summary | shortlog | log | commit | commitdiff | tree
raw | patch | inline | side by side (parent: f475f45)
raw | patch | inline | side by side (parent: f475f45)
author | jucablues <jucablues@users.sourceforge.net> | |
Thu, 16 Aug 2007 23:51:13 +0000 (23:51 +0000) | ||
committer | jucablues <jucablues@users.sourceforge.net> | |
Thu, 16 Aug 2007 23:51:13 +0000 (23:51 +0000) |
src/display/nr-filter-turbulence.cpp | patch | blob | history | |
src/display/nr-filter-turbulence.h | patch | blob | history |
index f94081612d36b2cbd75cc93a295bd6b05b1d99ba..8796090091f5fefe571b921751744ab03d7299e6 100644 (file)
#include "display/nr-arena-item.h"
#include "display/nr-filter.h"
#include "display/nr-filter-turbulence.h"
+#include "display/nr-filter-utils.h"
+#include <math.h>
namespace NR {
numOctaves(1),
seed(0),
updated(false),
- pix(NULL)
+ pix(NULL),
+ fTileWidth(10), //guessed
+ fTileHeight(10), //guessed
+ fTileX(1), //guessed
+ fTileY(1) //guessed
{
}
}
void FilterTurbulence::update_pixbuffer(FilterSlot &slot) {
+//g_warning("update_pixbuf");
int bbox_x0 = (int) slot.get_arenaitem()->bbox.x0;
int bbox_y0 = (int) slot.get_arenaitem()->bbox.y0;
int bbox_x1 = (int) slot.get_arenaitem()->bbox.x1;
nr_pixblock_setup_fast(pix, NR_PIXBLOCK_MODE_R8G8B8A8P, bbox_x0, bbox_y0, bbox_x1, bbox_y1, true);
pix_data = NR_PIXBLOCK_PX(pix);
}
-
-// TODO: implement here the turbulence rendering.
-
-/*debug: these are the available parameters
- printf("XbaseFrequency = %f; ", XbaseFrequency);
- printf("YbaseFrequency = %f; ", YbaseFrequency);
- printf("numOctaves = %d;\n", numOctaves);
- printf("seed = %f; ", seed);
- printf("stitchTiles = %s; ", stitchTiles ? "stitch" : "noStitch");
- printf("type = %s;\n\n", type==0 ? "FractalNoise" : "turbulence");
-*/
- for (x=0; x < w; x++){
- for (y=0; y < h; y++){
- pix_data[4*(x + w*y)] = (unsigned char)(int(XbaseFrequency)%256);
- pix_data[4*(x + w*y) + 1] = (unsigned char)(int(YbaseFrequency)%256);
- pix_data[4*(x + w*y) + 2] = (unsigned char)(int(numOctaves)%256);
- pix_data[4*(x + w*y) + 3] = (unsigned char)(int(seed)%256);
+ TurbulenceInit((long)seed);
+
+ double point[2];
+
+ if (type==TURBULENCE_TURBULENCE){
+ for (point[0]=0; point[0] < w; point[0]++){
+ for (point[1]=0; point[1] < h; point[1]++){
+ pix_data[4*(int(point[0]) + w*int(point[1]))] = CLAMP_D_TO_U8( turbulence(0,point)*255 );
+ pix_data[4*(int(point[0]) + w*int(point[1])) + 1] = CLAMP_D_TO_U8( turbulence(1,point)*255 );
+ pix_data[4*(int(point[0]) + w*int(point[1])) + 2] = CLAMP_D_TO_U8( turbulence(2,point)*255 );
+ pix_data[4*(int(point[0]) + w*int(point[1])) + 3] = CLAMP_D_TO_U8( turbulence(3,point)*255 );
+ }
+ }
+ } else {
+ for (point[0]=0; point[0] < w; point[0]++){
+ for (point[1]=0; point[1] < h; point[1]++){
+ pix_data[4*(int(point[0]) + w*int(point[1]))] = CLAMP_D_TO_U8( ((turbulence(0,point)*255) +255)/2 );
+ pix_data[4*(int(point[0]) + w*int(point[1])) + 1] = CLAMP_D_TO_U8( ((turbulence(1,point)*255)+255)/2 );
+ pix_data[4*(int(point[0]) + w*int(point[1])) + 2] = CLAMP_D_TO_U8( ((turbulence(2,point)*255) +255)/2 );
+ pix_data[4*(int(point[0]) + w*int(point[1])) + 3] = CLAMP_D_TO_U8( ((turbulence(3,point)*255) +255)/2 );
+ }
}
}
updated=true;
}
int FilterTurbulence::render(FilterSlot &slot, Matrix const &trans) {
+//g_warning("render");
if (!updated) update_pixbuffer(slot);
NRPixBlock *in = slot.get(_input);
unsigned char *out_data = NR_PIXBLOCK_PX(out);
for (x=x0; x < x1; x++){
for (y=y0; y < y1; y++){
- out_data[4*((x - x0)+w*(y - y0))] = pix_data[x - bbox_x0 + w*(y - bbox_y0)];
- out_data[4*((x - x0)+w*(y - y0)) + 1] = pix_data[x - bbox_x0 + w*(y - bbox_y0)];
- out_data[4*((x - x0)+w*(y - y0)) + 2] = pix_data[x - bbox_x0 + w*(y - bbox_y0)];
- out_data[4*((x - x0)+w*(y - y0)) + 3] = pix_data[x - bbox_x0 + w*(y - bbox_y0)];
+ out_data[4*((x - x0)+w*(y - y0))] = pix_data[4*(x - bbox_x0 + w*(y - bbox_y0)) ];
+ out_data[4*((x - x0)+w*(y - y0)) + 1] = pix_data[4*(x - bbox_x0 + w*(y - bbox_y0))+1];
+ out_data[4*((x - x0)+w*(y - y0)) + 2] = pix_data[4*(x - bbox_x0 + w*(y - bbox_y0))+2];
+ out_data[4*((x - x0)+w*(y - y0)) + 3] = pix_data[4*(x - bbox_x0 + w*(y - bbox_y0))+3];
}
}
-
out->empty = FALSE;
slot.set(_output, out);
return 0;
}
+long FilterTurbulence::Turbulence_setup_seed(long lSeed)
+{
+ if (lSeed <= 0) lSeed = -(lSeed % (RAND_m - 1)) + 1;
+ if (lSeed > RAND_m - 1) lSeed = RAND_m - 1;
+ return lSeed;
+}
+
+long FilterTurbulence::TurbulenceRandom(long lSeed)
+{
+ long result;
+ result = RAND_a * (lSeed % RAND_q) - RAND_r * (lSeed / RAND_q);
+ if (result <= 0) result += RAND_m;
+ return result;
+}
+
+void FilterTurbulence::TurbulenceInit(long lSeed)
+{
+g_warning("init");
+ double s;
+ int i, j, k;
+ lSeed = Turbulence_setup_seed(lSeed);
+ for(k = 0; k < 4; k++)
+ {
+ for(i = 0; i < BSize; i++)
+ {
+ uLatticeSelector[i] = i;
+ for (j = 0; j < 2; j++)
+ fGradient[k][i][j] = (double)(((lSeed = TurbulenceRandom(lSeed)) % (BSize + BSize)) - BSize) / BSize;
+ s = double(sqrt(fGradient[k][i][0] * fGradient[k][i][0] + fGradient[k][i][1] * fGradient[k][i][1]));
+ fGradient[k][i][0] /= s;
+ fGradient[k][i][1] /= s;
+ }
+ }
+ while(--i)
+ {
+ k = uLatticeSelector[i];
+ uLatticeSelector[i] = uLatticeSelector[j = (lSeed = TurbulenceRandom(lSeed)) % BSize];
+ uLatticeSelector[j] = k;
+ }
+ for(i = 0; i < BSize + 2; i++)
+ {
+ uLatticeSelector[BSize + i] = uLatticeSelector[i];
+ for(k = 0; k < 4; k++)
+ for(j = 0; j < 2; j++)
+ fGradient[k][BSize + i][j] = fGradient[k][i][j];
+ }
+}
+
+double FilterTurbulence::TurbulenceNoise2(int nColorChannel, double vec[2], StitchInfo *pStitchInfo)
+{
+ int bx0, bx1, by0, by1, b00, b10, b01, b11;
+ double rx0, rx1, ry0, ry1, *q, sx, sy, a, b, t, u, v;
+ int i, j;
+ t = vec[0] + PerlinN;
+ bx0 = (int)t;
+ bx1 = bx0+1;
+ rx0 = t - (int)t;
+ rx1 = rx0 - 1.0f;
+ t = vec[1] + PerlinN;
+ by0 = (int)t;
+ by1 = by0+1;
+ ry0 = t - (int)t;
+ ry1 = ry0 - 1.0f;
+ // If stitching, adjust lattice points accordingly.
+ if(pStitchInfo != NULL)
+ {
+ if(bx0 >= pStitchInfo->nWrapX)
+ bx0 -= pStitchInfo->nWidth;
+ if(bx1 >= pStitchInfo->nWrapX)
+ bx1 -= pStitchInfo->nWidth;
+ if(by0 >= pStitchInfo->nWrapY)
+ by0 -= pStitchInfo->nHeight;
+ if(by1 >= pStitchInfo->nWrapY)
+ by1 -= pStitchInfo->nHeight;
+ }
+ bx0 &= BM;
+ bx1 &= BM;
+ by0 &= BM;
+ by1 &= BM;
+ i = uLatticeSelector[bx0];
+ j = uLatticeSelector[bx1];
+ b00 = uLatticeSelector[i + by0];
+ b10 = uLatticeSelector[j + by0];
+ b01 = uLatticeSelector[i + by1];
+ b11 = uLatticeSelector[j + by1];
+ sx = double(s_curve(rx0));
+ sy = double(s_curve(ry0));
+ q = fGradient[nColorChannel][b00]; u = rx0 * q[0] + ry0 * q[1];
+ q = fGradient[nColorChannel][b10]; v = rx1 * q[0] + ry0 * q[1];
+ a = turb_lerp(sx, u, v);
+ q = fGradient[nColorChannel][b01]; u = rx0 * q[0] + ry1 * q[1];
+ q = fGradient[nColorChannel][b11]; v = rx1 * q[0] + ry1 * q[1];
+ b = turb_lerp(sx, u, v);
+ return turb_lerp(sy, a, b);
+}
+
+double FilterTurbulence::turbulence(int nColorChannel, double *point)
+{
+//g_warning("turbulence");
+ StitchInfo stitch;
+ StitchInfo *pStitchInfo = NULL; // Not stitching when NULL.
+ // Adjust the base frequencies if necessary for stitching.
+ if(stitchTiles)
+ {
+ // When stitching tiled turbulence, the frequencies must be adjusted
+ // so that the tile borders will be continuous.
+ if(XbaseFrequency != 0.0)
+ {
+ double fLoFreq = double(floor(fTileWidth * XbaseFrequency)) / fTileWidth;
+ double fHiFreq = double(ceil(fTileWidth * XbaseFrequency)) / fTileWidth;
+ if(XbaseFrequency / fLoFreq < fHiFreq / XbaseFrequency)
+ XbaseFrequency = fLoFreq;
+ else
+ XbaseFrequency = fHiFreq;
+ }
+ if(YbaseFrequency != 0.0)
+ {
+ double fLoFreq = double(floor(fTileHeight * YbaseFrequency)) / fTileHeight;
+ double fHiFreq = double(ceil(fTileHeight * YbaseFrequency)) / fTileHeight;
+ if(YbaseFrequency / fLoFreq < fHiFreq / YbaseFrequency)
+ YbaseFrequency = fLoFreq;
+ else
+ YbaseFrequency = fHiFreq;
+ }
+ // Set up TurbulenceInitial stitch values.
+ pStitchInfo = &stitch;
+ stitch.nWidth = int(fTileWidth * XbaseFrequency + 0.5f);
+ stitch.nWrapX = int(fTileX * XbaseFrequency + PerlinN + stitch.nWidth);
+ stitch.nHeight = int(fTileHeight * YbaseFrequency + 0.5f);
+ stitch.nWrapY = int(fTileY * YbaseFrequency + PerlinN + stitch.nHeight);
+ }
+ double fSum = 0.0f;
+ double vec[2];
+ vec[0] = point[0] * XbaseFrequency;
+ vec[1] = point[1] * YbaseFrequency;
+ double ratio = 1;
+ for(int nOctave = 0; nOctave < numOctaves; nOctave++)
+ {
+ if(type==TURBULENCE_FRACTALNOISE)
+ fSum += double(TurbulenceNoise2(nColorChannel, vec, pStitchInfo) / ratio);
+ else
+ fSum += double(fabs(TurbulenceNoise2(nColorChannel, vec, pStitchInfo)) / ratio);
+ vec[0] *= 2;
+ vec[1] *= 2;
+ ratio *= 2;
+ if(pStitchInfo != NULL)
+ {
+ // Update stitch values. Subtracting PerlinN before the multiplication and
+ // adding it afterward simplifies to subtracting it once.
+ stitch.nWidth *= 2;
+ stitch.nWrapX = 2 * stitch.nWrapX - PerlinN;
+ stitch.nHeight *= 2;
+ stitch.nWrapY = 2 * stitch.nWrapY - PerlinN;
+ }
+ }
+ return fSum;
+}
+
} /* namespace NR */
/*
index 1e2171e83cda2152165ecc600bc766b596e0b6e2..db2b2854aec6d9ac2056881343d03c23e96c34fa 100644 (file)
TURBULENCE_ENDTYPE
};
+struct StitchInfo
+{
+ int nWidth; // How much to subtract to wrap for stitching.
+ int nHeight;
+ int nWrapX; // Minimum value to wrap.
+ int nWrapY;
+};
+
+/* Produces results in the range [1, 2**31 - 2].
+Algorithm is: r = (a * r) mod m
+where a = 16807 and m = 2**31 - 1 = 2147483647
+See [Park & Miller], CACM vol. 31 no. 10 p. 1195, Oct. 1988
+To test: the algorithm should produce the result 1043618065
+as the 10,000th generated number if the original seed is 1.
+*/
+#define RAND_m 2147483647 /* 2**31 - 1 */
+#define RAND_a 16807 /* 7**5; primitive root of m */
+#define RAND_q 127773 /* m / a */
+#define RAND_r 2836 /* m % a */
+#define BSize 0x100
+#define BM 0xff
+#define PerlinN 0x1000
+#define NP 12 /* 2^PerlinN */
+#define NM 0xfff
+#define s_curve(t) ( t * t * (3. - 2. * t) )
+#define turb_lerp(t, a, b) ( a + t * (b - a) )
+
class FilterTurbulence : public FilterPrimitive {
public:
FilterTurbulence();
virtual void set_type(FilterTurbulenceType t);
virtual void set_updated(bool u);
private:
+
+ long Turbulence_setup_seed(long lSeed);
+ long TurbulenceRandom(long lSeed);
+ void TurbulenceInit(long lSeed);
+ double TurbulenceNoise2(int nColorChannel, double vec[2], StitchInfo *pStitchInfo);
+ double turbulence(int nColorChannel, double *point);
+
double XbaseFrequency, YbaseFrequency;
int numOctaves;
double seed;
bool updated;
NRPixBlock *pix;
unsigned char *pix_data;
+
+ int uLatticeSelector[BSize + BSize + 2];
+ double fGradient[4][BSize + BSize + 2][2];
+
+ double fTileWidth;
+ double fTileHeight;
+
+ double fTileX;
+ double fTileY;
};
} /* namespace NR */