rra_idx,
- unsigned long *rra_current,
- unsigned short CDP_scratch_idx,
- info_t *pcdp_summary,
- time_t *rra_time)
+/*
+ * Sets current_time and current_time_usec based on the current time.
+ * current_time_usec is set to 0 if the version number is 1 or 2.
+ */
+static inline void initialize_time(
+ time_t *current_time, unsigned long *current_time_usec,
+ int version)
{
- unsigned long ds_idx, cdp_idx;
- infoval iv;
+ struct timeval tmp_time; /* used for time conversion */
- for (ds_idx = 0; ds_idx < rrd->stat_head->ds_cnt; ds_idx++) {
- /* compute the cdp index */
- cdp_idx = rra_idx * (rrd->stat_head->ds_cnt) + ds_idx;
-#ifdef DEBUG
- fprintf(stderr, " -- RRA WRITE VALUE %e, at %ld CF:%s\n",
- rrd->cdp_prep[cdp_idx].scratch[CDP_scratch_idx].u_val,
- rrd_file->pos, rrd->rra_def[rra_idx].cf_nam);
-#endif
- if (pcdp_summary != NULL) {
- iv.u_val = rrd->cdp_prep[cdp_idx].scratch[CDP_scratch_idx].u_val;
- /* append info to the return hash */
- pcdp_summary = info_push(pcdp_summary,
- sprintf_alloc("[%d]RRA[%s][%lu]DS[%s]",
- *rra_time,
- rrd->rra_def[rra_idx].
- cf_nam,
- rrd->rra_def[rra_idx].
- pdp_cnt,
- rrd->ds_def[ds_idx].
- ds_nam), RD_I_VAL, iv);
- }
- if (rrd_write
- (rrd_file,
- &(rrd->cdp_prep[cdp_idx].scratch[CDP_scratch_idx].u_val),
- sizeof(rrd_value_t)) != sizeof(rrd_value_t)) {
- rrd_set_error("writing rrd: %s", rrd_strerror(errno));
- return 0;
- }
- *rra_current += sizeof(rrd_value_t);
+ gettimeofday(&tmp_time, 0);
+ normalize_time(&tmp_time);
+ *current_time = tmp_time.tv_sec;
+ if (version >= 3) {
+ *current_time_usec = tmp_time.tv_usec;
+ } else {
+ *current_time_usec = 0;
}
- return (pcdp_summary);
}
-int rrd_update_r(
- const char *filename,
- const char *tmplt,
- int argc,
- const char **argv);
-int _rrd_update(
- const char *filename,
- const char *tmplt,
- int argc,
- const char **argv,
- info_t *);
-
#define IFDNAN(X,Y) (isnan(X) ? (Y) : (X));
-
info_t *rrd_update_v(
int argc,
char **argv)
info_t *pcdp_summary)
{
- int arg_i = 2;
- short j;
- unsigned long i, ii, iii = 1;
+ int arg_i = 2;
unsigned long rra_begin; /* byte pointer to the rra
* area in the rrd file. this
* pointer never changes value */
- unsigned long rra_start; /* byte pointer to the rra
- * area in the rrd file. this
- * pointer changes as each rrd is
- * processed. */
unsigned long rra_current; /* byte pointer to the current write
* spot in the rrd file. */
- unsigned long rra_pos_tmp; /* temporary byte pointer. */
- double interval, pre_int, post_int; /* interval between this and
- * the last run */
- unsigned long proc_pdp_st; /* which pdp_st was the last
- * to be processed */
- unsigned long occu_pdp_st; /* when was the pdp_st
- * before the last update
- * time */
- unsigned long proc_pdp_age; /* how old was the data in
- * the pdp prep area when it
- * was last updated */
- unsigned long occu_pdp_age; /* how long ago was the last
- * pdp_step time */
- rrd_value_t *pdp_new; /* prepare the incoming data
- * to be added the the
- * existing entry */
- rrd_value_t *pdp_temp; /* prepare the pdp values
- * to be added the the
- * cdp values */
-
- long *tmpl_idx; /* index representing the settings
- transported by the tmplt index */
- unsigned long tmpl_cnt = 2; /* time and data */
+ rrd_value_t *pdp_new; /* prepare the incoming data to be added
+ * to the existing entry */
+ rrd_value_t *pdp_temp; /* prepare the pdp values to be added
+ * to the cdp values */
- rrd_t rrd;
- time_t current_time = 0;
- time_t rra_time = 0; /* time of update for a RRA */
+ long *tmpl_idx; /* index representing the settings
+ * transported by the tmplt index */
+ unsigned long tmpl_cnt = 2; /* time and data */
+ rrd_t rrd;
+ time_t current_time = 0;
unsigned long current_time_usec = 0; /* microseconds part of current time */
- struct timeval tmp_time; /* used for time conversion */
-
- char **updvals;
- int schedule_smooth = 0;
- rrd_value_t *seasonal_coef = NULL, *last_seasonal_coef = NULL;
-
- /* a vector of future Holt-Winters seasonal coefs */
- unsigned long elapsed_pdp_st;
+ char **updvals;
+ int schedule_smooth = 0;
/* number of elapsed PDP steps since last update */
unsigned long *rra_step_cnt = NULL;
- /* number of rows to be updated in an RRA for a data
- * value. */
- unsigned long start_pdp_offset;
-
- /* number of PDP steps since the last update that
- * are assigned to the first CDP to be generated
- * since the last update. */
- unsigned short scratch_idx;
-
- /* index into the CDP scratch array */
- enum cf_en current_cf;
-
- /* numeric id of the current consolidation function */
- rpnstack_t rpnstack; /* used for COMPUTE DS */
- int version; /* rrd version */
- char *endptr; /* used in the conversion */
- rrd_file_t *rrd_file;
-
- rpnstack_init(&rpnstack);
+ int version; /* rrd version */
+ rrd_file_t *rrd_file;
+ char *arg_copy; /* for processing the argv */
/* need at least 1 arguments: data. */
if (argc < 1) {
goto err_out;
}
- rrd_file = rrd_open(filename, &rrd, RRD_READWRITE);
- if (rrd_file == NULL) {
+ if ((rrd_file = rrd_open(filename, &rrd, RRD_READWRITE)) == NULL) {
goto err_free;
}
/* We are now at the beginning of the rra's */
- rra_current = rra_start = rra_begin = rrd_file->header_len;
+ rra_current = rra_begin = rrd_file->header_len;
- /* initialize time */
version = atoi(rrd.stat_head->version);
- gettimeofday(&tmp_time, 0);
- normalize_time(&tmp_time);
- current_time = tmp_time.tv_sec;
- if (version >= 3) {
- current_time_usec = tmp_time.tv_usec;
- } else {
- current_time_usec = 0;
- }
+
+ initialize_time(¤t_time, ¤t_time_usec, version);
/* get exclusive lock to whole file.
* lock gets removed when we close the file.
goto err_close;
}
- if ((updvals =
- malloc(sizeof(char *) * (rrd.stat_head->ds_cnt + 1))) == NULL) {
- rrd_set_error("allocating updvals pointer array");
+ if (allocate_data_structures(&rrd, &updvals,
+ &pdp_temp, tmplt, &tmpl_idx, &tmpl_cnt,
+ &rra_step_cnt, &pdp_new) == -1) {
goto err_close;
}
- if ((pdp_temp = malloc(sizeof(rrd_value_t)
- * rrd.stat_head->ds_cnt)) == NULL) {
+ /* loop through the arguments. */
+ for (arg_i = 0; arg_i < argc; arg_i++) {
+ if ((arg_copy = strdup(argv[arg_i])) == NULL) {
+ rrd_set_error("failed duplication argv entry");
+ break;
+ }
+ if (process_arg(arg_copy, &rrd, rrd_file, rra_begin, &rra_current,
+ ¤t_time, ¤t_time_usec, pdp_temp, pdp_new,
+ rra_step_cnt, updvals, tmpl_idx, tmpl_cnt, &pcdp_summary,
+ version, &schedule_smooth) == -1) {
+ free(arg_copy);
+ break;
+ }
+ free(arg_copy);
+ }
+
+ free(rra_step_cnt);
+
+ /* if we got here and if there is an error and if the file has not been
+ * written to, then close things up and return. */
+ if (rrd_test_error()) {
+ goto err_free_structures;
+ }
+
+#ifndef HAVE_MMAP
+ if (write_changes_to_disk(&rrd, rrd_file, version) == -1) {
+ goto err_free_structures;
+ }
+#endif
+
+ /* calling the smoothing code here guarantees at most one smoothing
+ * operation per rrd_update call. Unfortunately, it is possible with bulk
+ * updates, or a long-delayed update for smoothing to occur off-schedule.
+ * This really isn't critical except during the burn-in cycles. */
+ if (schedule_smooth) {
+ smooth_all_rras(&rrd, rrd_file, rra_begin);
+ }
+
+/* rrd_dontneed(rrd_file,&rrd); */
+ rrd_free(&rrd);
+ rrd_close(rrd_file);
+
+ free(pdp_new);
+ free(tmpl_idx);
+ free(pdp_temp);
+ free(updvals);
+ return 0;
+
+ err_free_structures:
+ free(pdp_new);
+ free(tmpl_idx);
+ free(pdp_temp);
+ free(updvals);
+ err_close:
+ rrd_close(rrd_file);
+ err_free:
+ rrd_free(&rrd);
+ err_out:
+ return -1;
+}
+
+/*
+ * get exclusive lock to whole file.
+ * lock gets removed when we close the file
+ *
+ * returns 0 on success
+ */
+int LockRRD(
+ int in_file)
+{
+ int rcstat;
+
+ {
+#if defined(_WIN32) && !defined(__CYGWIN__) && !defined(__CYGWIN32__)
+ struct _stat st;
+
+ if (_fstat(in_file, &st) == 0) {
+ rcstat = _locking(in_file, _LK_NBLCK, st.st_size);
+ } else {
+ rcstat = -1;
+ }
+#else
+ struct flock lock;
+
+ lock.l_type = F_WRLCK; /* exclusive write lock */
+ lock.l_len = 0; /* whole file */
+ lock.l_start = 0; /* start of file */
+ lock.l_whence = SEEK_SET; /* end of file */
+
+ rcstat = fcntl(in_file, F_SETLK, &lock);
+#endif
+ }
+
+ return (rcstat);
+}
+
+/*
+ * Allocate some important arrays used, and initialize the template.
+ *
+ * When it returns, either all of the structures are allocated
+ * or none of them are.
+ *
+ * Returns 0 on success, -1 on error.
+ */
+static int allocate_data_structures(
+ rrd_t *rrd, char ***updvals, rrd_value_t **pdp_temp, const char *tmplt,
+ long **tmpl_idx, unsigned long *tmpl_cnt, unsigned long **rra_step_cnt,
+ rrd_value_t **pdp_new)
+{
+ unsigned i, ii;
+ if ((*updvals = (char **)malloc(sizeof(char *)
+ * (rrd->stat_head->ds_cnt + 1))) == NULL) {
+ rrd_set_error("allocating updvals pointer array");
+ return -1;
+ }
+
+ if ((*pdp_temp = (rrd_value_t *)malloc(sizeof(rrd_value_t)
+ * rrd->stat_head->ds_cnt)) == NULL) {
rrd_set_error("allocating pdp_temp ...");
goto err_free_updvals;
}
- if ((tmpl_idx = malloc(sizeof(unsigned long)
- * (rrd.stat_head->ds_cnt + 1))) == NULL) {
+ if ((*tmpl_idx = (long *)malloc(sizeof(unsigned long)
+ * (rrd->stat_head->ds_cnt + 1))) == NULL) {
rrd_set_error("allocating tmpl_idx ...");
goto err_free_pdp_temp;
}
+ if ((*rra_step_cnt = (unsigned long *)malloc(sizeof(unsigned long)
+ * (rrd->stat_head->rra_cnt))) == NULL) {
+ rrd_set_error("allocating rra_step_cnt...");
+ goto err_free_tmpl_idx;
+ }
+
/* initialize tmplt redirector */
/* default config example (assume DS 1 is a CDEF DS)
tmpl_idx[0] -> 0; (time)
tmpl_idx[1] -> 1; (DS 0)
tmpl_idx[2] -> 3; (DS 2)
tmpl_idx[3] -> 4; (DS 3) */
- tmpl_idx[0] = 0; /* time */
- for (i = 1, ii = 1; i <= rrd.stat_head->ds_cnt; i++) {
- if (dst_conv(rrd.ds_def[i - 1].dst) != DST_CDEF)
- tmpl_idx[ii++] = i;
+ (*tmpl_idx)[0] = 0; /* time */
+ for (i = 1, ii = 1; i <= rrd->stat_head->ds_cnt; i++) {
+ if (dst_conv(rrd->ds_def[i-1].dst) != DST_CDEF)
+ (*tmpl_idx)[ii++] = i;
}
- tmpl_cnt = ii;
-
- if (tmplt) {
- /* we should work on a writeable copy here */
- char *dsname;
- unsigned int tmpl_len;
- char *tmplt_copy = strdup(tmplt);
-
- dsname = tmplt_copy;
- tmpl_cnt = 1; /* the first entry is the time */
- tmpl_len = strlen(tmplt_copy);
- for (i = 0; i <= tmpl_len; i++) {
- if (tmplt_copy[i] == ':' || tmplt_copy[i] == '\0') {
- tmplt_copy[i] = '\0';
- if (tmpl_cnt > rrd.stat_head->ds_cnt) {
- rrd_set_error
- ("tmplt contains more DS definitions than RRD");
- goto err_free_tmpl_idx;
- }
- if ((tmpl_idx[tmpl_cnt++] = ds_match(&rrd, dsname)) == -1) {
- rrd_set_error("unknown DS name '%s'", dsname);
- goto err_free_tmpl_idx;
- } else {
- /* the first element is always the time */
- tmpl_idx[tmpl_cnt - 1]++;
- /* go to the next entry on the tmplt_copy */
- dsname = &tmplt_copy[i + 1];
- /* fix the damage we did before */
- if (i < tmpl_len) {
- tmplt_copy[i] = ':';
- }
+ *tmpl_cnt = ii;
- }
- }
+ if (tmplt != NULL) {
+ if (parse_template(rrd, tmplt, tmpl_cnt, *tmpl_idx) == -1) {
+ goto err_free_tmpl_idx;
}
- free(tmplt_copy);
}
- if ((pdp_new = malloc(sizeof(rrd_value_t)
- * rrd.stat_head->ds_cnt)) == NULL) {
+
+ if ((*pdp_new = (rrd_value_t *)malloc(sizeof(rrd_value_t)
+ * rrd->stat_head->ds_cnt)) == NULL) {
rrd_set_error("allocating pdp_new ...");
goto err_free_tmpl_idx;
}
- /* loop through the arguments. */
- for (arg_i = 0; arg_i < argc; arg_i++) {
- char *stepper = strdup(argv[arg_i]);
- char *step_start = stepper;
- char *p;
- char *parsetime_error = NULL;
- enum { atstyle, normal } timesyntax;
- struct rrd_time_value ds_tv;
-
- if (stepper == NULL) {
- rrd_set_error("failed duplication argv entry");
- free(step_start);
- goto err_free_pdp_new;
- }
- /* initialize all ds input to unknown except the first one
- which has always got to be set */
- for (ii = 1; ii <= rrd.stat_head->ds_cnt; ii++)
- updvals[ii] = "U";
- updvals[0] = stepper;
- /* separate all ds elements; first must be examined separately
- due to alternate time syntax */
- if ((p = strchr(stepper, '@')) != NULL) {
- timesyntax = atstyle;
- *p = '\0';
- stepper = p + 1;
- } else if ((p = strchr(stepper, ':')) != NULL) {
- timesyntax = normal;
- *p = '\0';
- stepper = p + 1;
- } else {
- rrd_set_error
- ("expected timestamp not found in data source from %s",
- argv[arg_i]);
- free(step_start);
- break;
- }
- ii = 1;
- updvals[tmpl_idx[ii]] = stepper;
- while (*stepper) {
- if (*stepper == ':') {
- *stepper = '\0';
- ii++;
- if (ii < tmpl_cnt) {
- updvals[tmpl_idx[ii]] = stepper + 1;
- }
- }
- stepper++;
- }
- if (ii != tmpl_cnt - 1) {
- rrd_set_error
- ("expected %lu data source readings (got %lu) from %s",
- tmpl_cnt - 1, ii, argv[arg_i]);
- free(step_start);
- break;
- }
+ return 0;
- /* get the time from the reading ... handle N */
- if (timesyntax == atstyle) {
- if ((parsetime_error = parsetime(updvals[0], &ds_tv))) {
- rrd_set_error("ds time: %s: %s", updvals[0], parsetime_error);
- free(step_start);
- break;
- }
- if (ds_tv.type == RELATIVE_TO_END_TIME ||
- ds_tv.type == RELATIVE_TO_START_TIME) {
- rrd_set_error("specifying time relative to the 'start' "
- "or 'end' makes no sense here: %s", updvals[0]);
- free(step_start);
- break;
- }
+err_free_tmpl_idx:
+ free(*tmpl_idx);
+err_free_pdp_temp:
+ free(*pdp_temp);
+err_free_updvals:
+ free(*updvals);
+ return -1;
+}
- current_time = mktime(&ds_tv.tm) + ds_tv.offset;
+/*
+ * Parses tmplt and puts an ordered list of DS's into tmpl_idx.
+ *
+ * Returns 0 on success.
+ */
+static int parse_template(
+ rrd_t *rrd, const char *tmplt,
+ unsigned long *tmpl_cnt, long *tmpl_idx)
+{
+ char *dsname, *tmplt_copy;
+ unsigned int tmpl_len, i;
- current_time_usec = 0; /* FIXME: how to handle usecs here ? */
+ *tmpl_cnt = 1; /* the first entry is the time */
- } else if (strcmp(updvals[0], "N") == 0) {
- gettimeofday(&tmp_time, 0);
- normalize_time(&tmp_time);
- current_time = tmp_time.tv_sec;
- current_time_usec = tmp_time.tv_usec;
- } else {
- double tmp;
- char *old_locale;
-
- old_locale = setlocale(LC_NUMERIC, "C");
- tmp = strtod(updvals[0], 0);
- setlocale(LC_NUMERIC, old_locale);
- current_time = floor(tmp);
- current_time_usec =
- (long) ((tmp - (double) current_time) * 1000000.0);
- }
- /* dont do any correction for old version RRDs */
- if (version < 3)
- current_time_usec = 0;
-
- if (current_time < rrd.live_head->last_up ||
- (current_time == rrd.live_head->last_up &&
- (long) current_time_usec <=
- (long) rrd.live_head->last_up_usec)) {
- rrd_set_error("illegal attempt to update using time %ld when "
- "last update time is %ld (minimum one second step)",
- current_time, rrd.live_head->last_up);
- free(step_start);
- break;
- }
+ /* we should work on a writeable copy here */
+ if ((tmplt_copy = strdup(tmplt)) == NULL) {
+ rrd_set_error("error copying tmplt '%s'", tmplt);
+ return -1;
+ }
- /* seek to the beginning of the rra's */
- if (rra_current != rra_begin) {
-#ifndef HAVE_MMAP
- if (rrd_seek(rrd_file, rra_begin, SEEK_SET) != 0) {
- rrd_set_error("seek error in rrd");
- free(step_start);
- break;
+ dsname = tmplt_copy;
+ tmpl_len = strlen(tmplt_copy);
+ for (i = 0; i <= tmpl_len; i++) {
+ if (tmplt_copy[i] == ':' || tmplt_copy[i] == '\0') {
+ tmplt_copy[i] = '\0';
+ if (*tmpl_cnt > rrd->stat_head->ds_cnt) {
+ rrd_set_error("tmplt contains more DS definitions than RRD");
+ free(tmplt_copy);
+ return -1;
}
-#endif
- rra_current = rra_begin;
- }
- rra_start = rra_begin;
-
- /* when was the current pdp started */
- proc_pdp_age = rrd.live_head->last_up % rrd.stat_head->pdp_step;
- proc_pdp_st = rrd.live_head->last_up - proc_pdp_age;
-
- /* when did the last pdp_st occur */
- occu_pdp_age = current_time % rrd.stat_head->pdp_step;
- occu_pdp_st = current_time - occu_pdp_age;
-
- /* interval = current_time - rrd.live_head->last_up; */
- interval = (double) (current_time - rrd.live_head->last_up)
- + (double) ((long) current_time_usec -
- (long) rrd.live_head->last_up_usec) / 1000000.0;
-
- if (occu_pdp_st > proc_pdp_st) {
- /* OK we passed the pdp_st moment */
- pre_int = (long) occu_pdp_st - rrd.live_head->last_up; /* how much of the input data
- * occurred before the latest
- * pdp_st moment*/
- pre_int -= ((double) rrd.live_head->last_up_usec) / 1000000.0; /* adjust usecs */
- post_int = occu_pdp_age; /* how much after it */
- post_int += ((double) current_time_usec) / 1000000.0; /* adjust usecs */
- } else {
- pre_int = interval;
- post_int = 0;
+ if ((tmpl_idx[(*tmpl_cnt)++] = ds_match(rrd, dsname)+1) == 0) {
+ rrd_set_error("unknown DS name '%s'", dsname);
+ free(tmplt_copy);
+ return -1;
+ }
+ /* go to the next entry on the tmplt_copy */
+ if (i < tmpl_len)
+ dsname = &tmplt_copy[i+1];
}
+ }
+ free(tmplt_copy);
+ return 0;
+}
-#ifdef DEBUG
- printf("proc_pdp_age %lu\t"
- "proc_pdp_st %lu\t"
- "occu_pfp_age %lu\t"
- "occu_pdp_st %lu\t"
- "int %lf\t"
- "pre_int %lf\t"
- "post_int %lf\n", proc_pdp_age, proc_pdp_st,
- occu_pdp_age, occu_pdp_st, interval, pre_int, post_int);
-#endif
-
- /* process the data sources and update the pdp_prep
- * area accordingly */
- for (i = 0; i < rrd.stat_head->ds_cnt; i++) {
- enum dst_en dst_idx;
+/*
+ * Parse an update string, updates the primary data points (PDPs)
+ * and consolidated data points (CDPs), and writes changes to the RRAs.
+ *
+ * Returns 0 on success, -1 on error.
+ */
+static int process_arg(
+ char *step_start,
+ rrd_t *rrd,
+ rrd_file_t *rrd_file,
+ unsigned long rra_begin,
+ unsigned long *rra_current,
+ time_t *current_time,
+ unsigned long *current_time_usec,
+ rrd_value_t *pdp_temp,
+ rrd_value_t *pdp_new,
+ unsigned long *rra_step_cnt,
+ char **updvals,
+ long *tmpl_idx,
+ unsigned long tmpl_cnt,
+ info_t **pcdp_summary,
+ int version,
+ int *schedule_smooth)
+{
+ rrd_value_t *seasonal_coef = NULL, *last_seasonal_coef = NULL;
- dst_idx = dst_conv(rrd.ds_def[i].dst);
+ /* a vector of future Holt-Winters seasonal coefs */
+ unsigned long elapsed_pdp_st;
- /* make sure we do not build diffs with old last_ds values */
- if (rrd.ds_def[i].par[DS_mrhb_cnt].u_cnt < interval) {
- strncpy(rrd.pdp_prep[i].last_ds, "U", LAST_DS_LEN - 1);
- rrd.pdp_prep[i].last_ds[LAST_DS_LEN - 1] = '\0';
- }
+ double interval, pre_int, post_int; /* interval between this and
+ * the last run */
+ unsigned long proc_pdp_cnt;
+ unsigned long rra_start;
- /* NOTE: DST_CDEF should never enter this if block, because
- * updvals[i+1][0] is initialized to 'U'; unless the caller
- * accidently specified a value for the DST_CDEF. To handle
- * this case, an extra check is required. */
-
- if ((updvals[i + 1][0] != 'U') &&
- (dst_idx != DST_CDEF) &&
- rrd.ds_def[i].par[DS_mrhb_cnt].u_cnt >= interval) {
- double rate = DNAN;
- char *old_locale;
-
- /* the data source type defines how to process the data */
- /* pdp_new contains rate * time ... eg the bytes
- * transferred during the interval. Doing it this way saves
- * a lot of math operations */
- switch (dst_idx) {
- case DST_COUNTER:
- case DST_DERIVE:
- for (ii = 0; updvals[i + 1][ii] != '\0'; ii++) {
- if ((updvals[i + 1][ii] < '0'
- || updvals[i + 1][ii] > '9') && (ii != 0
- && updvals[i
- + 1]
- [ii] != '-')) {
- rrd_set_error("not a simple integer: '%s'",
- updvals[i + 1]);
+ if (parse_ds(rrd, updvals, tmpl_idx, step_start, tmpl_cnt,
+ current_time, current_time_usec, version) == -1) {
+ return -1;
+ }
+ /* seek to the beginning of the rra's */
+ if (*rra_current != rra_begin) {
+#ifndef HAVE_MMAP
+ if (rrd_seek(rrd_file, rra_begin, SEEK_SET) != 0) {
+ rrd_set_error("seek error in rrd");
+ return -1;
+ }
+#endif
+ *rra_current = rra_begin;
+ }
+ rra_start = rra_begin;
+
+ interval = (double) (*current_time - rrd->live_head->last_up)
+ + (double) ((long) *current_time_usec -
+ (long) rrd->live_head->last_up_usec) / 1e6f;
+
+ /* process the data sources and update the pdp_prep
+ * area accordingly */
+ if (update_pdp_prep(rrd, updvals, pdp_new, interval) == -1) {
+ return -1;
+ }
+
+ elapsed_pdp_st = calculate_elapsed_steps(rrd,
+ *current_time, *current_time_usec,
+ interval, &pre_int, &post_int,
+ &proc_pdp_cnt);
+
+ /* has a pdp_st moment occurred since the last run ? */
+ if (elapsed_pdp_st == 0) {
+ /* no we have not passed a pdp_st moment. therefore update is simple */
+ simple_update(rrd, interval, pdp_new);
+ } else {
+ /* an pdp_st has occurred. */
+ if (process_all_pdp_st(rrd, interval,
+ pre_int, post_int,
+ elapsed_pdp_st,
+ pdp_new, pdp_temp) == -1)
+ {
+ return -1;
+ }
+ if (update_all_cdp_prep(rrd, rra_step_cnt,
+ rra_begin, rrd_file,
+ elapsed_pdp_st,
+ proc_pdp_cnt,
+ &last_seasonal_coef,
+ &seasonal_coef,
+ pdp_temp, rra_current,
+ schedule_smooth) == -1)
+ {
+ goto err_free_coefficients;
+ }
+ if (update_aberrant_cdps(rrd, rrd_file, rra_begin, rra_current,
+ elapsed_pdp_st, pdp_temp, &seasonal_coef) == -1)
+ {
+ goto err_free_coefficients;
+ }
+ if (write_to_rras(rrd, rrd_file,
+ rra_step_cnt, rra_begin, rra_current,
+ *current_time, pcdp_summary) == -1)
+ {
+ goto err_free_coefficients;
+ }
+ } /* endif a pdp_st has occurred */
+ rrd->live_head->last_up = *current_time;
+ rrd->live_head->last_up_usec = *current_time_usec;
+
+ free(seasonal_coef);
+ free(last_seasonal_coef);
+ return 0;
+
+err_free_coefficients:
+ free(seasonal_coef);
+ free(last_seasonal_coef);
+ return -1;
+}
+
+/*
+ * Parse a DS string (time + colon-separated values), storing the
+ * results in current_time, current_time_usec, and updvals.
+ *
+ * Returns 0 on success, -1 on error.
+ */
+static int parse_ds(
+ rrd_t *rrd, char **updvals, long *tmpl_idx, char *input,
+ unsigned long tmpl_cnt, time_t *current_time,
+ unsigned long *current_time_usec, int version)
+{
+ char *p;
+ unsigned long i;
+ char timesyntax;
+
+ updvals[0] = input;
+ /* initialize all ds input to unknown except the first one
+ which has always got to be set */
+ for (i = 1; i <= rrd->stat_head->ds_cnt; i++)
+ updvals[i] = "U";
+
+ /* separate all ds elements; first must be examined separately
+ due to alternate time syntax */
+ if ((p = strchr(input, '@')) != NULL) {
+ timesyntax = '@';
+ } else if ((p = strchr(input, ':')) != NULL) {
+ timesyntax = ':';
+ } else {
+ rrd_set_error("expected timestamp not found in data source from %s",
+ input);
+ return -1;
+ }
+ *p = '\0';
+ i = 1;
+ updvals[tmpl_idx[i++]] = p+1;
+ while (*(++p)) {
+ if (*p == ':') {
+ *p = '\0';
+ if (i < tmpl_cnt) {
+ updvals[tmpl_idx[i++]] = p+1;
+ }
+ }
+ }
+
+ if (i != tmpl_cnt) {
+ rrd_set_error("expected %lu data source readings (got %lu) from %s",
+ tmpl_cnt - 1, i, input);
+ return -1;
+ }
+
+ if (get_time_from_reading(rrd, timesyntax, updvals,
+ current_time, current_time_usec,
+ version) == -1) {
+ return -1;
+ }
+ return 0;
+}
+
+/*
+ * Parse the time in a DS string, store it in current_time and
+ * current_time_usec and verify that it's later than the last
+ * update for this DS.
+ *
+ * Returns 0 on success, -1 on error.
+ */
+static int get_time_from_reading(
+ rrd_t *rrd, char timesyntax, char **updvals,
+ time_t *current_time, unsigned long *current_time_usec,
+ int version)
+{
+ double tmp;
+ char *parsetime_error = NULL;
+ char *old_locale;
+ struct rrd_time_value ds_tv;
+ struct timeval tmp_time; /* used for time conversion */
+
+ /* get the time from the reading ... handle N */
+ if (timesyntax == '@') { /* at-style */
+ if ((parsetime_error = parsetime(updvals[0], &ds_tv))) {
+ rrd_set_error("ds time: %s: %s", updvals[0], parsetime_error);
+ return -1;
+ }
+ if (ds_tv.type == RELATIVE_TO_END_TIME ||
+ ds_tv.type == RELATIVE_TO_START_TIME) {
+ rrd_set_error("specifying time relative to the 'start' "
+ "or 'end' makes no sense here: %s", updvals[0]);
+ return -1;
+ }
+ *current_time = mktime(&ds_tv.tm) + ds_tv.offset;
+ *current_time_usec = 0; /* FIXME: how to handle usecs here ? */
+ } else if (strcmp(updvals[0], "N") == 0) {
+ gettimeofday(&tmp_time, 0);
+ normalize_time(&tmp_time);
+ *current_time = tmp_time.tv_sec;
+ *current_time_usec = tmp_time.tv_usec;
+ } else {
+ old_locale = setlocale(LC_NUMERIC, "C");
+ tmp = strtod(updvals[0], 0);
+ setlocale(LC_NUMERIC, old_locale);
+ *current_time = floor(tmp);
+ *current_time_usec = (long) ((tmp - (double) *current_time) * 1e6f);
+ }
+ /* dont do any correction for old version RRDs */
+ if (version < 3)
+ *current_time_usec = 0;
+
+ if (*current_time < rrd->live_head->last_up ||
+ (*current_time == rrd->live_head->last_up &&
+ (long) *current_time_usec <=
+ (long) rrd->live_head->last_up_usec)) {
+ rrd_set_error("illegal attempt to update using time %ld when "
+ "last update time is %ld (minimum one second step)",
+ *current_time, rrd->live_head->last_up);
+ return -1;
+ }
+ return 0;
+}
+
+/*
+ * Update pdp_new by interpreting the updvals according to the DS type
+ * (COUNTER, GAUGE, etc.).
+ *
+ * Returns 0 on success, -1 on error.
+ */
+static int update_pdp_prep(
+ rrd_t *rrd, char **updvals,
+ rrd_value_t *pdp_new, double interval)
+{
+ unsigned long ds_idx;
+ int ii;
+ char *endptr; /* used in the conversion */
+ double rate;
+ char *old_locale;
+ enum dst_en dst_idx;
+
+ for (ds_idx = 0; ds_idx < rrd->stat_head->ds_cnt; ds_idx++) {
+ dst_idx = dst_conv(rrd->ds_def[ds_idx].dst);
+
+ /* make sure we do not build diffs with old last_ds values */
+ if (rrd->ds_def[ds_idx].par[DS_mrhb_cnt].u_cnt < interval) {
+ strncpy(rrd->pdp_prep[ds_idx].last_ds, "U", LAST_DS_LEN - 1);
+ rrd->pdp_prep[ds_idx].last_ds[LAST_DS_LEN - 1] = '\0';
+ }
+
+ /* NOTE: DST_CDEF should never enter this if block, because
+ * updvals[ds_idx+1][0] is initialized to 'U'; unless the caller
+ * accidently specified a value for the DST_CDEF. To handle this case,
+ * an extra check is required. */
+
+ if ((updvals[ds_idx+1][0] != 'U') &&
+ (dst_idx != DST_CDEF) &&
+ rrd->ds_def[ds_idx].par[DS_mrhb_cnt].u_cnt >= interval) {
+ rate = DNAN;
+
+ /* pdp_new contains rate * time ... eg the bytes transferred during
+ * the interval. Doing it this way saves a lot of math operations
+ */
+ switch (dst_idx) {
+ case DST_COUNTER:
+ case DST_DERIVE:
+ for (ii = 0; updvals[ds_idx + 1][ii] != '\0'; ii++) {
+ if ((updvals[ds_idx + 1][ii] < '0' || updvals[ds_idx + 1][ii] > '9')
+ && (ii != 0 && updvals[ds_idx + 1][ii] != '-')) {
+ rrd_set_error("not a simple integer: '%s'", updvals[ds_idx + 1]);
+ return -1;
+ }
+ }
+ if (rrd->pdp_prep[ds_idx].last_ds[0] != 'U') {
+ pdp_new[ds_idx] = rrd_diff(updvals[ds_idx+1], rrd->pdp_prep[ds_idx].last_ds);
+ if (dst_idx == DST_COUNTER) {
+ /* simple overflow catcher. This will fail
+ * terribly for non 32 or 64 bit counters
+ * ... are there any others in SNMP land?
+ */
+ if (pdp_new[ds_idx] < (double) 0.0)
+ pdp_new[ds_idx] += (double) 4294967296.0; /* 2^32 */
+ if (pdp_new[ds_idx] < (double) 0.0)
+ pdp_new[ds_idx] += (double) 18446744069414584320.0; /* 2^64-2^32 */
+ }
+ rate = pdp_new[ds_idx] / interval;
+ } else {
+ pdp_new[ds_idx] = DNAN;
+ }
break;
- }
- }
- if (rrd_test_error()) {
- break;
- }
- if (rrd.pdp_prep[i].last_ds[0] != 'U') {
- pdp_new[i] =
- rrd_diff(updvals[i + 1], rrd.pdp_prep[i].last_ds);
- if (dst_idx == DST_COUNTER) {
- /* simple overflow catcher suggested by Andres Kroonmaa */
- /* this will fail terribly for non 32 or 64 bit counters ... */
- /* are there any others in SNMP land ? */
- if (pdp_new[i] < (double) 0.0)
- pdp_new[i] += (double) 4294967296.0; /* 2^32 */
- if (pdp_new[i] < (double) 0.0)
- pdp_new[i] += (double) 18446744069414584320.0;
- /* 2^64-2^32 */ ;
- }
- rate = pdp_new[i] / interval;
- } else {
- pdp_new[i] = DNAN;
- }
- break;
- case DST_ABSOLUTE:
- old_locale = setlocale(LC_NUMERIC, "C");
- errno = 0;
- pdp_new[i] = strtod(updvals[i + 1], &endptr);
- setlocale(LC_NUMERIC, old_locale);
- if (errno > 0) {
- rrd_set_error("converting '%s' to float: %s",
- updvals[i + 1], rrd_strerror(errno));
- break;
- };
- if (endptr[0] != '\0') {
- rrd_set_error
- ("conversion of '%s' to float not complete: tail '%s'",
- updvals[i + 1], endptr);
- break;
- }
- rate = pdp_new[i] / interval;
- break;
- case DST_GAUGE:
- errno = 0;
- old_locale = setlocale(LC_NUMERIC, "C");
- pdp_new[i] = strtod(updvals[i + 1], &endptr) * interval;
- setlocale(LC_NUMERIC, old_locale);
- if (errno > 0) {
- rrd_set_error("converting '%s' to float: %s",
- updvals[i + 1], rrd_strerror(errno));
- break;
- };
- if (endptr[0] != '\0') {
- rrd_set_error
- ("conversion of '%s' to float not complete: tail '%s'",
- updvals[i + 1], endptr);
- break;
- }
- rate = pdp_new[i] / interval;
- break;
- default:
- rrd_set_error("rrd contains unknown DS type : '%s'",
- rrd.ds_def[i].dst);
- break;
- }
- /* break out of this for loop if the error string is set */
- if (rrd_test_error()) {
- break;
- }
- /* make sure pdp_temp is neither too large or too small
- * if any of these occur it becomes unknown ...
- * sorry folks ... */
- if (!isnan(rate) &&
- ((!isnan(rrd.ds_def[i].par[DS_max_val].u_val) &&
- rate > rrd.ds_def[i].par[DS_max_val].u_val) ||
- (!isnan(rrd.ds_def[i].par[DS_min_val].u_val) &&
- rate < rrd.ds_def[i].par[DS_min_val].u_val))) {
- pdp_new[i] = DNAN;
- }
- } else {
- /* no news is news all the same */
- pdp_new[i] = DNAN;
+ case DST_ABSOLUTE:
+ old_locale = setlocale(LC_NUMERIC, "C");
+ errno = 0;
+ pdp_new[ds_idx] = strtod(updvals[ds_idx + 1], &endptr);
+ setlocale(LC_NUMERIC, old_locale);
+ if (errno > 0) {
+ rrd_set_error("converting '%s' to float: %s",
+ updvals[ds_idx + 1], rrd_strerror(errno));
+ return -1;
+ };
+ if (endptr[0] != '\0') {
+ rrd_set_error("conversion of '%s' to float not complete: tail '%s'",
+ updvals[ds_idx + 1], endptr);
+ return -1;
+ }
+ rate = pdp_new[ds_idx] / interval;
+ break;
+ case DST_GAUGE:
+ errno = 0;
+ old_locale = setlocale(LC_NUMERIC, "C");
+ pdp_new[ds_idx] = strtod(updvals[ds_idx + 1], &endptr) * interval;
+ setlocale(LC_NUMERIC, old_locale);
+ if (errno) {
+ rrd_set_error("converting '%s' to float: %s",
+ updvals[ds_idx + 1], rrd_strerror(errno));
+ return -1;
+ };
+ if (endptr[0] != '\0') {
+ rrd_set_error("conversion of '%s' to float not complete: tail '%s'",
+ updvals[ds_idx + 1], endptr);
+ return -1;
+ }
+ rate = pdp_new[ds_idx] / interval;
+ break;
+ default:
+ rrd_set_error("rrd contains unknown DS type : '%s'",
+ rrd->ds_def[ds_idx].dst);
+ return -1;
+ }
+ /* break out of this for loop if the error string is set */
+ if (rrd_test_error()) {
+ return -1;
+ }
+ /* make sure pdp_temp is neither too large or too small
+ * if any of these occur it becomes unknown ...
+ * sorry folks ... */
+ if (!isnan(rate) &&
+ ((!isnan(rrd->ds_def[ds_idx].par[DS_max_val].u_val) &&
+ rate > rrd->ds_def[ds_idx].par[DS_max_val].u_val) ||
+ (!isnan(rrd->ds_def[ds_idx].par[DS_min_val].u_val) &&
+ rate < rrd->ds_def[ds_idx].par[DS_min_val].u_val))) {
+ pdp_new[ds_idx] = DNAN;
}
+ } else {
+ /* no news is news all the same */
+ pdp_new[ds_idx] = DNAN;
+ }
- /* make a copy of the command line argument for the next run */
+ /* make a copy of the command line argument for the next run */
#ifdef DEBUG
- fprintf(stderr,
- "prep ds[%lu]\t"
- "last_arg '%s'\t"
- "this_arg '%s'\t"
- "pdp_new %10.2f\n",
- i, rrd.pdp_prep[i].last_ds, updvals[i + 1], pdp_new[i]);
+ fprintf(stderr, "prep ds[%lu]\t"
+ "last_arg '%s'\t"
+ "this_arg '%s'\t"
+ "pdp_new %10.2f\n",
+ ds_idx, rrd->pdp_prep[ds_idx].last_ds, updvals[ds_idx+1], pdp_new[ds_idx]);
#endif
- strncpy(rrd.pdp_prep[i].last_ds, updvals[i + 1], LAST_DS_LEN - 1);
- rrd.pdp_prep[i].last_ds[LAST_DS_LEN - 1] = '\0';
- }
- /* break out of the argument parsing loop if the error_string is set */
- if (rrd_test_error()) {
- free(step_start);
- break;
+ strncpy(rrd->pdp_prep[ds_idx].last_ds, updvals[ds_idx+1], LAST_DS_LEN - 1);
+ rrd->pdp_prep[ds_idx].last_ds[LAST_DS_LEN-1] = '\0';
+ }
+ return 0;
+}
+
+/*
+ * How many PDP steps have elapsed since the last update? Returns the answer,
+ * and stores the time between the last update and the last PDP in pre_time,
+ * and the time between the last PDP and the current time in post_int.
+ */
+static int calculate_elapsed_steps(
+ rrd_t *rrd,
+ unsigned long current_time,
+ unsigned long current_time_usec,
+ double interval,
+ double *pre_int,
+ double *post_int,
+ unsigned long *proc_pdp_cnt)
+{
+
+ unsigned long proc_pdp_st; /* which pdp_st was the last
+ * to be processed */
+ unsigned long occu_pdp_st; /* when was the pdp_st
+ * before the last update
+ * time */
+ unsigned long proc_pdp_age; /* how old was the data in
+ * the pdp prep area when it
+ * was last updated */
+ unsigned long occu_pdp_age; /* how long ago was the last
+ * pdp_step time */
+
+ /* when was the current pdp started */
+ proc_pdp_age = rrd->live_head->last_up % rrd->stat_head->pdp_step;
+ proc_pdp_st = rrd->live_head->last_up - proc_pdp_age;
+
+ /* when did the last pdp_st occur */
+ occu_pdp_age = current_time % rrd->stat_head->pdp_step;
+ occu_pdp_st = current_time - occu_pdp_age;
+
+ if (occu_pdp_st > proc_pdp_st) {
+ /* OK we passed the pdp_st moment */
+ *pre_int = (long) occu_pdp_st - rrd->live_head->last_up; /* how much of the input data
+ * occurred before the latest
+ * pdp_st moment*/
+ *pre_int -= ((double) rrd->live_head->last_up_usec) / 1e6f; /* adjust usecs */
+ *post_int = occu_pdp_age; /* how much after it */
+ *post_int += ((double) current_time_usec) / 1e6f; /* adjust usecs */
+ } else {
+ *pre_int = interval;
+ *post_int = 0;
+ }
+
+ *proc_pdp_cnt = proc_pdp_st / rrd->stat_head->pdp_step;
+
+#ifdef DEBUG
+ printf("proc_pdp_age %lu\t"
+ "proc_pdp_st %lu\t"
+ "occu_pfp_age %lu\t"
+ "occu_pdp_st %lu\t"
+ "int %lf\t"
+ "pre_int %lf\t"
+ "post_int %lf\n", proc_pdp_age, proc_pdp_st,
+ occu_pdp_age, occu_pdp_st, interval, *pre_int, *post_int);
+#endif
+
+ /* compute the number of elapsed pdp_st moments */
+ return (occu_pdp_st - proc_pdp_st) / rrd->stat_head->pdp_step;
+}
+
+/*
+ * Increment the PDP values by the values in pdp_new, or else initialize them.
+ */
+static void simple_update(
+ rrd_t *rrd, double interval, rrd_value_t *pdp_new)
+{
+ int i;
+ for (i = 0; i < (signed)rrd->stat_head->ds_cnt; i++) {
+ if (isnan(pdp_new[i])) {
+ /* this is not really accurate if we use subsecond data arrival time
+ should have thought of it when going subsecond resolution ...
+ sorry next format change we will have it! */
+ rrd->pdp_prep[i].scratch[PDP_unkn_sec_cnt].u_cnt += floor(interval);
+ } else {
+ if (isnan(rrd->pdp_prep[i].scratch[PDP_val].u_val)) {
+ rrd->pdp_prep[i].scratch[PDP_val].u_val = pdp_new[i];
+ } else {
+ rrd->pdp_prep[i].scratch[PDP_val].u_val += pdp_new[i];
+ }
}
- /* has a pdp_st moment occurred since the last run ? */
-
- if (proc_pdp_st == occu_pdp_st) {
- /* no we have not passed a pdp_st moment. therefore update is simple */
-
- for (i = 0; i < rrd.stat_head->ds_cnt; i++) {
- if (isnan(pdp_new[i])) {
- /* this is not realy accurate if we use subsecond data arival time
- should have thought of it when going subsecond resolution ...
- sorry next format change we will have it! */
- rrd.pdp_prep[i].scratch[PDP_unkn_sec_cnt].u_cnt +=
- floor(interval);
- } else {
- if (isnan(rrd.pdp_prep[i].scratch[PDP_val].u_val)) {
- rrd.pdp_prep[i].scratch[PDP_val].u_val = pdp_new[i];
- } else {
- rrd.pdp_prep[i].scratch[PDP_val].u_val += pdp_new[i];
- }
- }
#ifdef DEBUG
- fprintf(stderr,
- "NO PDP ds[%lu]\t"
+ fprintf(stderr,
+ "NO PDP ds[%i]\t"
"value %10.2f\t"
"unkn_sec %5lu\n",
i,
- rrd.pdp_prep[i].scratch[PDP_val].u_val,
- rrd.pdp_prep[i].scratch[PDP_unkn_sec_cnt].u_cnt);
+ rrd->pdp_prep[i].scratch[PDP_val].u_val,
+ rrd->pdp_prep[i].scratch[PDP_unkn_sec_cnt].u_cnt);
#endif
- }
- } else {
- /* an pdp_st has occurred. */
-
- /* in pdp_prep[].scratch[PDP_val].u_val we have collected
- rate*seconds which occurred up to the last run.
- pdp_new[] contains rate*seconds from the latest run.
- pdp_temp[] will contain the rate for cdp */
-
- for (i = 0; i < rrd.stat_head->ds_cnt; i++) {
- /* update pdp_prep to the current pdp_st. */
- double pre_unknown = 0.0;
-
- if (isnan(pdp_new[i])) {
- /* a final bit of unkonwn to be added bevore calculation
- we use a temporary variable for this so that we
- don't have to turn integer lines before using the value */
- pre_unknown = pre_int;
- } else {
- if (isnan(rrd.pdp_prep[i].scratch[PDP_val].u_val)) {
- rrd.pdp_prep[i].scratch[PDP_val].u_val =
- pdp_new[i] / interval * pre_int;
- } else {
- rrd.pdp_prep[i].scratch[PDP_val].u_val +=
- pdp_new[i] / interval * pre_int;
- }
- }
-
-
- /* if too much of the pdp_prep is unknown we dump it */
- if (
- /* removed because this does not agree with the
- definition that a heartbeat can be unknown */
- /* (rrd.pdp_prep[i].scratch[PDP_unkn_sec_cnt].u_cnt
- > rrd.ds_def[i].par[DS_mrhb_cnt].u_cnt) || */
- /* if the interval is larger thatn mrhb we get NAN */
- (interval > rrd.ds_def[i].par[DS_mrhb_cnt].u_cnt) ||
- (occu_pdp_st - proc_pdp_st <=
- rrd.pdp_prep[i].scratch[PDP_unkn_sec_cnt].u_cnt)) {
- pdp_temp[i] = DNAN;
- } else {
- pdp_temp[i] = rrd.pdp_prep[i].scratch[PDP_val].u_val
- / ((double) (occu_pdp_st - proc_pdp_st
- -
- rrd.pdp_prep[i].
- scratch[PDP_unkn_sec_cnt].u_cnt)
- - pre_unknown);
- }
-
- /* process CDEF data sources; remember each CDEF DS can
- * only reference other DS with a lower index number */
- if (dst_conv(rrd.ds_def[i].dst) == DST_CDEF) {
- rpnp_t *rpnp;
-
- rpnp =
- rpn_expand((rpn_cdefds_t *) &
- (rrd.ds_def[i].par[DS_cdef]));
- /* substitue data values for OP_VARIABLE nodes */
- for (ii = 0; rpnp[ii].op != OP_END; ii++) {
- if (rpnp[ii].op == OP_VARIABLE) {
- rpnp[ii].op = OP_NUMBER;
- rpnp[ii].val = pdp_temp[rpnp[ii].ptr];
- }
- }
- /* run the rpn calculator */
- if (rpn_calc(rpnp, &rpnstack, 0, pdp_temp, i) == -1) {
- free(rpnp);
- break; /* exits the data sources pdp_temp loop */
- }
- }
+ }
+}
- /* make pdp_prep ready for the next run */
- if (isnan(pdp_new[i])) {
- /* this is not realy accurate if we use subsecond data arival time
- should have thought of it when going subsecond resolution ...
- sorry next format change we will have it! */
- rrd.pdp_prep[i].scratch[PDP_unkn_sec_cnt].u_cnt =
- floor(post_int);
- rrd.pdp_prep[i].scratch[PDP_val].u_val = DNAN;
- } else {
- rrd.pdp_prep[i].scratch[PDP_unkn_sec_cnt].u_cnt = 0;
- rrd.pdp_prep[i].scratch[PDP_val].u_val =
- pdp_new[i] / interval * post_int;
- }
+/*
+ * Call process_pdp_st for each DS.
+ *
+ * Returns 0 on success, -1 on error.
+ */
+static int process_all_pdp_st(
+ rrd_t *rrd, double interval, double pre_int, double post_int,
+ unsigned long elapsed_pdp_st, rrd_value_t *pdp_new, rrd_value_t *pdp_temp)
+{
+ unsigned long ds_idx;
+ /* in pdp_prep[].scratch[PDP_val].u_val we have collected
+ rate*seconds which occurred up to the last run.
+ pdp_new[] contains rate*seconds from the latest run.
+ pdp_temp[] will contain the rate for cdp */
+ for (ds_idx = 0; ds_idx < rrd->stat_head->ds_cnt; ds_idx++) {
+ if (process_pdp_st(rrd, ds_idx, interval, pre_int, post_int,
+ elapsed_pdp_st * rrd->stat_head->pdp_step,
+ pdp_new, pdp_temp) == -1) {
+ return -1;
+ }
#ifdef DEBUG
- fprintf(stderr,
- "PDP UPD ds[%lu]\t"
+ fprintf(stderr, "PDP UPD ds[%lu]\t"
"pdp_temp %10.2f\t"
"new_prep %10.2f\t"
"new_unkn_sec %5lu\n",
- i, pdp_temp[i],
- rrd.pdp_prep[i].scratch[PDP_val].u_val,
- rrd.pdp_prep[i].scratch[PDP_unkn_sec_cnt].u_cnt);
+ ds_idx, pdp_temp[ds_idx],
+ rrd->pdp_prep[ds_idx].scratch[PDP_val].u_val,
+ rrd->pdp_prep[ds_idx].scratch[PDP_unkn_sec_cnt].u_cnt);
#endif
- }
+ }
+ return 0;
+}
- /* if there were errors during the last loop, bail out here */
- if (rrd_test_error()) {
- free(step_start);
- break;
+/*
+ * Process an update that occurs after one of the PDP moments.
+ * Increments the PDP value, sets NAN if time greater than the
+ * heartbeats have elapsed, processes CDEFs.
+ *
+ * Returns 0 on success, -1 on error.
+ */
+static int process_pdp_st(rrd_t *rrd, unsigned long ds_idx, double interval,
+ double pre_int, double post_int, long diff_pdp_st,
+ rrd_value_t *pdp_new, rrd_value_t *pdp_temp)
+{
+ int i;
+ /* update pdp_prep to the current pdp_st. */
+ double pre_unknown = 0.0;
+ unival *scratch = rrd->pdp_prep[ds_idx].scratch;
+ unsigned long mrhb = rrd->ds_def[ds_idx].par[DS_mrhb_cnt].u_cnt;
+
+ rpnstack_t rpnstack; /* used for COMPUTE DS */
+ rpnstack_init(&rpnstack);
+
+
+ if (isnan(pdp_new[ds_idx])) {
+ /* a final bit of unknown to be added bevore calculation
+ we use a temporary variable for this so that we
+ don't have to turn integer lines before using the value */
+ pre_unknown = pre_int;
+ } else {
+ if (isnan(scratch[PDP_val].u_val)) {
+ scratch[PDP_val].u_val = 0;
+ }
+ scratch[PDP_val].u_val += pdp_new[ds_idx] / interval * pre_int;
+ }
+
+ /* if too much of the pdp_prep is unknown we dump it */
+ /* if the interval is larger thatn mrhb we get NAN */
+ if ((interval > mrhb) ||
+ (diff_pdp_st <= (signed)scratch[PDP_unkn_sec_cnt].u_cnt)) {
+ pdp_temp[ds_idx] = DNAN;
+ } else {
+ pdp_temp[ds_idx] = scratch[PDP_val].u_val /
+ ((double) (diff_pdp_st - scratch[PDP_unkn_sec_cnt].u_cnt) - pre_unknown);
+ }
+
+ /* process CDEF data sources; remember each CDEF DS can
+ * only reference other DS with a lower index number */
+ if (dst_conv(rrd->ds_def[ds_idx].dst) == DST_CDEF) {
+ rpnp_t *rpnp;
+
+ rpnp = rpn_expand((rpn_cdefds_t *)&(rrd->ds_def[ds_idx].par[DS_cdef]));
+ /* substitute data values for OP_VARIABLE nodes */
+ for (i = 0; rpnp[i].op != OP_END; i++) {
+ if (rpnp[i].op == OP_VARIABLE) {
+ rpnp[i].op = OP_NUMBER;
+ rpnp[i].val = pdp_temp[rpnp[i].ptr];
}
+ }
+ /* run the rpn calculator */
+ if (rpn_calc(rpnp, &rpnstack, 0, pdp_temp, ds_idx) == -1) {
+ free(rpnp);
+ rpnstack_free(&rpnstack);
+ return -1;
+ }
+ }
- /* compute the number of elapsed pdp_st moments */
- elapsed_pdp_st =
- (occu_pdp_st - proc_pdp_st) / rrd.stat_head->pdp_step;
+ /* make pdp_prep ready for the next run */
+ if (isnan(pdp_new[ds_idx])) {
+ /* this is not realy accurate if we use subsecond data arival time
+ should have thought of it when going subsecond resolution ...
+ sorry next format change we will have it! */
+ scratch[PDP_unkn_sec_cnt].u_cnt = floor(post_int);
+ scratch[PDP_val].u_val = DNAN;
+ } else {
+ scratch[PDP_unkn_sec_cnt].u_cnt = 0;
+ scratch[PDP_val].u_val = pdp_new[ds_idx] / interval * post_int;
+ }
+ rpnstack_free(&rpnstack);
+ return 0;
+}
+
+/*
+ * Iterate over all the RRAs for a given DS and:
+ * 1. Decide whether to schedule a smooth later
+ * 2. Shift the seasonal array if it's a bulk update
+ * 3. Update the CDP
+ *
+ * Returns 0 on success, -1 on error
+ */
+static int update_all_cdp_prep(
+ rrd_t *rrd, unsigned long *rra_step_cnt, unsigned long rra_begin,
+ rrd_file_t *rrd_file, unsigned long elapsed_pdp_st, unsigned long proc_pdp_cnt,
+ rrd_value_t **last_seasonal_coef, rrd_value_t **seasonal_coef,
+ rrd_value_t *pdp_temp, unsigned long *rra_current, int *schedule_smooth)
+{
+ unsigned long rra_idx;
+ /* index into the CDP scratch array */
+ enum cf_en current_cf;
+ unsigned long rra_start;
+ /* number of rows to be updated in an RRA for a data value. */
+ unsigned long start_pdp_offset;
+
+ rra_start = rra_begin;
+ for (rra_idx = 0; rra_idx < rrd->stat_head->rra_cnt; rra_idx++) {
+ current_cf = cf_conv(rrd->rra_def[rra_idx].cf_nam);
+ start_pdp_offset = rrd->rra_def[rra_idx].pdp_cnt - proc_pdp_cnt % rrd->rra_def[rra_idx].pdp_cnt;
+ if (start_pdp_offset <= elapsed_pdp_st) {
+ rra_step_cnt[rra_idx] = (elapsed_pdp_st - start_pdp_offset) /
+ rrd->rra_def[rra_idx].pdp_cnt + 1;
+ } else {
+ rra_step_cnt[rra_idx] = 0;
+ }
+
+ if (current_cf == CF_SEASONAL || current_cf == CF_DEVSEASONAL) {
+ /* If this is a bulk update, we need to skip ahead in the seasonal arrays
+ * so that they will be correct for the next observed value; note that for
+ * the bulk update itself, no update will occur to DEVSEASONAL or SEASONAL;
+ * futhermore, HWPREDICT and DEVPREDICT will be set to DNAN. */
+ if (rra_step_cnt[rra_idx] > 2) {
+ /* skip update by resetting rra_step_cnt[rra_idx], note that this is not data
+ * source specific; this is due to the bulk update, not a DNAN value
+ * for the specific data source. */
+ rra_step_cnt[rra_idx] = 0;
+ lookup_seasonal(rrd, rra_idx, rra_start, rrd_file,
+ elapsed_pdp_st, last_seasonal_coef);
+ lookup_seasonal(rrd, rra_idx, rra_start, rrd_file,
+ elapsed_pdp_st + 1, seasonal_coef);
+ }
+ /* periodically run a smoother for seasonal effects */
+ if (do_schedule_smooth(rrd, rra_idx, elapsed_pdp_st)) {
#ifdef DEBUG
- fprintf(stderr, "elapsed PDP steps: %lu\n", elapsed_pdp_st);
+ fprintf(stderr, "schedule_smooth: cur_row %lu, elapsed_pdp_st %lu, smooth idx %lu\n",
+ rrd->rra_ptr[rra_idx].cur_row, elapsed_pdp_st,
+ rrd->rra_def[rra_idx].par[RRA_seasonal_smooth_idx].u_cnt);
#endif
- if (rra_step_cnt == NULL) {
- rra_step_cnt = (unsigned long *)
- malloc((rrd.stat_head->rra_cnt) * sizeof(unsigned long));
+ *schedule_smooth = 1;
}
+ *rra_current = rrd_tell(rrd_file);
+ }
+ /* if cf is DEVSEASONAL or SEASONAL */
+ if (rrd_test_error())
+ return -1;
+
+ if (update_cdp_prep(rrd, elapsed_pdp_st, start_pdp_offset, rra_step_cnt,
+ rra_idx, pdp_temp, *last_seasonal_coef, *seasonal_coef,
+ current_cf) == -1) {
+ return -1;
+ }
+ rra_start += rrd->rra_def[rra_idx].row_cnt * rrd->stat_head->ds_cnt * sizeof(rrd_value_t);
+ }
+ return 0;
+}
- for (i = 0, rra_start = rra_begin;
- i < rrd.stat_head->rra_cnt;
- rra_start +=
- rrd.rra_def[i].row_cnt * rrd.stat_head->ds_cnt *
- sizeof(rrd_value_t), i++) {
- current_cf = cf_conv(rrd.rra_def[i].cf_nam);
- start_pdp_offset = rrd.rra_def[i].pdp_cnt -
- (proc_pdp_st / rrd.stat_head->pdp_step) %
- rrd.rra_def[i].pdp_cnt;
- if (start_pdp_offset <= elapsed_pdp_st) {
- rra_step_cnt[i] = (elapsed_pdp_st - start_pdp_offset) /
- rrd.rra_def[i].pdp_cnt + 1;
- } else {
- rra_step_cnt[i] = 0;
- }
+/*
+ * Are we due for a smooth? Also increments our position in the burn-in cycle.
+ */
+static int do_schedule_smooth(
+ rrd_t *rrd, unsigned long rra_idx,
+ unsigned long elapsed_pdp_st)
+{
+ unsigned long cdp_idx = rra_idx * (rrd->stat_head->ds_cnt);
+ unsigned long cur_row = rrd->rra_ptr[rra_idx].cur_row;
+ unsigned long row_cnt = rrd->rra_def[rra_idx].row_cnt;
+ unsigned long seasonal_smooth_idx = rrd->rra_def[rra_idx].par[RRA_seasonal_smooth_idx].u_cnt;
+ unsigned long *init_seasonal = &(rrd->cdp_prep[cdp_idx].scratch[CDP_init_seasonal].u_cnt);
+
+ /* Need to use first cdp parameter buffer to track burnin (burnin requires
+ * a specific smoothing schedule). The CDP_init_seasonal parameter is
+ * really an RRA level, not a data source within RRA level parameter, but
+ * the rra_def is read only for rrd_update (not flushed to disk). */
+ if (*init_seasonal > BURNIN_CYCLES) {
+ /* someone has no doubt invented a trick to deal with this wrap around,
+ * but at least this code is clear. */
+ if (seasonal_smooth_idx > cur_row) {
+ /* here elapsed_pdp_st = rra_step_cnt[rra_idx] because of 1-1 mapping
+ * between PDP and CDP */
+ return (cur_row + elapsed_pdp_st >= seasonal_smooth_idx);
+ }
+ /* can't rely on negative numbers because we are working with
+ * unsigned values */
+ return (cur_row + elapsed_pdp_st >= row_cnt
+ && cur_row + elapsed_pdp_st >= row_cnt + seasonal_smooth_idx);
+ }
+ /* mark off one of the burn-in cycles */
+ return (cur_row + elapsed_pdp_st >= row_cnt && ++(*init_seasonal));
+}
- if (current_cf == CF_SEASONAL || current_cf == CF_DEVSEASONAL) {
- /* If this is a bulk update, we need to skip ahead in
- the seasonal arrays so that they will be correct for
- the next observed value;
- note that for the bulk update itself, no update will
- occur to DEVSEASONAL or SEASONAL; futhermore, HWPREDICT
- and DEVPREDICT will be set to DNAN. */
- if (rra_step_cnt[i] > 2) {
- /* skip update by resetting rra_step_cnt[i],
- note that this is not data source specific; this is
- due to the bulk update, not a DNAN value for the
- specific data source. */
- rra_step_cnt[i] = 0;
- lookup_seasonal(&rrd, i, rra_start, rrd_file,
- elapsed_pdp_st, &last_seasonal_coef);
- lookup_seasonal(&rrd, i, rra_start, rrd_file,
- elapsed_pdp_st + 1, &seasonal_coef);
- }
+/*
+ * For a given RRA, iterate over the data sources and call the appropriate
+ * consolidation function.
+ *
+ * Returns 0 on success, -1 on error.
+ */
+static int update_cdp_prep(
+ rrd_t *rrd,
+ unsigned long elapsed_pdp_st,
+ unsigned long start_pdp_offset,
+ unsigned long *rra_step_cnt,
+ int rra_idx,
+ rrd_value_t *pdp_temp,
+ rrd_value_t *last_seasonal_coef,
+ rrd_value_t *seasonal_coef,
+ int current_cf)
+{
+ unsigned long ds_idx, cdp_idx;
+ /* update CDP_PREP areas */
+ /* loop over data soures within each RRA */
+ for (ds_idx = 0; ds_idx < rrd->stat_head->ds_cnt; ds_idx++) {
- /* periodically run a smoother for seasonal effects */
- /* Need to use first cdp parameter buffer to track
- * burnin (burnin requires a specific smoothing schedule).
- * The CDP_init_seasonal parameter is really an RRA level,
- * not a data source within RRA level parameter, but the rra_def
- * is read only for rrd_update (not flushed to disk). */
- iii = i * (rrd.stat_head->ds_cnt);
- if (rrd.cdp_prep[iii].scratch[CDP_init_seasonal].u_cnt
- <= BURNIN_CYCLES) {
- if (rrd.rra_ptr[i].cur_row + elapsed_pdp_st
- > rrd.rra_def[i].row_cnt - 1) {
- /* mark off one of the burnin cycles */
- ++(rrd.cdp_prep[iii].scratch[CDP_init_seasonal].
- u_cnt);
- schedule_smooth = 1;
- }
- } else {
- /* someone has no doubt invented a trick to deal with this
- * wrap around, but at least this code is clear. */
- if (rrd.rra_def[i].par[RRA_seasonal_smooth_idx].
- u_cnt > rrd.rra_ptr[i].cur_row) {
- /* here elapsed_pdp_st = rra_step_cnt[i] because of 1-1
- * mapping between PDP and CDP */
- if (rrd.rra_ptr[i].cur_row + elapsed_pdp_st
- >=
- rrd.rra_def[i].par[RRA_seasonal_smooth_idx].
- u_cnt) {
-#ifdef DEBUG
- fprintf(stderr,
- "schedule_smooth 1: cur_row %lu, elapsed_pdp_st %lu, smooth idx %lu\n",
- rrd.rra_ptr[i].cur_row,
- elapsed_pdp_st,
- rrd.rra_def[i].
- par[RRA_seasonal_smooth_idx].u_cnt);
-#endif
- schedule_smooth = 1;
- }
- } else {
- /* can't rely on negative numbers because we are working with
- * unsigned values */
- /* Don't need modulus here. If we've wrapped more than once, only
- * one smooth is executed at the end. */
- if (rrd.rra_ptr[i].cur_row + elapsed_pdp_st >=
- rrd.rra_def[i].row_cnt
- && rrd.rra_ptr[i].cur_row + elapsed_pdp_st -
- rrd.rra_def[i].row_cnt >=
- rrd.rra_def[i].par[RRA_seasonal_smooth_idx].
- u_cnt) {
-#ifdef DEBUG
- fprintf(stderr,
- "schedule_smooth 2: cur_row %lu, elapsed_pdp_st %lu, smooth idx %lu\n",
- rrd.rra_ptr[i].cur_row,
- elapsed_pdp_st,
- rrd.rra_def[i].
- par[RRA_seasonal_smooth_idx].u_cnt);
-#endif
- schedule_smooth = 1;
- }
- }
- }
+ cdp_idx = rra_idx * rrd->stat_head->ds_cnt + ds_idx;
+
+ if (rrd->rra_def[rra_idx].pdp_cnt > 1) {
+ update_cdp(rrd->cdp_prep[cdp_idx].scratch, current_cf,
+ pdp_temp[ds_idx], rra_step_cnt[rra_idx],
+ elapsed_pdp_st, start_pdp_offset,
+ rrd->rra_def[rra_idx].pdp_cnt,
+ rrd->rra_def[rra_idx].par[RRA_cdp_xff_val].u_val, rra_idx, ds_idx);
+ } else {
+ /* Nothing to consolidate if there's one PDP per CDP. However, if
+ * we've missed some PDPs, let's update null counters etc. */
+ if (elapsed_pdp_st > 2) {
+ reset_cdp(rrd, elapsed_pdp_st, pdp_temp, last_seasonal_coef, seasonal_coef,
+ rra_idx, ds_idx, cdp_idx, current_cf);
+ }
+ }
- rra_current = rrd_tell(rrd_file);
- }
- /* if cf is DEVSEASONAL or SEASONAL */
- if (rrd_test_error())
- break;
+ if (rrd_test_error())
+ return -1;
+ } /* endif data sources loop */
+ return 0;
+}
- /* update CDP_PREP areas */
- /* loop over data soures within each RRA */
- for (ii = 0; ii < rrd.stat_head->ds_cnt; ii++) {
-
- /* iii indexes the CDP prep area for this data source within the RRA */
- iii = i * rrd.stat_head->ds_cnt + ii;
-
- if (rrd.rra_def[i].pdp_cnt > 1) {
-
- if (rra_step_cnt[i] > 0) {
- /* If we are in this block, as least 1 CDP value will be written to
- * disk, this is the CDP_primary_val entry. If more than 1 value needs
- * to be written, then the "fill in" value is the CDP_secondary_val
- * entry. */
- if (isnan(pdp_temp[ii])) {
- rrd.cdp_prep[iii].scratch[CDP_unkn_pdp_cnt].
- u_cnt += start_pdp_offset;
- rrd.cdp_prep[iii].scratch[CDP_secondary_val].
- u_val = DNAN;
- } else {
- /* CDP_secondary value is the RRA "fill in" value for intermediary
- * CDP data entries. No matter the CF, the value is the same because
- * the average, max, min, and last of a list of identical values is
- * the same, namely, the value itself. */
- rrd.cdp_prep[iii].scratch[CDP_secondary_val].
- u_val = pdp_temp[ii];
- }
+/*
+ * Given the new reading (pdp_temp_val), update or initialize the CDP value,
+ * primary value, secondary value, and # of unknowns.
+ */
+static void update_cdp(
+ unival *scratch,
+ int current_cf,
+ rrd_value_t pdp_temp_val,
+ unsigned long rra_step_cnt,
+ unsigned long elapsed_pdp_st,
+ unsigned long start_pdp_offset,
+ unsigned long pdp_cnt,
+ rrd_value_t xff,
+ int i, int ii)
+{
+ /* shorthand variables */
+ rrd_value_t *cdp_val = &scratch[CDP_val].u_val;
+ rrd_value_t *cdp_primary_val = &scratch[CDP_primary_val].u_val;
+ rrd_value_t *cdp_secondary_val = &scratch[CDP_secondary_val].u_val;
+ unsigned long *cdp_unkn_pdp_cnt = &scratch[CDP_unkn_pdp_cnt].u_cnt;
+
+ if (rra_step_cnt) {
+ /* If we are in this block, as least 1 CDP value will be written to
+ * disk, this is the CDP_primary_val entry. If more than 1 value needs
+ * to be written, then the "fill in" value is the CDP_secondary_val
+ * entry. */
+ if (isnan(pdp_temp_val)) {
+ *cdp_unkn_pdp_cnt += start_pdp_offset;
+ *cdp_secondary_val = DNAN;
+ } else {
+ /* CDP_secondary value is the RRA "fill in" value for intermediary
+ * CDP data entries. No matter the CF, the value is the same because
+ * the average, max, min, and last of a list of identical values is
+ * the same, namely, the value itself. */
+ *cdp_secondary_val = pdp_temp_val;
+ }
+
+ if (*cdp_unkn_pdp_cnt > pdp_cnt * xff) {
+ *cdp_primary_val = DNAN;
+ if (current_cf == CF_AVERAGE) {
+ *cdp_val = initialize_average_carry_over(pdp_temp_val, elapsed_pdp_st,
+ start_pdp_offset, pdp_cnt);
+ } else {
+ *cdp_val = pdp_temp_val;
+ }
+ } else {
+ initialize_cdp_val(scratch, current_cf, pdp_temp_val,
+ elapsed_pdp_st, start_pdp_offset, pdp_cnt);
+ } /* endif meets xff value requirement for a valid value */
+ /* initialize carry over CDP_unkn_pdp_cnt, this must after CDP_primary_val
+ * is set because CDP_unkn_pdp_cnt is required to compute that value. */
+ if (isnan(pdp_temp_val))
+ *cdp_unkn_pdp_cnt = (elapsed_pdp_st - start_pdp_offset) % pdp_cnt;
+ else
+ *cdp_unkn_pdp_cnt = 0;
+ } else { /* rra_step_cnt[i] == 0 */
- if (rrd.cdp_prep[iii].scratch[CDP_unkn_pdp_cnt].
- u_cnt >
- rrd.rra_def[i].pdp_cnt *
- rrd.rra_def[i].par[RRA_cdp_xff_val].u_val) {
- rrd.cdp_prep[iii].scratch[CDP_primary_val].
- u_val = DNAN;
- /* initialize carry over */
- if (current_cf == CF_AVERAGE) {
- if (isnan(pdp_temp[ii])) {
- rrd.cdp_prep[iii].scratch[CDP_val].
- u_val = DNAN;
- } else {
- rrd.cdp_prep[iii].scratch[CDP_val].
- u_val =
- pdp_temp[ii] *
- ((elapsed_pdp_st -
- start_pdp_offset) %
- rrd.rra_def[i].pdp_cnt);
- }
- } else {
- rrd.cdp_prep[iii].scratch[CDP_val].u_val =
- pdp_temp[ii];
- }
- } else {
- rrd_value_t cum_val, cur_val;
-
- switch (current_cf) {
- case CF_AVERAGE:
- cum_val =
- IFDNAN(rrd.cdp_prep[iii].
- scratch[CDP_val].u_val, 0.0);
- cur_val = IFDNAN(pdp_temp[ii], 0.0);
- rrd.cdp_prep[iii].
- scratch[CDP_primary_val].u_val =
- (cum_val +
- cur_val * start_pdp_offset) /
- (rrd.rra_def[i].pdp_cnt -
- rrd.cdp_prep[iii].
- scratch[CDP_unkn_pdp_cnt].u_cnt);
- /* initialize carry over value */
- if (isnan(pdp_temp[ii])) {
- rrd.cdp_prep[iii].scratch[CDP_val].
- u_val = DNAN;
- } else {
- rrd.cdp_prep[iii].scratch[CDP_val].
- u_val =
- pdp_temp[ii] *
- ((elapsed_pdp_st -
- start_pdp_offset) %
- rrd.rra_def[i].pdp_cnt);
- }
- break;
- case CF_MAXIMUM:
- cum_val =
- IFDNAN(rrd.cdp_prep[iii].
- scratch[CDP_val].u_val, -DINF);
- cur_val = IFDNAN(pdp_temp[ii], -DINF);
#ifdef DEBUG
- if (isnan
- (rrd.cdp_prep[iii].scratch[CDP_val].
- u_val) && isnan(pdp_temp[ii])) {
- fprintf(stderr,
- "RRA %lu, DS %lu, both CDP_val and pdp_temp are DNAN!",
- i, ii);
- exit(-1);
- }
+ if (isnan(*cdp_val)) {
+ fprintf(stderr, "schedule CDP_val update, RRA %d DS %d, DNAN\n",
+ i, ii);
+ } else {
+ fprintf(stderr, "schedule CDP_val update, RRA %d DS %d, %10.2f\n",
+ i, ii, *cdp_val);
+ }
#endif
- if (cur_val > cum_val)
- rrd.cdp_prep[iii].
- scratch[CDP_primary_val].u_val =
- cur_val;
- else
- rrd.cdp_prep[iii].
- scratch[CDP_primary_val].u_val =
- cum_val;
- /* initialize carry over value */
- rrd.cdp_prep[iii].scratch[CDP_val].u_val =
- pdp_temp[ii];
- break;
- case CF_MINIMUM:
- cum_val =
- IFDNAN(rrd.cdp_prep[iii].
- scratch[CDP_val].u_val, DINF);
- cur_val = IFDNAN(pdp_temp[ii], DINF);
+ if (isnan(pdp_temp_val)) {
+ *cdp_unkn_pdp_cnt += elapsed_pdp_st;
+ } else {
+ *cdp_val = calculate_cdp_val(*cdp_val, pdp_temp_val, elapsed_pdp_st, current_cf, i, ii);
+ }
+ }
+}
+
+/*
+ * Set the CDP_primary_val and CDP_val to the appropriate initial value based
+ * on the type of consolidation function.
+ */
+static void initialize_cdp_val(
+ unival *scratch,
+ int current_cf,
+ rrd_value_t pdp_temp_val,
+ unsigned long elapsed_pdp_st,
+ unsigned long start_pdp_offset,
+ unsigned long pdp_cnt)
+{
+ rrd_value_t cum_val, cur_val;
+
+ switch (current_cf) {
+ case CF_AVERAGE:
+ cum_val = IFDNAN(scratch[CDP_val].u_val, 0.0);
+ cur_val = IFDNAN(pdp_temp_val, 0.0);
+ scratch[CDP_primary_val].u_val =
+ (cum_val + cur_val * start_pdp_offset) /
+ (pdp_cnt - scratch[CDP_unkn_pdp_cnt].u_cnt);
+ scratch[CDP_val].u_val = initialize_average_carry_over(
+ pdp_temp_val, elapsed_pdp_st, start_pdp_offset, pdp_cnt);
+ break;
+ case CF_MAXIMUM:
+ cum_val = IFDNAN(scratch[CDP_val].u_val, -DINF);
+ cur_val = IFDNAN(pdp_temp_val, -DINF);
+#if 0
#ifdef DEBUG
- if (isnan
- (rrd.cdp_prep[iii].scratch[CDP_val].
- u_val) && isnan(pdp_temp[ii])) {
- fprintf(stderr,
- "RRA %lu, DS %lu, both CDP_val and pdp_temp are DNAN!",
- i, ii);
- exit(-1);
- }
+ if (isnan(scratch[CDP_val].u_val) && isnan(pdp_temp)) {
+ fprintf(stderr,
+ "RRA %lu, DS %lu, both CDP_val and pdp_temp are DNAN!",
+ i, ii);
+ exit(-1);
+ }
#endif
- if (cur_val < cum_val)
- rrd.cdp_prep[iii].
- scratch[CDP_primary_val].u_val =
- cur_val;
- else
- rrd.cdp_prep[iii].
- scratch[CDP_primary_val].u_val =
- cum_val;
- /* initialize carry over value */
- rrd.cdp_prep[iii].scratch[CDP_val].u_val =
- pdp_temp[ii];
- break;
- case CF_LAST:
- default:
- rrd.cdp_prep[iii].
- scratch[CDP_primary_val].u_val =
- pdp_temp[ii];
- /* initialize carry over value */
- rrd.cdp_prep[iii].scratch[CDP_val].u_val =
- pdp_temp[ii];
- break;
- }
- } /* endif meets xff value requirement for a valid value */
- /* initialize carry over CDP_unkn_pdp_cnt, this must after CDP_primary_val
- * is set because CDP_unkn_pdp_cnt is required to compute that value. */
- if (isnan(pdp_temp[ii]))
- rrd.cdp_prep[iii].scratch[CDP_unkn_pdp_cnt].
- u_cnt =
- (elapsed_pdp_st -
- start_pdp_offset) %
- rrd.rra_def[i].pdp_cnt;
- else
- rrd.cdp_prep[iii].scratch[CDP_unkn_pdp_cnt].
- u_cnt = 0;
- } else { /* rra_step_cnt[i] == 0 */
-
+#endif
+ if (cur_val > cum_val)
+ scratch[CDP_primary_val].u_val = cur_val;
+ else
+ scratch[CDP_primary_val].u_val = cum_val;
+ /* initialize carry over value */
+ scratch[CDP_val].u_val = pdp_temp_val;
+ break;
+ case CF_MINIMUM:
+ cum_val = IFDNAN(scratch[CDP_val].u_val, DINF);
+ cur_val = IFDNAN(pdp_temp_val, DINF);
+#if 0
#ifdef DEBUG
- if (isnan
- (rrd.cdp_prep[iii].scratch[CDP_val].u_val)) {
- fprintf(stderr,
- "schedule CDP_val update, RRA %lu DS %lu, DNAN\n",
+ if (isnan(scratch[CDP_val].u_val) && isnan(pdp_temp)) {
+ fprintf(stderr, "RRA %lu, DS %lu, both CDP_val and pdp_temp are DNAN!",
i, ii);
- } else {
- fprintf(stderr,
- "schedule CDP_val update, RRA %lu DS %lu, %10.2f\n",
- i, ii,
- rrd.cdp_prep[iii].scratch[CDP_val].
- u_val);
- }
+ exit(-1);
+ }
#endif
- if (isnan(pdp_temp[ii])) {
- rrd.cdp_prep[iii].scratch[CDP_unkn_pdp_cnt].
- u_cnt += elapsed_pdp_st;
- } else
- if (isnan
- (rrd.cdp_prep[iii].scratch[CDP_val].
- u_val)) {
- if (current_cf == CF_AVERAGE) {
- rrd.cdp_prep[iii].scratch[CDP_val].u_val =
- pdp_temp[ii] * elapsed_pdp_st;
- } else {
- rrd.cdp_prep[iii].scratch[CDP_val].u_val =
- pdp_temp[ii];
- }
+#endif
+ if (cur_val < cum_val)
+ scratch[CDP_primary_val].u_val = cur_val;
+ else
+ scratch[CDP_primary_val].u_val = cum_val;
+ /* initialize carry over value */
+ scratch[CDP_val].u_val = pdp_temp_val;
+ break;
+ case CF_LAST:
+ default:
+ scratch[CDP_primary_val].u_val = pdp_temp_val;
+ /* initialize carry over value */
+ scratch[CDP_val].u_val = pdp_temp_val;
+ break;
+ }
+}
+
+/*
+ * Update the consolidation function for Holt-Winters functions as
+ * well as other functions that don't actually consolidate multiple
+ * PDPs.
+ */
+static void reset_cdp(
+ rrd_t *rrd,
+ unsigned long elapsed_pdp_st,
+ rrd_value_t *pdp_temp,
+ rrd_value_t *last_seasonal_coef,
+ rrd_value_t *seasonal_coef,
+ int rra_idx, int ds_idx, int cdp_idx,
+ enum cf_en current_cf)
+{
+ unival *scratch = rrd->cdp_prep[cdp_idx].scratch;
+
+ switch (current_cf) {
+ case CF_AVERAGE:
+ default:
+ scratch[CDP_primary_val].u_val = pdp_temp[ds_idx];
+ scratch[CDP_secondary_val].u_val = pdp_temp[ds_idx];
+ break;
+ case CF_SEASONAL:
+ case CF_DEVSEASONAL:
+ /* need to update cached seasonal values, so they are consistent
+ * with the bulk update */
+ /* WARNING: code relies on the fact that CDP_hw_last_seasonal and
+ * CDP_last_deviation are the same. */
+ scratch[CDP_hw_last_seasonal].u_val = last_seasonal_coef[ds_idx];
+ scratch[CDP_hw_seasonal].u_val = seasonal_coef[ds_idx];
+ break;
+ case CF_HWPREDICT:
+ case CF_MHWPREDICT:
+ /* need to update the null_count and last_null_count.
+ * even do this for non-DNAN pdp_temp because the
+ * algorithm is not learning from batch updates. */
+ scratch[CDP_null_count].u_cnt += elapsed_pdp_st;
+ scratch[CDP_last_null_count].u_cnt += elapsed_pdp_st - 1;
+ /* fall through */
+ case CF_DEVPREDICT:
+ scratch[CDP_primary_val].u_val = DNAN;
+ scratch[CDP_secondary_val].u_val = DNAN;
+ break;
+ case CF_FAILURES:
+ /* do not count missed bulk values as failures */
+ scratch[CDP_primary_val].u_val = 0;
+ scratch[CDP_secondary_val].u_val = 0;
+ /* need to reset violations buffer.
+ * could do this more carefully, but for now, just
+ * assume a bulk update wipes away all violations. */
+ erase_violations(rrd, cdp_idx, rra_idx);
+ break;
+ }
+}
+
+static rrd_value_t initialize_average_carry_over(
+ rrd_value_t pdp_temp_val,
+ unsigned long elapsed_pdp_st,
+ unsigned long start_pdp_offset,
+ unsigned long pdp_cnt)
+{
+ /* initialize carry over value */
+ if (isnan(pdp_temp_val)) {
+ return DNAN;
+ }
+ return pdp_temp_val * ((elapsed_pdp_st - start_pdp_offset) % pdp_cnt);
+}
+
+/*
+ * Update or initialize a CDP value based on the consolidation
+ * function.
+ *
+ * Returns the new value.
+ */
+static rrd_value_t calculate_cdp_val(
+ rrd_value_t cdp_val,
+ rrd_value_t pdp_temp_val,
+ unsigned long elapsed_pdp_st,
+ int current_cf, int i, int ii)
+{
+ if (isnan(cdp_val)) {
+ if (current_cf == CF_AVERAGE) {
+ pdp_temp_val *= elapsed_pdp_st;
+ }
#ifdef DEBUG
- fprintf(stderr,
- "Initialize CDP_val for RRA %lu DS %lu: %10.2f\n",
- i, ii,
- rrd.cdp_prep[iii].scratch[CDP_val].
- u_val);
+ fprintf(stderr, "Initialize CDP_val for RRA %d DS %d: %10.2f\n",
+ i, ii, pdp_temp_val);
#endif
- } else {
- switch (current_cf) {
- case CF_AVERAGE:
- rrd.cdp_prep[iii].scratch[CDP_val].
- u_val +=
- pdp_temp[ii] * elapsed_pdp_st;
- break;
- case CF_MINIMUM:
- if (pdp_temp[ii] <
- rrd.cdp_prep[iii].scratch[CDP_val].
- u_val)
- rrd.cdp_prep[iii].scratch[CDP_val].
- u_val = pdp_temp[ii];
- break;
- case CF_MAXIMUM:
- if (pdp_temp[ii] >
- rrd.cdp_prep[iii].scratch[CDP_val].
- u_val)
- rrd.cdp_prep[iii].scratch[CDP_val].
- u_val = pdp_temp[ii];
- break;
- case CF_LAST:
- default:
- rrd.cdp_prep[iii].scratch[CDP_val].u_val =
- pdp_temp[ii];
- break;
- }
- }
- }
- } else { /* rrd.rra_def[i].pdp_cnt == 1 */
- if (elapsed_pdp_st > 2) {
- switch (current_cf) {
- case CF_AVERAGE:
- default:
- rrd.cdp_prep[iii].scratch[CDP_primary_val].
- u_val = pdp_temp[ii];
- rrd.cdp_prep[iii].scratch[CDP_secondary_val].
- u_val = pdp_temp[ii];
- break;
- case CF_SEASONAL:
- case CF_DEVSEASONAL:
- /* need to update cached seasonal values, so they are consistent
- * with the bulk update */
- /* WARNING: code relies on the fact that CDP_hw_last_seasonal and
- * CDP_last_deviation are the same. */
- rrd.cdp_prep[iii].
- scratch[CDP_hw_last_seasonal].u_val =
- last_seasonal_coef[ii];
- rrd.cdp_prep[iii].scratch[CDP_hw_seasonal].
- u_val = seasonal_coef[ii];
- break;
- case CF_HWPREDICT:
- case CF_MHWPREDICT:
- /* need to update the null_count and last_null_count.
- * even do this for non-DNAN pdp_temp because the
- * algorithm is not learning from batch updates. */
- rrd.cdp_prep[iii].scratch[CDP_null_count].
- u_cnt += elapsed_pdp_st;
- rrd.cdp_prep[iii].
- scratch[CDP_last_null_count].u_cnt +=
- elapsed_pdp_st - 1;
- /* fall through */
- case CF_DEVPREDICT:
- rrd.cdp_prep[iii].scratch[CDP_primary_val].
- u_val = DNAN;
- rrd.cdp_prep[iii].scratch[CDP_secondary_val].
- u_val = DNAN;
- break;
- case CF_FAILURES:
- /* do not count missed bulk values as failures */
- rrd.cdp_prep[iii].scratch[CDP_primary_val].
- u_val = 0;
- rrd.cdp_prep[iii].scratch[CDP_secondary_val].
- u_val = 0;
- /* need to reset violations buffer.
- * could do this more carefully, but for now, just
- * assume a bulk update wipes away all violations. */
- erase_violations(&rrd, iii, i);
- break;
- }
- }
- } /* endif rrd.rra_def[i].pdp_cnt == 1 */
-
- if (rrd_test_error())
- break;
-
- } /* endif data sources loop */
- } /* end RRA Loop */
-
- /* this loop is only entered if elapsed_pdp_st < 3 */
- for (j = elapsed_pdp_st, scratch_idx = CDP_primary_val;
- j > 0 && j < 3; j--, scratch_idx = CDP_secondary_val) {
- for (i = 0, rra_start = rra_begin;
- i < rrd.stat_head->rra_cnt;
- rra_start +=
- rrd.rra_def[i].row_cnt * rrd.stat_head->ds_cnt *
- sizeof(rrd_value_t), i++) {
- if (rrd.rra_def[i].pdp_cnt > 1)
- continue;
-
- current_cf = cf_conv(rrd.rra_def[i].cf_nam);
- if (current_cf == CF_SEASONAL
- || current_cf == CF_DEVSEASONAL) {
- lookup_seasonal(&rrd, i, rra_start, rrd_file,
- elapsed_pdp_st + (scratch_idx ==
- CDP_primary_val ? 1
- : 2),
- &seasonal_coef);
- rra_current = rrd_tell(rrd_file);
- }
- if (rrd_test_error())
- break;
- /* loop over data soures within each RRA */
- for (ii = 0; ii < rrd.stat_head->ds_cnt; ii++) {
- update_aberrant_CF(&rrd, pdp_temp[ii], current_cf,
- i * (rrd.stat_head->ds_cnt) + ii,
- i, ii, scratch_idx, seasonal_coef);
+ return pdp_temp_val;
+ }
+ if (current_cf == CF_AVERAGE)
+ return cdp_val + pdp_temp_val * elapsed_pdp_st;
+ if (current_cf == CF_MINIMUM)
+ return (pdp_temp_val < cdp_val) ? pdp_temp_val : cdp_val;
+ if (current_cf == CF_MAXIMUM)
+ return (pdp_temp_val > cdp_val) ? pdp_temp_val : cdp_val;
+
+ return pdp_temp_val;
+}
+
+/*
+ * For each RRA, update the seasonal values and then call update_aberrant_CF
+ * for each data source.
+ *
+ * Return 0 on success, -1 on error.
+ */
+static int update_aberrant_cdps(
+ rrd_t *rrd, rrd_file_t *rrd_file, unsigned long rra_begin,
+ unsigned long *rra_current, unsigned long elapsed_pdp_st,
+ rrd_value_t *pdp_temp, rrd_value_t **seasonal_coef)
+{
+ unsigned long rra_idx, ds_idx, j;
+
+ /* number of PDP steps since the last update that
+ * are assigned to the first CDP to be generated
+ * since the last update. */
+ unsigned short scratch_idx;
+ unsigned long rra_start;
+ enum cf_en current_cf;
+
+ /* this loop is only entered if elapsed_pdp_st < 3 */
+ for (j = elapsed_pdp_st, scratch_idx = CDP_primary_val;
+ j > 0 && j < 3; j--, scratch_idx = CDP_secondary_val) {
+ rra_start = rra_begin;
+ for (rra_idx = 0; rra_idx < rrd->stat_head->rra_cnt; rra_idx++) {
+ if (rrd->rra_def[rra_idx].pdp_cnt == 1) {
+ current_cf = cf_conv(rrd->rra_def[rra_idx].cf_nam);
+ if (current_cf == CF_SEASONAL || current_cf == CF_DEVSEASONAL) {
+ if (scratch_idx == CDP_primary_val) {
+ lookup_seasonal(rrd, rra_idx, rra_start, rrd_file,
+ elapsed_pdp_st + 1, seasonal_coef);
+ } else {
+ lookup_seasonal(rrd, rra_idx, rra_start, rrd_file,
+ elapsed_pdp_st + 2, seasonal_coef);
}
- } /* end RRA Loop */
+ *rra_current = rrd_tell(rrd_file);
+ }
if (rrd_test_error())
- break;
- } /* end elapsed_pdp_st loop */
+ return -1;
+ /* loop over data soures within each RRA */
+ for (ds_idx = 0; ds_idx < rrd->stat_head->ds_cnt; ds_idx++) {
+ update_aberrant_CF(rrd, pdp_temp[ds_idx], current_cf,
+ rra_idx * (rrd->stat_head->ds_cnt) + ds_idx,
+ rra_idx, ds_idx, scratch_idx, *seasonal_coef);
+ }
+ }
+ rra_start += rrd->rra_def[rra_idx].row_cnt
+ * rrd->stat_head->ds_cnt
+ * sizeof(rrd_value_t);
+ }
+ }
+ return 0;
+}
- if (rrd_test_error())
- break;
-
- /* Ready to write to disk */
- /* Move sequentially through the file, writing one RRA at a time.
- * Note this architecture divorces the computation of CDP with
- * flushing updated RRA entries to disk. */
- for (i = 0, rra_start = rra_begin;
- i < rrd.stat_head->rra_cnt;
- rra_start +=
- rrd.rra_def[i].row_cnt * rrd.stat_head->ds_cnt *
- sizeof(rrd_value_t), i++) {
- /* is th5Aere anything to write for this RRA? If not, continue. */
- if (rra_step_cnt[i] == 0)
- continue;
-
- /* write the first row */
+/*
+ * Move sequentially through the file, writing one RRA at a time. Note this
+ * architecture divorces the computation of CDP with flushing updated RRA
+ * entries to disk.
+ *
+ * Return 0 on success, -1 on error.
+ */
+static int write_to_rras(
+ rrd_t *rrd,
+ rrd_file_t *rrd_file,
+ unsigned long *rra_step_cnt,
+ unsigned long rra_begin,
+ unsigned long *rra_current,
+ time_t current_time,
+ info_t **pcdp_summary)
+{
+ unsigned long rra_idx;
+ unsigned long rra_start;
+ unsigned long rra_pos_tmp; /* temporary byte pointer. */
+ /* number of PDP steps since the last update that
+ * are assigned to the first CDP to be generated
+ * since the last update. */
+ unsigned short scratch_idx;
+ time_t rra_time = 0; /* time of update for a RRA */
+
+ /* Ready to write to disk */
+ rra_start = rra_begin;
+ for (rra_idx = 0; rra_idx < rrd->stat_head->rra_cnt; rra_idx++) {
+ /* skip unless there's something to write */
+ if (rra_step_cnt[rra_idx]) {
+ /* write the first row */
#ifdef DEBUG
- fprintf(stderr, " -- RRA Preseek %ld\n", rrd_file->pos);
+ fprintf(stderr, " -- RRA Preseek %ld\n", rrd_file->pos);
#endif
- rrd.rra_ptr[i].cur_row++;
- if (rrd.rra_ptr[i].cur_row >= rrd.rra_def[i].row_cnt)
- rrd.rra_ptr[i].cur_row = 0; /* wrap around */
- /* positition on the first row */
- rra_pos_tmp = rra_start +
- (rrd.stat_head->ds_cnt) * (rrd.rra_ptr[i].cur_row) *
+ rrd->rra_ptr[rra_idx].cur_row++;
+ if (rrd->rra_ptr[rra_idx].cur_row >= rrd->rra_def[rra_idx].row_cnt)
+ rrd->rra_ptr[rra_idx].cur_row = 0; /* wrap around */
+ /* positition on the first row */
+ rra_pos_tmp = rra_start +
+ (rrd->stat_head->ds_cnt) * (rrd->rra_ptr[rra_idx].cur_row) *
sizeof(rrd_value_t);
- if (rra_pos_tmp != rra_current) {
- if (rrd_seek(rrd_file, rra_pos_tmp, SEEK_SET) != 0) {
- rrd_set_error("seek error in rrd");
- break;
- }
- rra_current = rra_pos_tmp;
+ if (rra_pos_tmp != *rra_current) {
+ if (rrd_seek(rrd_file, rra_pos_tmp, SEEK_SET) != 0) {
+ rrd_set_error("seek error in rrd");
+ return -1;
}
+ *rra_current = rra_pos_tmp;
+ }
#ifdef DEBUG
- fprintf(stderr, " -- RRA Postseek %ld\n", rrd_file->pos);
+ fprintf(stderr, " -- RRA Postseek %ld\n", rrd_file->pos);
#endif
- scratch_idx = CDP_primary_val;
- if (pcdp_summary != NULL) {
- rra_time = (current_time - current_time
- % (rrd.rra_def[i].pdp_cnt *
- rrd.stat_head->pdp_step))
- -
- ((rra_step_cnt[i] -
- 1) * rrd.rra_def[i].pdp_cnt *
- rrd.stat_head->pdp_step);
- }
- pcdp_summary =
- write_RRA_row(rrd_file, &rrd, i, &rra_current,
- scratch_idx, pcdp_summary, &rra_time);
- if (rrd_test_error())
- break;
+ scratch_idx = CDP_primary_val;
+ if (*pcdp_summary != NULL) {
+ rra_time = (current_time - current_time
+ % (rrd->rra_def[rra_idx].pdp_cnt *
+ rrd->stat_head->pdp_step))
+ - ((rra_step_cnt[rra_idx] - 1) * rrd->rra_def[rra_idx].pdp_cnt *
+ rrd->stat_head->pdp_step);
+ }
+ if (write_RRA_row(rrd_file, rrd, rra_idx, rra_current, scratch_idx,
+ pcdp_summary, &rra_time) == -1)
+ return -1;
+ if (rrd_test_error())
+ return -1;
- /* write other rows of the bulk update, if any */
- scratch_idx = CDP_secondary_val;
- for (; rra_step_cnt[i] > 1; rra_step_cnt[i]--) {
- if (++rrd.rra_ptr[i].cur_row == rrd.rra_def[i].row_cnt) {
+ /* write other rows of the bulk update, if any */
+ scratch_idx = CDP_secondary_val;
+ for (; rra_step_cnt[rra_idx] > 1; rra_step_cnt[rra_idx]--) {
+ if (++rrd->rra_ptr[rra_idx].cur_row == rrd->rra_def[rra_idx].row_cnt) {
#ifdef DEBUG
- fprintf(stderr,
- "Wraparound for RRA %s, %lu updates left\n",
- rrd.rra_def[i].cf_nam, rra_step_cnt[i] - 1);
+ fprintf(stderr,
+ "Wraparound for RRA %s, %lu updates left\n",
+ rrd->rra_def[rra_idx].cf_nam, rra_step_cnt[rra_idx] - 1);
#endif
- /* wrap */
- rrd.rra_ptr[i].cur_row = 0;
- /* seek back to beginning of current rra */
- if (rrd_seek(rrd_file, rra_start, SEEK_SET) != 0) {
- rrd_set_error("seek error in rrd");
- break;
- }
+ /* wrap */
+ rrd->rra_ptr[rra_idx].cur_row = 0;
+ /* seek back to beginning of current rra */
+ if (rrd_seek(rrd_file, rra_start, SEEK_SET) != 0) {
+ rrd_set_error("seek error in rrd");
+ return -1;
+ }
#ifdef DEBUG
- fprintf(stderr, " -- Wraparound Postseek %ld\n",
- rrd_file->pos);
+ fprintf(stderr, " -- Wraparound Postseek %ld\n",
+ rrd_file->pos);
#endif
- rra_current = rra_start;
- }
- if (pcdp_summary != NULL) {
- rra_time = (current_time - current_time
- % (rrd.rra_def[i].pdp_cnt *
- rrd.stat_head->pdp_step))
+ *rra_current = rra_start;
+ }
+ if (*pcdp_summary != NULL) {
+ rra_time = (current_time - current_time
+ % (rrd->rra_def[rra_idx].pdp_cnt *
+ rrd->stat_head->pdp_step))
-
- ((rra_step_cnt[i] -
- 2) * rrd.rra_def[i].pdp_cnt *
- rrd.stat_head->pdp_step);
- }
- pcdp_summary =
- write_RRA_row(rrd_file, &rrd, i, &rra_current,
- scratch_idx, pcdp_summary, &rra_time);
+ ((rra_step_cnt[rra_idx] - 2) * rrd->rra_def[rra_idx].pdp_cnt *
+ rrd->stat_head->pdp_step);
}
+ if (write_RRA_row(rrd_file, rrd, rra_idx, rra_current,
+ scratch_idx, pcdp_summary, &rra_time) == -1)
+ return -1;
+ }
- if (rrd_test_error())
- break;
- } /* RRA LOOP */
+ if (rrd_test_error())
+ return -1;
+ }
+ rra_start += rrd->rra_def[rra_idx].row_cnt * rrd->stat_head->ds_cnt *
+ sizeof(rrd_value_t);
+ } /* RRA LOOP */
- /* break out of the argument parsing loop if error_string is set */
- if (rrd_test_error()) {
- free(step_start);
- break;
- }
+ return 0;
+}
- } /* endif a pdp_st has occurred */
- rrd.live_head->last_up = current_time;
- rrd.live_head->last_up_usec = current_time_usec;
- free(step_start);
- } /* function argument loop */
-
- if (seasonal_coef != NULL)
- free(seasonal_coef);
- if (last_seasonal_coef != NULL)
- free(last_seasonal_coef);
- if (rra_step_cnt != NULL)
- free(rra_step_cnt);
- rpnstack_free(&rpnstack);
+/*
+ * Write out one row of values (one value per DS) to the archive.
+ *
+ * Returns 0 on success, -1 on error.
+ */
+static int write_RRA_row(
+ rrd_file_t *rrd_file,
+ rrd_t *rrd,
+ unsigned long rra_idx,
+ unsigned long *rra_current,
+ unsigned short CDP_scratch_idx,
+ info_t **pcdp_summary,
+ time_t *rra_time)
+{
+ unsigned long ds_idx, cdp_idx;
+ infoval iv;
-#if 0
- //rrd_flush(rrd_file); //XXX: really needed?
+ for (ds_idx = 0; ds_idx < rrd->stat_head->ds_cnt; ds_idx++) {
+ /* compute the cdp index */
+ cdp_idx = rra_idx * (rrd->stat_head->ds_cnt) + ds_idx;
+#ifdef DEBUG
+ fprintf(stderr, " -- RRA WRITE VALUE %e, at %ld CF:%s\n",
+ rrd->cdp_prep[cdp_idx].scratch[CDP_scratch_idx].u_val,
+ rrd_file->pos, rrd->rra_def[rra_idx].cf_nam);
#endif
- /* if we got here and if there is an error and if the file has not been
- * written to, then close things up and return. */
- if (rrd_test_error()) {
- goto err_free_pdp_new;
+ if (pcdp_summary != NULL) {
+ iv.u_val = rrd->cdp_prep[cdp_idx].scratch[CDP_scratch_idx].u_val;
+ /* append info to the return hash */
+ *pcdp_summary = info_push(*pcdp_summary,
+ sprintf_alloc("[%d]RRA[%s][%lu]DS[%s]", *rra_time,
+ rrd->rra_def[rra_idx].cf_nam,
+ rrd->rra_def[rra_idx].pdp_cnt,
+ rrd->ds_def[ds_idx].ds_nam), RD_I_VAL, iv);
+ }
+ if (rrd_write(rrd_file,
+ &(rrd->cdp_prep[cdp_idx].scratch[CDP_scratch_idx].u_val),
+ sizeof(rrd_value_t)) != sizeof(rrd_value_t)) {
+ rrd_set_error("writing rrd: %s", rrd_strerror(errno));
+ return -1;
+ }
+ *rra_current += sizeof(rrd_value_t);
}
+ return 0;
+}
- /* aargh ... that was tough ... so many loops ... anyway, its done.
- * we just need to write back the live header portion now*/
+/*
+ * Call apply_smoother for all DEVSEASONAL and SEASONAL RRAs.
+ *
+ * Returns 0 on success, -1 otherwise
+ */
+static int smooth_all_rras(
+ rrd_t *rrd,
+ rrd_file_t *rrd_file,
+ unsigned long rra_begin)
+{
+ unsigned long rra_start = rra_begin;
+ unsigned long rra_idx;
+ for (rra_idx = 0; rra_idx < rrd->stat_head->rra_cnt; ++rra_idx) {
+ if (cf_conv(rrd->rra_def[rra_idx].cf_nam) == CF_DEVSEASONAL ||
+ cf_conv(rrd->rra_def[rra_idx].cf_nam) == CF_SEASONAL) {
+#ifdef DEBUG
+ fprintf(stderr, "Running smoother for rra %lu\n", rra_idx);
+#endif
+ apply_smoother(rrd, rra_idx, rra_start, rrd_file);
+ if (rrd_test_error())
+ return -1;
+ }
+ rra_start += rrd->rra_def[rra_idx].row_cnt
+ * rrd->stat_head->ds_cnt * sizeof(rrd_value_t);
+ }
+ return 0;
+}
+#ifndef HAVE_MMAP
+/*
+ * Flush changes to disk (unless we're using mmap)
+ *
+ * Returns 0 on success, -1 otherwise
+ */
+static int write_changes_to_disk(
+ rrd_t *rrd, rrd_file_t *rrd_file, int version)
+{
+ /* we just need to write back the live header portion now*/
if (rrd_seek(rrd_file, (sizeof(stat_head_t)
- + sizeof(ds_def_t) * rrd.stat_head->ds_cnt
- + sizeof(rra_def_t) * rrd.stat_head->rra_cnt),
+ + sizeof(ds_def_t) * rrd->stat_head->ds_cnt
+ + sizeof(rra_def_t) * rrd->stat_head->rra_cnt),
SEEK_SET) != 0) {
rrd_set_error("seek rrd for live header writeback");
- goto err_free_pdp_new;
+ return -1;
}
- /* for mmap, we did already write to the underlying mapping, so we do
- not need to write again. */
-#ifndef HAVE_MMAP
if (version >= 3) {
- if (rrd_write(rrd_file, rrd.live_head,
+ if (rrd_write(rrd_file, rrd->live_head,
sizeof(live_head_t) * 1) != sizeof(live_head_t) * 1) {
rrd_set_error("rrd_write live_head to rrd");
- goto err_free_pdp_new;
+ return -1;
}
} else {
- if (rrd_write(rrd_file, &rrd.live_head->last_up,
+ if (rrd_write(rrd_file, &rrd->live_head->last_up,
sizeof(time_t) * 1) != sizeof(time_t) * 1) {
rrd_set_error("rrd_write live_head to rrd");
- goto err_free_pdp_new;
+ return -1;
}
}
- if (rrd_write(rrd_file, rrd.pdp_prep,
- sizeof(pdp_prep_t) * rrd.stat_head->ds_cnt)
- != (ssize_t) (sizeof(pdp_prep_t) * rrd.stat_head->ds_cnt)) {
+ if (rrd_write(rrd_file, rrd->pdp_prep,
+ sizeof(pdp_prep_t) * rrd->stat_head->ds_cnt)
+ != (ssize_t) (sizeof(pdp_prep_t) * rrd->stat_head->ds_cnt)) {
rrd_set_error("rrd_write pdp_prep to rrd");
- goto err_free_pdp_new;
+ return -1;
}
- if (rrd_write(rrd_file, rrd.cdp_prep,
- sizeof(cdp_prep_t) * rrd.stat_head->rra_cnt *
- rrd.stat_head->ds_cnt)
- != (ssize_t) (sizeof(cdp_prep_t) * rrd.stat_head->rra_cnt *
- rrd.stat_head->ds_cnt)) {
+ if (rrd_write(rrd_file, rrd->cdp_prep,
+ sizeof(cdp_prep_t) * rrd->stat_head->rra_cnt *
+ rrd->stat_head->ds_cnt)
+ != (ssize_t) (sizeof(cdp_prep_t) * rrd->stat_head->rra_cnt *
+ rrd->stat_head->ds_cnt)) {
rrd_set_error("rrd_write cdp_prep to rrd");
- goto err_free_pdp_new;
+ return -1;
}
- if (rrd_write(rrd_file, rrd.rra_ptr,
- sizeof(rra_ptr_t) * rrd.stat_head->rra_cnt)
- != (ssize_t) (sizeof(rra_ptr_t) * rrd.stat_head->rra_cnt)) {
+ if (rrd_write(rrd_file, rrd->rra_ptr,
+ sizeof(rra_ptr_t) * rrd->stat_head->rra_cnt)
+ != (ssize_t) (sizeof(rra_ptr_t) * rrd->stat_head->rra_cnt)) {
rrd_set_error("rrd_write rra_ptr to rrd");
- goto err_free_pdp_new;
- }
-#endif
-
- /* rrd_flush(rrd_file); */
-
- /* calling the smoothing code here guarantees at most
- * one smoothing operation per rrd_update call. Unfortunately,
- * it is possible with bulk updates, or a long-delayed update
- * for smoothing to occur off-schedule. This really isn't
- * critical except during the burning cycles. */
- if (schedule_smooth) {
-
- rra_start = rra_begin;
- for (i = 0; i < rrd.stat_head->rra_cnt; ++i) {
- if (cf_conv(rrd.rra_def[i].cf_nam) == CF_DEVSEASONAL ||
- cf_conv(rrd.rra_def[i].cf_nam) == CF_SEASONAL) {
-#ifdef DEBUG
- fprintf(stderr, "Running smoother for rra %ld\n", i);
-#endif
- apply_smoother(&rrd, i, rra_start, rrd_file);
- if (rrd_test_error())
- break;
- }
- rra_start += rrd.rra_def[i].row_cnt
- * rrd.stat_head->ds_cnt * sizeof(rrd_value_t);
- }
+ return -1;
}
-
-/* rrd_dontneed(rrd_file,&rrd); */
- rrd_free(&rrd);
- rrd_close(rrd_file);
-
- free(pdp_new);
- free(tmpl_idx);
- free(pdp_temp);
- free(updvals);
- return (0);
-
- err_free_pdp_new:
- free(pdp_new);
- err_free_tmpl_idx:
- free(tmpl_idx);
- err_free_pdp_temp:
- free(pdp_temp);
- err_free_updvals:
- free(updvals);
- err_close:
- rrd_close(rrd_file);
- err_free:
- rrd_free(&rrd);
- err_out:
- return (-1);
+ return 0;
}
-
-/*
- * get exclusive lock to whole file.
- * lock gets removed when we close the file
- *
- * returns 0 on success
- */
-int LockRRD(
- int in_file)
-{
- int rcstat;
-
- {
-#if defined(_WIN32) && !defined(__CYGWIN__) && !defined(__CYGWIN32__)
- struct _stat st;
-
- if (_fstat(in_file, &st) == 0) {
- rcstat = _locking(in_file, _LK_NBLCK, st.st_size);
- } else {
- rcstat = -1;
- }
-#else
- struct flock lock;
-
- lock.l_type = F_WRLCK; /* exclusive write lock */
- lock.l_len = 0; /* whole file */
- lock.l_start = 0; /* start of file */
- lock.l_whence = SEEK_SET; /* end of file */
-
- rcstat = fcntl(in_file, F_SETLK, &lock);
#endif
- }
-
- return (rcstat);
-}