summary | shortlog | log | commit | commitdiff | tree
raw | patch | inline | side by side (parent: 22ceec2)
raw | patch | inline | side by side (parent: 22ceec2)
author | Alvin Penner <penner@vaxxine.com> | |
Thu, 24 Dec 2009 11:23:10 +0000 (06:23 -0500) | ||
committer | Alvin Penner <penner@vaxxine.com> | |
Thu, 24 Dec 2009 11:23:10 +0000 (06:23 -0500) |
share/extensions/Makefile.am | patch | blob | history | |
share/extensions/render_barcode_datamatrix.inx | [new file with mode: 0644] | patch | blob |
share/extensions/render_barcode_datamatrix.py | [new file with mode: 0644] | patch | blob |
index 2dbb71a543f1339c4748421042c8ce8266fee44b..1650923e07350b9afad5c7afa1f91d5e08bf7507 100644 (file)
radiusrand.py \
restack.py \
render_barcode.py \
+ render_barcode_datamatrix.py \
render_alphabetsoup.py \
render_alphabetsoup_config.py \
rtree.py \
ps_input.inx \
radiusrand.inx \
render_barcode.inx \
+ render_barcode_datamatrix.inx \
render_alphabetsoup.inx \
restack.inx \
rubberstretch.inx \
diff --git a/share/extensions/render_barcode_datamatrix.inx b/share/extensions/render_barcode_datamatrix.inx
--- /dev/null
@@ -0,0 +1,20 @@
+<?xml version="1.0" encoding="UTF-8"?>
+<inkscape-extension xmlns="http://www.inkscape.org/namespace/inkscape/extension">
+ <_name>Barcode - Datamatrix</_name>
+ <id>il.datamatrix</id>
+ <dependency type="executable" location="extensions">render_barcode_datamatrix.py</dependency>
+ <dependency type="executable" location="extensions">inkex.py</dependency>
+ <param name="text" type="string" _gui-text="Text">Inkscape</param>
+ <param name="rows" type="int" min="8" max="144" _gui-text="Rows">10</param>
+ <param name="cols" type="int" min="10" max="144" _gui-text="Cols">10</param>
+ <param name="size" type="int" min="1" max="1000" _gui-text="Square Size / px">4</param>
+ <effect>
+ <object-type>all</object-type>
+ <effects-menu>
+ <submenu _name="Render"/>
+ </effects-menu>
+ </effect>
+ <script>
+ <command reldir="extensions" interpreter="python">render_barcode_datamatrix.py</command>
+ </script>
+</inkscape-extension>
diff --git a/share/extensions/render_barcode_datamatrix.py b/share/extensions/render_barcode_datamatrix.py
--- /dev/null
@@ -0,0 +1,654 @@
+#!/usr/bin/env python
+# -*- coding: UTF-8 -*-
+'''
+Copyright (C) 2009 John Beard john.j.beard@gmail.com
+
+######DESCRIPTION######
+
+This extension renders a DataMatrix 2D barcode, as specified in
+BS ISO/IEC 16022:2006. Only ECC200 codes are considered, as these are the only
+ones recommended for an "open" system.
+
+The size of the DataMatrix is variable between 10x10 to 144x144
+
+The absolute size of the DataMatrix modules (the little squares) is also
+variable.
+
+If more data is given than can be contained in one DataMatrix,
+more than one DataMatrices will be produced.
+
+Text is encoded as ASCII (the standard provides for other options, but these are
+not implemented). Consecutive digits are encoded in a compressed form, halving
+the space required to store them.
+
+The basis processing flow is;
+ * Convert input string to codewords (modified ASCII and compressed digits)
+ * Split codewords into blocks of the right size for Reed-Solomon coding
+ * Interleave the blocks if required
+ * Apply Reed-Solomon coding
+ * De-interleave the blocks if required
+ * Place the codewords into the matrix bit by bit
+ * Render the modules in the matrix as squares
+
+######LICENCE#######
+This program is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2 of the License, or
+(at your option) any later version.
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with this program; if not, write to the Free Software
+Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+
+######VERSION HISTORY#####
+ Ver. Date Notes
+
+ 0.50 2009-10-25 Full functionality, up to 144x144.
+ ASCII and compressed digit encoding only.
+'''
+
+import inkex, simplestyle
+
+import gettext
+_ = gettext.gettext
+
+#ENCODING ROUTINES ===================================================
+# Take an input string and convert it to a sequence (or sequences)
+# of codewords as specified in ISO/IEC 16022:2006 (section 5.2.3)
+#=====================================================================
+
+#create a 2d list corresponding to the 1's and 0s of the DataMatrix
+def encode(text, (nrow, ncol) ):
+ #retreive the parameters of this size of DataMatrix
+ data_nrow, data_ncol, reg_row, reg_col, nd, nc, inter = get_parameters( nrow, ncol )
+
+ if not ((nrow == 144) and (ncol == 144)): #we have a regular datamatrix
+ size144 = False
+ else: #special handling will be required by get_codewords()
+ size144 = True
+
+ #generate the codewords including padding and ECC
+ codewords = get_codewords( text, nd, nc, inter, size144 )
+
+ # break up into separate arrays if more than one DataMatrix is needed
+ module_arrays = []
+ for codeword_stream in codewords: #for each datamatrix
+ bit_array = place_bits(codeword_stream, (data_nrow*reg_row, data_ncol*reg_col)) #place the codewords' bits across the array as modules
+ module_arrays.append(add_finder_pattern( bit_array, data_nrow, data_ncol, reg_row, reg_col )) #add finder patterns around the modules
+
+ return module_arrays
+
+#return parameters for the selected datamatrix size
+# data_nrow number of rows in each data region
+# data_ncol number of cols in each data region
+# reg_row number of rows of data regions
+# reg_col number of cols of data regions
+# nd number of data codewords per reed-solomon block
+# nc number of ECC codewords per reed-solomon block
+# inter number of interleaved Reed-Solomon blocks
+def get_parameters(nrow, ncol):
+
+ #SQUARE SYMBOLS
+ if ( nrow == 10 and ncol == 10 ):
+ return 8, 8, 1, 1, 3, 5, 1
+ elif ( nrow == 12 and ncol == 12 ):
+ return 10, 10, 1, 1, 5, 7, 1
+ elif ( nrow == 14 and ncol == 14 ):
+ return 12, 12, 1, 1, 8, 10, 1
+ elif ( nrow == 16 and ncol == 16 ):
+ return 14, 14, 1, 1, 12, 12, 1
+ elif ( nrow == 18 and ncol == 18 ):
+ return 16, 16, 1, 1, 18, 14, 1
+ elif ( nrow == 20 and ncol == 20 ):
+ return 18, 18, 1, 1, 22, 18, 1
+ elif ( nrow == 22 and ncol == 22 ):
+ return 18, 18, 1, 1, 30, 20, 1
+ elif ( nrow == 24 and ncol == 24 ):
+ return 22, 22, 1, 1, 36, 24, 1
+ elif ( nrow == 26 and ncol == 26 ):
+ return 24, 24, 1, 1, 44, 28, 1
+ elif ( nrow == 32 and ncol == 32 ):
+ return 14, 14, 2, 2, 62, 36, 1
+ elif ( nrow == 36 and ncol == 36 ):
+ return 16, 16, 2, 2, 86, 42, 1
+ elif ( nrow == 40 and ncol == 40):
+ return 18, 18, 2, 2, 114, 48, 1
+ elif ( nrow == 44 and ncol == 44):
+ return 20, 20, 2, 2, 144, 56, 1
+ elif ( nrow == 48 and ncol == 48 ):
+ return 22, 22, 2, 2, 174, 68, 1
+
+ elif ( nrow == 52 and ncol == 52 ):
+ return 24, 24, 2, 2, 102, 42, 2
+ elif ( nrow == 64 and ncol == 64 ):
+ return 16, 16, 4, 4, 140, 56, 2
+
+ elif ( nrow == 72 and ncol == 72 ):
+ return 16, 16, 4, 4, 92, 36, 4
+ elif ( nrow == 80 and ncol == 80 ):
+ return 18, 18, 4, 4, 114, 48, 4
+ elif ( nrow == 88 and ncol == 88 ):
+ return 20, 20, 4, 4, 144, 56, 4
+ elif ( nrow == 96 and ncol == 96 ):
+ return 22, 22, 4, 4, 174, 68, 4
+
+ elif ( nrow == 104 and ncol == 104 ):
+ return 24, 24, 4, 4, 136, 56, 6
+ elif ( nrow == 120 and ncol == 120):
+ return 18, 18, 6, 6, 175, 68, 6
+
+ elif ( nrow == 132 and ncol == 132):
+ return 20, 20, 6, 6, 163, 62, 8
+
+ elif (nrow == 144 and ncol == 144):
+ return 22, 22, 6, 6, 0, 0, 0 #there are two separate sections of the data matrix with
+ #different interleaving and reed-solomon parameters.
+ #this will be handled separately
+
+ #RECTANGULAR SYMBOLS
+ elif ( nrow == 8 and ncol == 18 ):
+ return 6, 16, 1, 1, 5, 7, 1
+ elif ( nrow == 8 and ncol == 32 ):
+ return 6, 14, 1, 2, 10, 11, 1
+ elif ( nrow == 12 and ncol == 26 ):
+ return 10, 24, 1, 1, 16, 14, 1
+ elif ( nrow == 12 and ncol == 36 ):
+ return 10, 16, 1, 2, 22, 18, 1
+ elif ( nrow == 16 and ncol == 36 ):
+ return 14, 16, 1, 2, 32, 24, 1
+ elif ( nrow == 16 and ncol == 48 ):
+ return 14, 22, 1, 2, 49, 28, 1
+
+ #RETURN ERROR
+ else:
+ inkex.errormsg(_('Unrecognised DataMatrix size'))
+
+ return None
+
+# CODEWORD STREAM GENERATION =========================================
+#take the text input and return the codewords,
+#including the Reed-Solomon error-correcting codes.
+#=====================================================================
+
+def get_codewords( text, nd, nc, inter, size144 ):
+ #convert the data to the codewords
+ data = encode_to_ascii( text )
+
+ if not size144: #render a "normal" datamatrix
+ data_blocks = partition_data(data, nd*inter) #partition into data blocks of length nd*inter -> inter Reed-Solomon block
+
+ data_blocks = interleave( data_blocks, inter) # interleave consecutive inter blocks if required
+
+ data_blocks = reed_solomon(data_blocks, nd, nc) #generate and append the Reed-Solomon codewords
+
+ data_blocks = combine_interleaved(data_blocks, inter, nd, nc, False) #concatenate Reed-Solomon blocks bound for the same datamatrix
+
+ else: #we have a 144x144 datamatrix
+ data_blocks = partition_data(data, 1558) #partition the data into datamtrix-sized chunks (1558 =156*8 + 155*2 )
+
+ for i in range(len(data_blocks)): #for each datamtrix
+
+
+ inter = 8
+ nd = 156
+ nc = 62
+ block1 = data_blocks[i][0:156*8]
+ block1 = interleave( [block1], inter) # interleave into 8 blocks
+ block1 = reed_solomon(block1, nd, nc) #generate and append the Reed-Solomon codewords
+
+ inter = 2
+ nd = 155
+ nc = 62
+ block2 = data_blocks[i][156*8:]
+ block2 = interleave( [block2], inter) # interleave into 2 blocks
+ block2 = reed_solomon(block2, nd, nc) #generate and append the Reed-Solomon codewords
+
+ blocks = block1
+ blocks.extend(block2)
+
+ blocks = combine_interleaved(blocks, 10, nd, nc, True)
+
+ data_blocks[i] = blocks[0]
+
+
+ return data_blocks
+
+
+#Takes a codeword stream and splits up into "inter" blocks.
+#eg interleave( [1,2,3,4,5,6], 2 ) -> [1,3,5], [2,4,6]
+def interleave( blocks, inter):
+
+ if inter == 1: # if we don't have to interleave, just return the blocks
+ return blocks
+ else:
+ result = []
+ for block in blocks: #for each codeword block in the stream
+ block_length = len(block)/inter #length of each interleaved block
+ inter_blocks = [[0] * block_length for i in xrange(inter)] #the interleaved blocks
+
+ for i in range(block_length): #for each element in the interleaved blocks
+ for j in range(inter): #for each interleaved block
+ inter_blocks[j][i] = block[ i*inter + j ]
+
+ result.extend(inter_blocks) #add the interleaved blocks to the output
+
+ return result
+
+#Combine interleaved blocks into the groups for the same datamatrix
+#
+#e.g combine_interleaved( [[d1, d3, d5, e1, e3, e5], [d2, d4, d6, e2, e4, e6]], 2, 3, 3 )
+# --> [[d1, d2, d3, d4, d5, d6, e1, e2, e3, e4, e5, e6]]
+def combine_interleaved( blocks, inter, nd, nc, size144):
+ if inter == 1: #the blocks aren't interleaved
+ return blocks
+ else:
+ result = []
+ for i in range( len(blocks) / inter ): #for each group of "inter" blocks -> one full datamatrix
+ data_codewords = [] #interleaved data blocks
+
+ if size144:
+ nd_range = 1558 #1558 = 156*8 + 155*2
+ nc_range = 620 #620 = 62*8 + 62*2
+ else:
+ nd_range = nd*inter
+ nc_range = nc*inter
+
+ for j in range(nd_range): #for each codeword in the final list
+ data_codewords.append( blocks[i*inter + j%inter][j/inter] )
+
+ for j in range(nc_range): #for each block, add the ecc codewords
+ data_codewords.append( blocks[i*inter + j%inter][nd + j/inter] )
+
+ result.append(data_codewords)
+ return result
+
+#checks if an ASCII character is a digit from 0 - 9
+def is_digit( char ):
+
+ if ord(char) >= 48 and ord(char) <= 57:
+ return True
+ else:
+ return False
+
+def encode_to_ascii( text):
+
+ ascii = []
+ i = 0
+ while i < len(text):
+ #check for double digits
+ if is_digit( text[i] ) and ( i < len(text)-1) and is_digit( text[i+1] ): #if the next char is also a digit
+
+ codeword = int( text[i] + text[i+1] ) + 130
+ ascii.append( codeword )
+ i = i + 2 #move on 2 characters
+ else: #encode as a normal ascii,
+ ascii.append( ord(text[i] ) + 1 ) #codeword is ASCII value + 1 (ISO 16022:2006 5.2.3)
+ i = i + 1 #next character
+
+ return ascii
+
+
+#partition data into blocks of the appropriate size to suit the
+#Reed-Solomon block being used.
+#e.g. partition_data([1,2,3,4,5], 3) -> [[1,2,3],[4,5,PAD]]
+def partition_data( data , rs_data):
+
+ PAD_VAL = 129 # PAD codeword (ISO 16022:2006 5.2.3)
+ data_blocks = []
+ i = 0
+ while i < len(data):
+ if len(data) >= i+rs_data: #we have a whole block in our data
+ data_blocks.append( data[i:i+rs_data] )
+ i = i + rs_data
+ else: #pad out with the pad codeword
+ data_block = data[i:len(data)] #add any remaining data
+ pad_pos = len(data)
+ padded = False
+ while len(data_block) < rs_data:#and then pad with randomised pad codewords
+ if not padded:
+ data_block.append( PAD_VAL ) #add a normal pad codeword
+ padded = True
+ else:
+ data_block.append( randomise_pad_253( PAD_VAL, pad_pos) )
+ pad_pos = pad_pos + 1
+ data_blocks.append( data_block)
+ break
+
+ return data_blocks
+
+#Pad character randomisation, to prevent regular patterns appearing
+#in the data matrix
+def randomise_pad_253(pad_value, pad_position ):
+ pseudo_random_number = ( ( 149 * pad_position ) % 253 )+ 1
+ randomised = pad_value + pseudo_random_number
+ if ( randomised <= 254 ):
+ return randomised
+ else:
+ return randomised - 254
+
+# REED-SOLOMON ENCODING ROUTINES =====================================
+
+# "prod(x,y,log,alog,gf)" returns the product "x" times "y"
+def prod(x, y, log, alog, gf):
+
+ if ( x==0 or y==0):
+ return 0
+ else:
+ result = alog[ ( log[x] + log[y] ) % (gf - 1) ]
+ return result
+
+# generate the log & antilog lists:
+def gen_log_alog(gf, pp):
+ log = [0]*gf
+ alog = [0]*gf
+
+ log[0] = 1-gf
+ alog[0] = 1
+
+ for i in range(1,gf):
+ alog[i] = alog[i-1] * 2
+
+ if (alog[i] >= gf):
+ alog[i] = alog[i] ^ pp
+
+ log[alog[i]] = i
+
+ return log, alog
+
+# generate the generator polynomial coefficients:
+def gen_poly_coeffs(nc, log, alog, gf):
+ c = [0] * (nc+1)
+ c[0] = 1
+
+ for i in range(1,nc+1):
+ c[i] = c[i-1]
+
+ j = i-1
+ while j >= 1:
+ c[j] = c[j-1] ^ prod(c[j],alog[i],log,alog,gf)
+ j = j - 1
+
+ c[0] = prod(c[0],alog[i],log,alog,gf)
+
+ return c
+
+# "ReedSolomon(wd,nd,nc)" takes "nd" data codeword values in wd[]
+# and adds on "nc" check codewords, all within GF(gf) where "gf" is a
+# power of 2 and "pp" is the value of its prime modulus polynomial */
+def reed_solomon(data, nd, nc):
+ #parameters of the polynomial arithmetic
+ gf = 256 #operating on 8-bit codewords -> Galois field = 2^8 = 256
+ pp = 301 #prime modulus polynomial for ECC-200 is 0b100101101 = 301 (ISO 16022:2006 5.7.1)
+
+ log, alog = gen_log_alog(gf,pp)
+ c = gen_poly_coeffs(nc, log, alog, gf)
+
+ for block in data: #for each block of data codewords
+
+ block.extend( [0]*(nc+1) ) #extend to make space for the error codewords
+
+ #generate "nc" checkwords in the list block
+ for i in range(0, nd):
+ k = block[nd] ^ block[i]
+
+ for j in range(0,nc):
+ block[nd+j] = block[nd+j+1] ^ prod(k,c[nc-j-1],log, alog,gf)
+
+ block.pop()
+
+ return data
+
+#MODULE PLACEMENT ROUTINES===========================================
+# These routines take a steam of codewords, and place them into the
+# DataMatrix in accordance with Annex F of BS ISO/IEC 16022:2006
+
+# bit() returns the bit'th bit of the byte
+def bit(byte, bit):
+ #the MSB is bit 1, LSB is bit 8
+ return ( byte >> (8-bit) ) %2
+
+# "module" places a given bit with appropriate wrapping within array
+def module(array, nrow, ncol, row, col, bit) :
+ if (row < 0) :
+ row = row + nrow
+ col = col + 4 - ((nrow+4)%8)
+
+ if (col < 0):
+ col = col + ncol
+ row = row + 4 - ((ncol+4)%8)
+
+ array[row][col] = bit
+
+def corner1(array, nrow, ncol, char):
+ module(array, nrow, ncol, nrow-1, 0, bit(char,1));
+ module(array, nrow, ncol, nrow-1, 1, bit(char,2));
+ module(array, nrow, ncol, nrow-1, 2, bit(char,3));
+ module(array, nrow, ncol, 0, ncol-2, bit(char,4));
+ module(array, nrow, ncol, 0, ncol-1, bit(char,5));
+ module(array, nrow, ncol, 1, ncol-1, bit(char,6));
+ module(array, nrow, ncol, 2, ncol-1, bit(char,7));
+ module(array, nrow, ncol, 3, ncol-1, bit(char,8));
+
+def corner2(array, nrow, ncol, char):
+ module(array, nrow, ncol, nrow-3, 0, bit(char,1));
+ module(array, nrow, ncol, nrow-2, 0, bit(char,2));
+ module(array, nrow, ncol, nrow-1, 0, bit(char,3));
+ module(array, nrow, ncol, 0, ncol-4, bit(char,4));
+ module(array, nrow, ncol, 0, ncol-3, bit(char,5));
+ module(array, nrow, ncol, 0, ncol-2, bit(char,6));
+ module(array, nrow, ncol, 0, ncol-1, bit(char,7));
+ module(array, nrow, ncol, 1, ncol-1, bit(char,8));
+
+def corner3(array, nrow, ncol, char):
+ module(array, nrow, ncol, nrow-3, 0, bit(char,1));
+ module(array, nrow, ncol, nrow-2, 0, bit(char,2));
+ module(array, nrow, ncol, nrow-1, 0, bit(char,3));
+ module(array, nrow, ncol, 0, ncol-2, bit(char,4));
+ module(array, nrow, ncol, 0, ncol-1, bit(char,5));
+ module(array, nrow, ncol, 1, ncol-1, bit(char,6));
+ module(array, nrow, ncol, 2, ncol-1, bit(char,7));
+ module(array, nrow, ncol, 3, ncol-1, bit(char,8));
+
+def corner4(array, nrow, ncol, char):
+ module(array, nrow, ncol, nrow-1, 0, bit(char,1));
+ module(array, nrow, ncol, nrow-1, ncol-1, bit(char,2));
+ module(array, nrow, ncol, 0, ncol-3, bit(char,3));
+ module(array, nrow, ncol, 0, ncol-2, bit(char,4));
+ module(array, nrow, ncol, 0, ncol-1, bit(char,5));
+ module(array, nrow, ncol, 1, ncol-3, bit(char,6));
+ module(array, nrow, ncol, 1, ncol-2, bit(char,7));
+ module(array, nrow, ncol, 1, ncol-1, bit(char,8));
+
+#"utah" places the 8 bits of a utah-shaped symbol character in ECC200
+def utah(array, nrow, ncol, row, col, char):
+ module(array, nrow, ncol,row-2, col-2, bit(char,1))
+ module(array, nrow, ncol,row-2, col-1, bit(char,2))
+ module(array, nrow, ncol,row-1, col-2, bit(char,3))
+ module(array, nrow, ncol,row-1, col-1, bit(char,4))
+ module(array, nrow, ncol,row-1, col, bit(char,5))
+ module(array, nrow, ncol,row, col-2, bit(char,6))
+ module(array, nrow, ncol,row, col-1, bit(char,7))
+ module(array, nrow, ncol,row, col, bit(char,8))
+
+#"place_bits" fills an nrow x ncol array with the bits from the
+# codewords in data.
+def place_bits(data, (nrow, ncol)):
+# First, fill the array[] with invalid entries */
+ INVALID = 2
+ array = [[INVALID] * ncol for i in xrange(nrow)] #initialise and fill with -1's (invalid value)
+# Starting in the correct location for character #1, bit 8,...
+ char = 0
+ row = 4
+ col = 0
+ while True:
+
+ #first check for one of the special corner cases, then...
+ if ((row == nrow) and (col == 0)):
+ corner1(array, nrow, ncol, data[char])
+ char = char + 1
+ if ((row == nrow-2) and (col == 0) and (ncol%4)) :
+ corner2(array, nrow, ncol, data[char])
+ char = char + 1
+ if ((row == nrow-2) and (col == 0) and (ncol%8 == 4)):
+ corner3(array, nrow, ncol, data[char])
+ char = char + 1
+ if ((row == nrow+4) and (col == 2) and ((ncol%8) == 0)):
+ corner4(array, nrow, ncol, data[char])
+ char = char + 1
+
+ #sweep upward diagonally, inserting successive characters,...
+ while True:
+ if ((row < nrow) and (col >= 0) and (array[row][col] == INVALID)) :
+ utah(array, nrow, ncol,row,col,data[char])
+ char = char+1
+ row = row - 2
+ col = col + 2
+
+ if not((row >= 0) and (col < ncol)):
+ break
+
+ row = row + 1
+ col = col + 3
+
+ # & then sweep downward diagonally, inserting successive characters,...
+ while True:
+ if ((row >= 0) and (col < ncol) and (array[row][col] == INVALID)) :
+ utah(array, nrow, ncol,row,col,data[char])
+ char = char + 1
+ row = row + 2
+ col = col - 2
+
+ if not((row < nrow) and (col >= 0)):
+ break
+
+ row = row + 3
+ col = col + 1
+
+ #... until the entire array is scanned
+ if not((row < nrow) or (col < ncol)):
+ break
+
+ # Lastly, if the lower righthand corner is untouched, fill in fixed pattern */
+ if (array[nrow-1][ncol-1] == INVALID):
+ array[nrow-1][ncol-2] = 0
+ array[nrow-1][ncol-1] = 1
+ array[nrow-2][ncol-1] = 0
+ array[nrow-2][ncol-2] = 1
+
+ return array #return the array of 1's and 0's
+
+
+def add_finder_pattern( array, data_nrow, data_ncol, reg_row, reg_col ):
+
+ #get the total size of the datamatrix
+ nrow = (data_nrow+2) * reg_row
+ ncol = (data_ncol+2) * reg_col
+
+ datamatrix = [[0] * ncol for i in xrange(nrow)] #initialise and fill with 0's
+
+ for i in range( reg_col ): #for each column of data regions
+ for j in range(nrow):
+ datamatrix[j][i*(data_ncol+2)] = 1 #vertical black bar on left
+ datamatrix[j][i*(data_ncol+2)+data_ncol+1] = (j)%2 # alternating blocks
+
+ for i in range( reg_row): # for each row of data regions
+ for j in range(ncol):
+ datamatrix[i*(data_nrow+2)+data_nrow+1][j] = 1 #horizontal black bar at bottom
+ datamatrix[i*(data_nrow+2)][j] = (j+1)%2 # alternating blocks
+
+ for i in range( data_nrow*reg_row ):
+ for j in range( data_ncol* reg_col ):
+ dest_col = j + 1 + 2*(j/(data_ncol)) #offset by 1, plus two for every addition block
+ dest_row = i + 1 + 2*(i/(data_nrow))
+
+ datamatrix[dest_row][dest_col] = array[i][j] #transfer from the plain bit array
+
+ return datamatrix
+
+#RENDERING ROUTINES ==================================================
+# Take the array of 1's and 0's and render as a series of black
+# squares. A binary 1 is a filled square
+#=====================================================================
+
+#SVG element generation routine
+def draw_SVG_square((w,h), (x,y), parent):
+
+ style = { 'stroke' : 'none',
+ 'width' : '1',
+ 'fill' : '#000000'
+ }
+
+ attribs = {
+ 'style' :simplestyle.formatStyle(style),
+ 'height' : str(h),
+ 'width' : str(w),
+ 'x' : str(x),
+ 'y' : str(y)
+ }
+ circ = inkex.etree.SubElement(parent, inkex.addNS('rect','svg'), attribs )
+
+#turn a 2D array of 1's and 0's into a set of black squares
+def render_data_matrix( module_arrays, size, spacing, parent):
+
+ for i in range(len(module_arrays)): #for each data matrix
+
+ height = len(module_arrays[i])
+ width = len(module_arrays[i][0] )
+
+ for y in range(height): #loop over all the modules in the datamatrix
+ for x in range(width):
+
+ if module_arrays[i][y][x] == 1: #A binary 1 is a filled square
+ draw_SVG_square((size,size), (x*size + i*spacing,y*size), parent)
+ elif module_arrays[i][y][x] != 0: #we have an invalid bit value
+ inkex.errormsg(_('Invalid bit value, this is a bug!'))
+
+class DataMatrix(inkex.Effect):
+ def __init__(self):
+ inkex.Effect.__init__(self)
+
+ #PARSE OPTIONS
+ self.OptionParser.add_option("--text",
+ action="store", type="string",
+ dest="TEXT", default='Inkscape')
+ self.OptionParser.add_option("--rows",
+ action="store", type="int",
+ dest="ROWS", default=10)
+ self.OptionParser.add_option("--cols",
+ action="store", type="int",
+ dest="COLS", default=10)
+ self.OptionParser.add_option("--size",
+ action="store", type="int",
+ dest="SIZE", default=4)
+
+ def effect(self):
+
+ so = self.options
+
+ if so.TEXT == '': #abort if converting blank text
+ inkex.errormsg(_('Please enter an input string'))
+ else:
+
+ #INKSCAPE GROUP TO CONTAIN EVERYTHING
+
+ centre = self.view_center #Put in in the centre of the current view
+ grp_transform = 'translate' + str( centre )
+ grp_name = 'DataMatrix'
+ grp_attribs = {inkex.addNS('label','inkscape'):grp_name,
+ 'transform':grp_transform }
+ grp = inkex.etree.SubElement(self.current_layer, 'g', grp_attribs)#the group to put everything in
+
+ #GENERATE THE DATAMATRIX
+ encoded = encode( so.TEXT, (so.ROWS, so.COLS) ) #get the pattern of squares
+ render_data_matrix( encoded, so.SIZE, so.COLS*so.SIZE*1.5, grp ) # generate the SVG elements
+
+if __name__ == '__main__':
+ e = DataMatrix()
+ e.affect()
+
+# vim: expandtab shiftwidth=4 tabstop=8 softtabstop=4 encoding=utf-8 textwidth=99