summary | shortlog | log | commit | commitdiff | tree
raw | patch | inline | side by side (parent: 4b3863f)
raw | patch | inline | side by side (parent: 4b3863f)
author | ishmal <ishmal@users.sourceforge.net> | |
Sat, 22 Apr 2006 23:06:17 +0000 (23:06 +0000) | ||
committer | ishmal <ishmal@users.sourceforge.net> | |
Sat, 22 Apr 2006 23:06:17 +0000 (23:06 +0000) |
src/extension/internal/odf.cpp | patch | blob | history | |
src/extension/internal/odf.h | patch | blob | history |
index f8884f4a7cd451ea71851e56d7dac113b683e7f7..edbc26c98d23741a189a9b1d5046ef92452ec4c5 100644 (file)
#include "dom/io/bufferstream.h"
+
+
+
+
+namespace Inkscape
+{
+namespace Extension
+{
+namespace Internal
+{
+
//# Shorthand notation
typedef org::w3c::dom::DOMString DOMString;
typedef org::w3c::dom::io::OutputStreamWriter OutputStreamWriter;
typedef org::w3c::dom::io::BufferOutputStream BufferOutputStream;
+//########################################################################
+//# C L A S S SingularValueDecomposition
+//########################################################################
+#include <math.h>
+/**
+ *
+ * ====================================================
+ *
+ * NOTE:
+ * This class is ported almost verbatim from the public domain
+ * JAMA Matrix package. It is modified to handle only 3x3 matrices
+ * and our NR::Matrix affine transform class. We give full
+ * attribution to them, along with many thanks. JAMA can be found at:
+ * http://math.nist.gov/javanumerics/jama
+ *
+ * ====================================================
+ *
+ * Singular Value Decomposition.
+ * <P>
+ * For an m-by-n matrix A with m >= n, the singular value decomposition is
+ * an m-by-n orthogonal matrix U, an n-by-n diagonal matrix S, and
+ * an n-by-n orthogonal matrix V so that A = U*S*V'.
+ * <P>
+ * The singular values, sigma[k] = S[k][k], are ordered so that
+ * sigma[0] >= sigma[1] >= ... >= sigma[n-1].
+ * <P>
+ * The singular value decompostion always exists, so the constructor will
+ * never fail. The matrix condition number and the effective numerical
+ * rank can be computed from this decomposition.
+ */
+class SingularValueDecomposition
+{
+public:
-namespace Inkscape
+ /** Construct the singular value decomposition
+ @param A Rectangular matrix
+ @return Structure to access U, S and V.
+ */
+
+ SingularValueDecomposition (const NR::Matrix &matrixArg)
+ {
+ matrix = matrixArg;
+ calculate();
+ }
+
+ virtual ~SingularValueDecomposition()
+ {}
+
+ /**
+ * Return the left singular vectors
+ * @return U
+ */
+ NR::Matrix getU();
+
+ /**
+ * Return the right singular vectors
+ * @return V
+ */
+ NR::Matrix getV();
+
+ /**
+ * Return the three singular values along the diagonal
+ */
+ void getSingularValues(double &s0, double &s1, double &s2);
+
+ /**
+ * Two norm
+ * @return max(S)
+ */
+ double norm2();
+
+ /**
+ * Two norm condition number
+ * @return max(S)/min(S)
+ */
+ double cond();
+
+ /**
+ * Effective numerical matrix rank
+ * @return Number of nonnegligible singular values.
+ */
+ int rank();
+
+private:
+
+ void calculate();
+
+ NR::Matrix matrix;
+ double A[3][3];
+ double U[3][3];
+ double s[3];
+ double V[3][3];
+
+};
+
+
+static double hypot(double a, double b)
{
-namespace Extension
+ double r;
+
+ if (fabs(a) > fabs(b))
+ {
+ r = b/a;
+ r = fabs(a) * sqrt(1+r*r);
+ }
+ else if (b != 0)
+ {
+ r = a/b;
+ r = fabs(b) * sqrt(1+r*r);
+ }
+ else
+ {
+ r = 0.0;
+ }
+ return r;
+}
+
+
+
+void SingularValueDecomposition::calculate()
{
-namespace Internal
+ // Initialize.
+ A[0][0] = matrix[0];
+ A[0][1] = matrix[2];
+ A[0][2] = matrix[4];
+ A[1][0] = matrix[1];
+ A[1][1] = matrix[3];
+ A[1][2] = matrix[5];
+ A[2][0] = 0.0;
+ A[2][1] = 0.0;
+ A[2][2] = 1.0;
+
+ double e[3];
+ double work[3];
+ bool wantu = true;
+ bool wantv = true;
+ int m = 3;
+ int n = 3;
+ int nu = 3;
+
+ // Reduce A to bidiagonal form, storing the diagonal elements
+ // in s and the super-diagonal elements in e.
+
+ int nct = 2;
+ int nrt = 1;
+ for (int k = 0; k < 2; k++) {
+ if (k < nct) {
+
+ // Compute the transformation for the k-th column and
+ // place the k-th diagonal in s[k].
+ // Compute 2-norm of k-th column without under/overflow.
+ s[k] = 0;
+ for (int i = k; i < m; i++) {
+ s[k] = hypot(s[k],A[i][k]);
+ }
+ if (s[k] != 0.0) {
+ if (A[k][k] < 0.0) {
+ s[k] = -s[k];
+ }
+ for (int i = k; i < m; i++) {
+ A[i][k] /= s[k];
+ }
+ A[k][k] += 1.0;
+ }
+ s[k] = -s[k];
+ }
+ for (int j = k+1; j < n; j++) {
+ if ((k < nct) & (s[k] != 0.0)) {
+
+ // Apply the transformation.
+
+ double t = 0;
+ for (int i = k; i < m; i++) {
+ t += A[i][k]*A[i][j];
+ }
+ t = -t/A[k][k];
+ for (int i = k; i < m; i++) {
+ A[i][j] += t*A[i][k];
+ }
+ }
+
+ // Place the k-th row of A into e for the
+ // subsequent calculation of the row transformation.
+
+ e[j] = A[k][j];
+ }
+ if (wantu & (k < nct)) {
+
+ // Place the transformation in U for subsequent back
+ // multiplication.
+
+ for (int i = k; i < m; i++) {
+ U[i][k] = A[i][k];
+ }
+ }
+ if (k < nrt) {
+
+ // Compute the k-th row transformation and place the
+ // k-th super-diagonal in e[k].
+ // Compute 2-norm without under/overflow.
+ e[k] = 0;
+ for (int i = k+1; i < n; i++) {
+ e[k] = hypot(e[k],e[i]);
+ }
+ if (e[k] != 0.0) {
+ if (e[k+1] < 0.0) {
+ e[k] = -e[k];
+ }
+ for (int i = k+1; i < n; i++) {
+ e[i] /= e[k];
+ }
+ e[k+1] += 1.0;
+ }
+ e[k] = -e[k];
+ if ((k+1 < m) & (e[k] != 0.0)) {
+
+ // Apply the transformation.
+
+ for (int i = k+1; i < m; i++) {
+ work[i] = 0.0;
+ }
+ for (int j = k+1; j < n; j++) {
+ for (int i = k+1; i < m; i++) {
+ work[i] += e[j]*A[i][j];
+ }
+ }
+ for (int j = k+1; j < n; j++) {
+ double t = -e[j]/e[k+1];
+ for (int i = k+1; i < m; i++) {
+ A[i][j] += t*work[i];
+ }
+ }
+ }
+ if (wantv) {
+
+ // Place the transformation in V for subsequent
+ // back multiplication.
+
+ for (int i = k+1; i < n; i++) {
+ V[i][k] = e[i];
+ }
+ }
+ }
+ }
+
+ // Set up the final bidiagonal matrix or order p.
+
+ int p = 3;
+ if (nct < n) {
+ s[nct] = A[nct][nct];
+ }
+ if (m < p) {
+ s[p-1] = 0.0;
+ }
+ if (nrt+1 < p) {
+ e[nrt] = A[nrt][p-1];
+ }
+ e[p-1] = 0.0;
+
+ // If required, generate U.
+
+ if (wantu) {
+ for (int j = nct; j < nu; j++) {
+ for (int i = 0; i < m; i++) {
+ U[i][j] = 0.0;
+ }
+ U[j][j] = 1.0;
+ }
+ for (int k = nct-1; k >= 0; k--) {
+ if (s[k] != 0.0) {
+ for (int j = k+1; j < nu; j++) {
+ double t = 0;
+ for (int i = k; i < m; i++) {
+ t += U[i][k]*U[i][j];
+ }
+ t = -t/U[k][k];
+ for (int i = k; i < m; i++) {
+ U[i][j] += t*U[i][k];
+ }
+ }
+ for (int i = k; i < m; i++ ) {
+ U[i][k] = -U[i][k];
+ }
+ U[k][k] = 1.0 + U[k][k];
+ for (int i = 0; i < k-1; i++) {
+ U[i][k] = 0.0;
+ }
+ } else {
+ for (int i = 0; i < m; i++) {
+ U[i][k] = 0.0;
+ }
+ U[k][k] = 1.0;
+ }
+ }
+ }
+
+ // If required, generate V.
+
+ if (wantv) {
+ for (int k = n-1; k >= 0; k--) {
+ if ((k < nrt) & (e[k] != 0.0)) {
+ for (int j = k+1; j < nu; j++) {
+ double t = 0;
+ for (int i = k+1; i < n; i++) {
+ t += V[i][k]*V[i][j];
+ }
+ t = -t/V[k+1][k];
+ for (int i = k+1; i < n; i++) {
+ V[i][j] += t*V[i][k];
+ }
+ }
+ }
+ for (int i = 0; i < n; i++) {
+ V[i][k] = 0.0;
+ }
+ V[k][k] = 1.0;
+ }
+ }
+
+ // Main iteration loop for the singular values.
+
+ int pp = p-1;
+ int iter = 0;
+ double eps = pow(2.0,-52.0);
+ double tiny = pow(2.0,-966.0);
+ while (p > 0) {
+ int k,kase;
+
+ // Here is where a test for too many iterations would go.
+
+ // This section of the program inspects for
+ // negligible elements in the s and e arrays. On
+ // completion the variables kase and k are set as follows.
+
+ // kase = 1 if s(p) and e[k-1] are negligible and k<p
+ // kase = 2 if s(k) is negligible and k<p
+ // kase = 3 if e[k-1] is negligible, k<p, and
+ // s(k), ..., s(p) are not negligible (qr step).
+ // kase = 4 if e(p-1) is negligible (convergence).
+
+ for (k = p-2; k >= -1; k--) {
+ if (k == -1) {
+ break;
+ }
+ if (fabs(e[k]) <=
+ tiny + eps*(fabs(s[k]) + fabs(s[k+1]))) {
+ e[k] = 0.0;
+ break;
+ }
+ }
+ if (k == p-2) {
+ kase = 4;
+ } else {
+ int ks;
+ for (ks = p-1; ks >= k; ks--) {
+ if (ks == k) {
+ break;
+ }
+ double t = (ks != p ? fabs(e[ks]) : 0.) +
+ (ks != k+1 ? fabs(e[ks-1]) : 0.);
+ if (fabs(s[ks]) <= tiny + eps*t) {
+ s[ks] = 0.0;
+ break;
+ }
+ }
+ if (ks == k) {
+ kase = 3;
+ } else if (ks == p-1) {
+ kase = 1;
+ } else {
+ kase = 2;
+ k = ks;
+ }
+ }
+ k++;
+
+ // Perform the task indicated by kase.
+
+ switch (kase) {
+
+ // Deflate negligible s(p).
+
+ case 1: {
+ double f = e[p-2];
+ e[p-2] = 0.0;
+ for (int j = p-2; j >= k; j--) {
+ double t = hypot(s[j],f);
+ double cs = s[j]/t;
+ double sn = f/t;
+ s[j] = t;
+ if (j != k) {
+ f = -sn*e[j-1];
+ e[j-1] = cs*e[j-1];
+ }
+ if (wantv) {
+ for (int i = 0; i < n; i++) {
+ t = cs*V[i][j] + sn*V[i][p-1];
+ V[i][p-1] = -sn*V[i][j] + cs*V[i][p-1];
+ V[i][j] = t;
+ }
+ }
+ }
+ }
+ break;
+
+ // Split at negligible s(k).
+
+ case 2: {
+ double f = e[k-1];
+ e[k-1] = 0.0;
+ for (int j = k; j < p; j++) {
+ double t = hypot(s[j],f);
+ double cs = s[j]/t;
+ double sn = f/t;
+ s[j] = t;
+ f = -sn*e[j];
+ e[j] = cs*e[j];
+ if (wantu) {
+ for (int i = 0; i < m; i++) {
+ t = cs*U[i][j] + sn*U[i][k-1];
+ U[i][k-1] = -sn*U[i][j] + cs*U[i][k-1];
+ U[i][j] = t;
+ }
+ }
+ }
+ }
+ break;
+
+ // Perform one qr step.
+
+ case 3: {
+
+ // Calculate the shift.
+
+ double scale = 0.0;
+ double d = fabs(s[p-1]);
+ if (d>scale) scale=d;
+ d = fabs(s[p-2]);
+ if (d>scale) scale=d;
+ d = fabs(e[p-2]);
+ if (d>scale) scale=d;
+ d = fabs(s[k]);
+ if (d>scale) scale=d;
+ d = fabs(e[k]);
+ if (d>scale) scale=d;
+ double sp = s[p-1]/scale;
+ double spm1 = s[p-2]/scale;
+ double epm1 = e[p-2]/scale;
+ double sk = s[k]/scale;
+ double ek = e[k]/scale;
+ double b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/2.0;
+ double c = (sp*epm1)*(sp*epm1);
+ double shift = 0.0;
+ if ((b != 0.0) | (c != 0.0)) {
+ shift = sqrt(b*b + c);
+ if (b < 0.0) {
+ shift = -shift;
+ }
+ shift = c/(b + shift);
+ }
+ double f = (sk + sp)*(sk - sp) + shift;
+ double g = sk*ek;
+
+ // Chase zeros.
+
+ for (int j = k; j < p-1; j++) {
+ double t = hypot(f,g);
+ double cs = f/t;
+ double sn = g/t;
+ if (j != k) {
+ e[j-1] = t;
+ }
+ f = cs*s[j] + sn*e[j];
+ e[j] = cs*e[j] - sn*s[j];
+ g = sn*s[j+1];
+ s[j+1] = cs*s[j+1];
+ if (wantv) {
+ for (int i = 0; i < n; i++) {
+ t = cs*V[i][j] + sn*V[i][j+1];
+ V[i][j+1] = -sn*V[i][j] + cs*V[i][j+1];
+ V[i][j] = t;
+ }
+ }
+ t = hypot(f,g);
+ cs = f/t;
+ sn = g/t;
+ s[j] = t;
+ f = cs*e[j] + sn*s[j+1];
+ s[j+1] = -sn*e[j] + cs*s[j+1];
+ g = sn*e[j+1];
+ e[j+1] = cs*e[j+1];
+ if (wantu && (j < m-1)) {
+ for (int i = 0; i < m; i++) {
+ t = cs*U[i][j] + sn*U[i][j+1];
+ U[i][j+1] = -sn*U[i][j] + cs*U[i][j+1];
+ U[i][j] = t;
+ }
+ }
+ }
+ e[p-2] = f;
+ iter = iter + 1;
+ }
+ break;
+
+ // Convergence.
+
+ case 4: {
+
+ // Make the singular values positive.
+
+ if (s[k] <= 0.0) {
+ s[k] = (s[k] < 0.0 ? -s[k] : 0.0);
+ if (wantv) {
+ for (int i = 0; i <= pp; i++) {
+ V[i][k] = -V[i][k];
+ }
+ }
+ }
+
+ // Order the singular values.
+
+ while (k < pp) {
+ if (s[k] >= s[k+1]) {
+ break;
+ }
+ double t = s[k];
+ s[k] = s[k+1];
+ s[k+1] = t;
+ if (wantv && (k < n-1)) {
+ for (int i = 0; i < n; i++) {
+ t = V[i][k+1]; V[i][k+1] = V[i][k]; V[i][k] = t;
+ }
+ }
+ if (wantu && (k < m-1)) {
+ for (int i = 0; i < m; i++) {
+ t = U[i][k+1]; U[i][k+1] = U[i][k]; U[i][k] = t;
+ }
+ }
+ k++;
+ }
+ iter = 0;
+ p--;
+ }
+ break;
+ }
+ }
+
+
+}
+
+
+
+/**
+ * Return the left singular vectors
+ * @return U
+ */
+NR::Matrix SingularValueDecomposition::getU()
{
+ NR::Matrix mat(U[0][0], U[1][0], U[0][1],
+ U[1][1], U[2][0], U[2][1]);
+ return mat;
+}
+
+/**
+ * Return the right singular vectors
+ * @return V
+ */
+
+NR::Matrix SingularValueDecomposition::getV()
+{
+ NR::Matrix mat(V[0][0], V[1][0], V[0][1],
+ V[1][1], V[2][0], V[2][1]);
+ return mat;
+}
+
+/**
+ * Return the three singular values along the diagonal
+ */
+void SingularValueDecomposition::getSingularValues(
+ double &s0, double &s1, double &s2)
+{
+ s0 = s[0];
+ s1 = s[1];
+ s2 = s[2];
+}
+
+/**
+ * Two norm
+ * @return max(S)
+ */
+double SingularValueDecomposition::norm2()
+{
+ return s[0];
+}
+
+/**
+ * Two norm condition number
+ * @return max(S)/min(S)
+ */
+
+double SingularValueDecomposition::cond()
+{
+ return s[0]/s[2];
+}
+
+/**
+ * Effective numerical matrix rank
+ * @return Number of nonnegligible singular values.
+ */
+int SingularValueDecomposition::rank()
+{
+ double eps = pow(2.0,-52.0);
+ double tol = 3.0*s[0]*eps;
+ int r = 0;
+ for (int i = 0; i < 3; i++)
+ {
+ if (s[i] > tol)
+ r++;
+ }
+ return r;
+}
+
+//########################################################################
+//# E N D C L A S S SingularValueDecomposition
+//########################################################################
+
+
//#define pxToCm 0.0275
}
+
/**
* Method descends into the repr tree, converting image and style info
* into forms compatible in ODF.
imageTable[oldName] = newName;
std::string comment = "old name was: ";
comment.append(oldName);
- ZipEntry *ze = zf.addFile(oldName, comment);
+ URI oldUri(oldName);
+ //g_message("oldpath:%s", oldUri.getNativePath().c_str());
+ //# if relative to the documentURI, get proper path
+ URI resUri = documentUri.resolve(oldUri);
+ DOMString pathName = resUri.getNativePath();
+ //g_message("native path:%s", pathName.c_str());
+ ZipEntry *ze = zf.addFile(pathName, comment);
if (ze)
{
ze->setFileName(newName);
}
else
{
- g_warning("Could not load image file '%s'", oldName.c_str());
+ g_warning("Could not load image file '%s'", pathName.c_str());
}
}
}
else if (nodeName == "g" || nodeName == "svg:g")
{
if (id.size() > 0)
- outs.printf("<draw:g id=\"%s\">", id.c_str());
+ outs.printf("<draw:g id=\"%s\">\n", id.c_str());
else
outs.printf("<draw:g>\n");
//# Iterate through the children
if (!writeTree(outs, child))
return false;
}
- outs.printf("</draw:g>\n");
+ if (id.size() > 0)
+ outs.printf("</draw:g> <!-- id=\"%s\" -->\n", id.c_str());
+ else
+ outs.printf("</draw:g>\n");
return true;
}
else if (nodeName == "image" || nodeName == "svg:image")
iwidth = pxToCm * ( ibbox.max()[NR::X] - ibbox.min()[NR::X] );
iheight = pxToCm * ( ibbox.max()[NR::Y] - ibbox.min()[NR::Y] );
+ NR::Matrix itemTransform = item->transform;
+ std::string itemTransformString = formatTransform(itemTransform);
- std::string itemTransformString = formatTransform(item->transform);
+ SingularValueDecomposition svd(itemTransform);
+ double scale1, rotate, scale2;
+ svd.getSingularValues(scale1, rotate, scale2);
+ g_message("s1:%f rot:%f s2:%f", scale1, rotate, scale2);
std::string href = getAttribute(node, "xlink:href");
std::map<std::string, std::string>::iterator iter = imageTable.find(href);
@@ -799,6 +1445,8 @@ OdfOutput::save(Inkscape::Extension::Output *mod, SPDocument *doc, gchar const *
styleLookupTable.clear();
imageTable.clear();
preprocess(zf, doc->rroot);
+ g_message("native file:%s\n", uri);
+ documentUri = URI(uri);
if (!writeManifest(zf))
{
index 437148873615e816923ea1e9ff16849acd29026d..01575b4914d4095bafa21210a302b468915f8ccf 100644 (file)
#include <dom/dom.h>
#include <dom/io/stringstream.h>
+#include <dom/uri.h>
#include <glib.h>
#include "extension/implementation/implementation.h"
#include <dom/util/ziptool.h>
#include <dom/io/domstream.h>
-typedef org::w3c::dom::io::Writer Writer;
namespace Inkscape
{
namespace Internal
{
+typedef org::w3c::dom::URI URI;
+typedef org::w3c::dom::io::Writer Writer;
class StyleInfo
private:
+ URI documentUri;
+
/* Style table
Uses a two-stage lookup to avoid style duplication.
Use like: