summary | shortlog | log | commit | commitdiff | tree
raw | patch | inline | side by side (parent: 69733ad)
raw | patch | inline | side by side (parent: 69733ad)
author | alvinpenner <alvinpenner@users.sourceforge.net> | |
Sat, 6 Sep 2008 13:20:33 +0000 (13:20 +0000) | ||
committer | alvinpenner <alvinpenner@users.sourceforge.net> | |
Sat, 6 Sep 2008 13:20:33 +0000 (13:20 +0000) |
share/extensions/dxf_outlines.py | patch | blob | history |
index f5f9ce19f0c58ec578476defdb77486e88f4e549..bd7e918227aa692d58f6a6d493449a9997cb7b0b 100755 (executable)
- template dxf_outlines.dxf added Feb 2008 by Alvin Penner
- ROBO-Master output option added Aug 2008 by Alvin Penner
+- ROBO-Master multispline output added Sept 2008 by Alvin Penner
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
from numpy import *
from numpy.linalg import solve
except:
- inkex.errormsg(_("Failed to import the numpy or numpy.linalg modules. These modules are required by this extension. Please install them and try again."))
- sys.exit()
+ inkex.errormsg("Failed to import the numpy or numpy.linalg modules. These modules are required by this extension. Please install them and try again.")
+ inkex.sys.exit()
def pointdistance((x1,y1),(x2,y2)):
return math.sqrt(((x2 - x1) ** 2) + ((y2 - y1) ** 2))
def get_fit(u, csp, col):
return (1-u)**3*csp[0][col] + 3*(1-u)**2*u*csp[1][col] + 3*(1-u)*u**2*csp[2][col] + u**3*csp[3][col]
+def get_matrix(u, i, j):
+ if j == i + 2:
+ return (u[i]-u[i-1])*(u[i]-u[i-1])/(u[i+2]-u[i-1])/(u[i+1]-u[i-1])
+ elif j == i + 1:
+ return ((u[i]-u[i-1])*(u[i+2]-u[i])/(u[i+2]-u[i-1]) + (u[i+1]-u[i])*(u[i]-u[i-2])/(u[i+1]-u[i-2]))/(u[i+1]-u[i-1])
+ elif j == i:
+ return (u[i+1]-u[i])*(u[i+1]-u[i])/(u[i+1]-u[i-2])/(u[i+1]-u[i-1])
+ else:
+ return 0
+
class MyEffect(inkex.Effect):
def __init__(self):
inkex.Effect.__init__(self)
self.OptionParser.add_option("-R", "--ROBO", action="store", type="string", dest="ROBO")
self.dxf = []
- self.handle = 255 # initiallize handle for DXF ENTITY
+ self.handle = 255 # handle for DXF ENTITY
+ self.csp_old = [[0.0,0.0]]*4 # previous spline
+ self.d = array([0], float) # knot vector
def output(self):
print ''.join(self.dxf)
def dxf_add(self, str):
self.dxf_add(" 0\nSPLINE\n 5\n%x\n100\nAcDbEntity\n 8\n0\n100\nAcDbSpline\n" % self.handle)
self.dxf_add(" 70\n8\n 71\n3\n 72\n%d\n 73\n%d\n 74\n0\n" % (knots, ctrls))
for i in range(2):
- for j in range(4):
+ for j in range(4):
self.dxf_add(" 40\n%d\n" % i)
for i in csp:
self.dxf_add(" 10\n%f\n 20\n%f\n 30\n0.0\n" % (i[0],i[1]))
def ROBO_spline(self,csp):
# this spline has zero curvature at the endpoints, as in ROBO-Master
- knots = 10
- ctrls = 6
- fits = 4
- xfit = zeros((6), dtype=float64)
- xfit[0] = csp[0][0]
- xfit[1] = get_fit(.333, csp, 0)
- xfit[2] = get_fit(.667, csp, 0)
- xfit[3] = csp[3][0]
- yfit = zeros((6), dtype=float64)
- yfit[0] = csp[0][1]
- yfit[1] = get_fit(.333, csp, 1)
- yfit[2] = get_fit(.667, csp, 1)
- yfit[3] = csp[3][1]
- d1 = pointdistance((xfit[0],yfit[0]),(xfit[1],yfit[1]))
- d2 = pointdistance((xfit[1],yfit[1]),(xfit[2],yfit[2]))
- d3 = pointdistance((xfit[2],yfit[2]),(xfit[3],yfit[3]))
- u1 = d1/(d1 + d2 + d3)
- u2 = (d1 + d2)/(d1 + d2 + d3)
- solmatrix = zeros((6,6), dtype=float64)
- solmatrix[0,0] = 1
- solmatrix[1,1] = (1 - u1/u2)**2
- solmatrix[1,2] = (2*u2 - u1*u2 - u1)*u1/u2/u2
- solmatrix[1,3] = u1*u1/u2
- solmatrix[2,2] = (1 - u2)**2/(1 - u1)
- solmatrix[2,3] = (2*u2 - u1*u2 - u1)*(1 - u2)/(1 - u1)/(1 - u1)
- solmatrix[2,4] = ((u2 - u1)/(1 - u1))**2
- solmatrix[3,5] = 1
- solmatrix[4,0] = u2
- solmatrix[4,1] = -u1 - u2
- solmatrix[4,2] = u1
- solmatrix[5,3] = 1 - u2
- solmatrix[5,4] = u1 + u2 - 2
- solmatrix[5,5] = 1 - u1
- xctrl = solve(solmatrix, xfit)
- yctrl = solve(solmatrix, yfit)
+ if (abs(csp[0][0] - self.csp_old[3][0]) > .0001
+ or abs(csp[0][1] - self.csp_old[3][1]) > .0001
+ or abs((csp[1][1]-csp[0][1])*(self.csp_old[3][0]-self.csp_old[2][0]) - (csp[1][0]-csp[0][0])*(self.csp_old[3][1]-self.csp_old[2][1])) > .001):
+ self.ROBO_output() # terminate current spline
+ self.xfit = array([csp[0][0]], float) # initiallize new spline
+ self.yfit = array([csp[0][1]], float)
+ self.d = array([0], float)
+ self.xfit = concatenate((self.xfit, zeros((3)))) # append to current spline
+ self.yfit = concatenate((self.yfit, zeros((3))))
+ self.d = concatenate((self.d, zeros((3))))
+ for i in range(1, 4):
+ j = len(self.d) + i - 4
+ self.xfit[j] = get_fit(i/3.0, csp, 0)
+ self.yfit[j] = get_fit(i/3.0, csp, 1)
+ self.d[j] = self.d[j-1] + pointdistance((self.xfit[j-1],self.yfit[j-1]),(self.xfit[j],self.yfit[j]))
+ self.csp_old = csp
+ def ROBO_output(self):
+ if len(self.d) == 1:
+ return
+ fits = len(self.d)
+ ctrls = fits + 2
+ knots = ctrls + 4
+ self.xfit = concatenate((self.xfit, zeros((2)))) # pad with 2 endpoint constraints
+ self.yfit = concatenate((self.yfit, zeros((2)))) # pad with 2 endpoint constraints
+ self.d = concatenate((self.d, zeros((6)))) # pad with 3 duplicates at each end
+ self.d[fits+2] = self.d[fits+1] = self.d[fits] = self.d[fits-1]
+ solmatrix = zeros((ctrls,ctrls), dtype=float)
+ for i in range(fits):
+ solmatrix[i,i] = get_matrix(self.d, i, i)
+ solmatrix[i,i+1] = get_matrix(self.d, i, i+1)
+ solmatrix[i,i+2] = get_matrix(self.d, i, i+2)
+ solmatrix[fits, 0] = self.d[2]/self.d[fits-1] # curvature at start = 0
+ solmatrix[fits, 1] = -(self.d[1] + self.d[2])/self.d[fits-1]
+ solmatrix[fits, 2] = self.d[1]/self.d[fits-1]
+ solmatrix[fits+1, fits-1] = (self.d[fits-1] - self.d[fits-2])/self.d[fits-1] # curvature at end = 0
+ solmatrix[fits+1, fits] = (self.d[fits-3] + self.d[fits-2] - 2*self.d[fits-1])/self.d[fits-1]
+ solmatrix[fits+1, fits+1] = (self.d[fits-1] - self.d[fits-3])/self.d[fits-1]
+ xctrl = solve(solmatrix, self.xfit)
+ yctrl = solve(solmatrix, self.yfit)
self.dxf_add(" 0\nSPLINE\n 5\n%x\n100\nAcDbEntity\n 8\n0\n100\nAcDbSpline\n" % self.handle)
self.dxf_add(" 70\n0\n 71\n3\n 72\n%d\n 73\n%d\n 74\n%d\n" % (knots, ctrls, fits))
- for i in range(4):
- self.dxf_add(" 40\n0\n")
- self.dxf_add(" 40\n%f\n" % u1)
- self.dxf_add(" 40\n%f\n" % u2)
- for i in range(4):
- self.dxf_add(" 40\n1\n")
- for i in range(6):
+ for i in range(knots):
+ self.dxf_add(" 40\n%f\n" % self.d[i-3])
+ for i in range(ctrls):
self.dxf_add(" 10\n%f\n 20\n%f\n 30\n0.0\n" % (xctrl[i],yctrl[i]))
- for i in range(4):
- self.dxf_add(" 11\n%f\n 21\n%f\n 31\n0.0\n" % (xfit[i],yfit[i]))
+ for i in range(fits):
+ self.dxf_add(" 11\n%f\n 21\n%f\n 31\n0.0\n" % (self.xfit[i],self.yfit[i]))
def effect(self):
#References: Minimum Requirements for Creating a DXF File of a 3D Model By Paul Bourke
self.ROBO_spline([s[1],s[2],e[0],e[1]])
else:
self.dxf_spline([s[1],s[2],e[0],e[1]])
-
+ if self.options.ROBO == 'true':
+ self.handle += 1
+ self.ROBO_output()
self.dxf_add(dxf_templates.r14_footer)
if __name__ == '__main__':