X-Git-Url: https://git.tokkee.org/?a=blobdiff_plain;f=share%2Fextensions%2Fdxf_outlines.py;h=6dd0de4774c04b17a586c65dbab9c09214621734;hb=d550d7e550171072cd9170dbd75f2cbc7605b345;hp=f5f9ce19f0c58ec578476defdb77486e88f4e549;hpb=a99c2ce8986cc437b934d14cbca64c2e8615cc48;p=inkscape.git diff --git a/share/extensions/dxf_outlines.py b/share/extensions/dxf_outlines.py index f5f9ce19f..6dd0de477 100755 --- a/share/extensions/dxf_outlines.py +++ b/share/extensions/dxf_outlines.py @@ -1,10 +1,16 @@ #!/usr/bin/env python ''' Copyright (C) 2005,2007,2008 Aaron Spike, aaron@ekips.org -Copyright (C) 2008 Alvin Penner, penner@vaxxine.com +Copyright (C) 2008,2010 Alvin Penner, penner@vaxxine.com - template dxf_outlines.dxf added Feb 2008 by Alvin Penner -- ROBO-Master output option added Aug 2008 by Alvin Penner +- ROBO-Master output option added Aug 2008 +- ROBO-Master multispline output added Sept 2008 +- LWPOLYLINE output modification added Dec 2008 +- toggle between LINE/LWPOLYLINE added Jan 2010 +- support for transform elements added July 2010 +- support for layers added July 2010 +- support for rectangle added Dec 2010 This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -20,14 +26,16 @@ You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ''' -import inkex, simplepath, cubicsuperpath, dxf_templates, math +import inkex, simplestyle, simpletransform, cubicsuperpath, coloreffect, dxf_templates, math +import gettext +_ = gettext.gettext try: from numpy import * from numpy.linalg import solve except: inkex.errormsg(_("Failed to import the numpy or numpy.linalg modules. These modules are required by this extension. Please install them and try again.")) - sys.exit() + inkex.sys.exit() def pointdistance((x1,y1),(x2,y2)): return math.sqrt(((x2 - x1) ** 2) + ((y2 - y1) ** 2)) @@ -35,78 +43,182 @@ def pointdistance((x1,y1),(x2,y2)): def get_fit(u, csp, col): return (1-u)**3*csp[0][col] + 3*(1-u)**2*u*csp[1][col] + 3*(1-u)*u**2*csp[2][col] + u**3*csp[3][col] +def get_matrix(u, i, j): + if j == i + 2: + return (u[i]-u[i-1])*(u[i]-u[i-1])/(u[i+2]-u[i-1])/(u[i+1]-u[i-1]) + elif j == i + 1: + return ((u[i]-u[i-1])*(u[i+2]-u[i])/(u[i+2]-u[i-1]) + (u[i+1]-u[i])*(u[i]-u[i-2])/(u[i+1]-u[i-2]))/(u[i+1]-u[i-1]) + elif j == i: + return (u[i+1]-u[i])*(u[i+1]-u[i])/(u[i+1]-u[i-2])/(u[i+1]-u[i-1]) + else: + return 0 + class MyEffect(inkex.Effect): def __init__(self): inkex.Effect.__init__(self) self.OptionParser.add_option("-R", "--ROBO", action="store", type="string", dest="ROBO") + self.OptionParser.add_option("-P", "--POLY", action="store", type="string", dest="POLY") + self.OptionParser.add_option("--units", action="store", type="string", dest="units") + self.OptionParser.add_option("--tab", action="store", type="string", dest="tab") + self.OptionParser.add_option("--inputhelp", action="store", type="string", dest="inputhelp") self.dxf = [] - self.handle = 255 # initiallize handle for DXF ENTITY + self.handle = 255 # handle for DXF ENTITY + self.layers = ['0'] + self.layer = '0' # mandatory layer + self.csp_old = [[0.0,0.0]]*4 # previous spline + self.d = array([0], float) # knot vector + self.poly = [[0.0,0.0]] # LWPOLYLINE data def output(self): print ''.join(self.dxf) def dxf_add(self, str): self.dxf.append(str) def dxf_line(self,csp): - self.dxf_add(" 0\nLINE\n 5\n%x\n100\nAcDbEntity\n 8\n0\n100\nAcDbLine\n" % self.handle) + self.handle += 1 + self.dxf_add(" 0\nLINE\n 5\n%x\n100\nAcDbEntity\n 8\n%s\n 62\n%d\n100\nAcDbLine\n" % (self.handle, self.layer, self.color)) self.dxf_add(" 10\n%f\n 20\n%f\n 30\n0.0\n 11\n%f\n 21\n%f\n 31\n0.0\n" % (csp[0][0],csp[0][1],csp[1][0],csp[1][1])) + def LWPOLY_line(self,csp): + if (abs(csp[0][0] - self.poly[-1][0]) > .0001 + or abs(csp[0][1] - self.poly[-1][1]) > .0001): + self.LWPOLY_output() # terminate current polyline + self.poly = [csp[0]] # initiallize new polyline + self.color_LWPOLY = self.color + self.layer_LWPOLY = self.layer + self.poly.append(csp[1]) + def LWPOLY_output(self): + if len(self.poly) == 1: + return + self.handle += 1 + self.dxf_add(" 0\nLWPOLYLINE\n 5\n%x\n100\nAcDbEntity\n 8\n%s\n 62\n%d\n100\nAcDbPolyline\n 90\n%d\n 70\n0\n" % (self.handle, self.layer_LWPOLY, self.color_LWPOLY, len(self.poly))) + for i in range(len(self.poly)): + self.dxf_add(" 10\n%f\n 20\n%f\n 30\n0.0\n" % (self.poly[i][0],self.poly[i][1])) def dxf_spline(self,csp): knots = 8 ctrls = 4 - self.dxf_add(" 0\nSPLINE\n 5\n%x\n100\nAcDbEntity\n 8\n0\n100\nAcDbSpline\n" % self.handle) + self.handle += 1 + self.dxf_add(" 0\nSPLINE\n 5\n%x\n100\nAcDbEntity\n 8\n%s\n 62\n%d\n100\nAcDbSpline\n" % (self.handle, self.layer, self.color)) self.dxf_add(" 70\n8\n 71\n3\n 72\n%d\n 73\n%d\n 74\n0\n" % (knots, ctrls)) for i in range(2): - for j in range(4): + for j in range(4): self.dxf_add(" 40\n%d\n" % i) for i in csp: self.dxf_add(" 10\n%f\n 20\n%f\n 30\n0.0\n" % (i[0],i[1])) def ROBO_spline(self,csp): # this spline has zero curvature at the endpoints, as in ROBO-Master - knots = 10 - ctrls = 6 - fits = 4 - xfit = zeros((6), dtype=float64) - xfit[0] = csp[0][0] - xfit[1] = get_fit(.333, csp, 0) - xfit[2] = get_fit(.667, csp, 0) - xfit[3] = csp[3][0] - yfit = zeros((6), dtype=float64) - yfit[0] = csp[0][1] - yfit[1] = get_fit(.333, csp, 1) - yfit[2] = get_fit(.667, csp, 1) - yfit[3] = csp[3][1] - d1 = pointdistance((xfit[0],yfit[0]),(xfit[1],yfit[1])) - d2 = pointdistance((xfit[1],yfit[1]),(xfit[2],yfit[2])) - d3 = pointdistance((xfit[2],yfit[2]),(xfit[3],yfit[3])) - u1 = d1/(d1 + d2 + d3) - u2 = (d1 + d2)/(d1 + d2 + d3) - solmatrix = zeros((6,6), dtype=float64) - solmatrix[0,0] = 1 - solmatrix[1,1] = (1 - u1/u2)**2 - solmatrix[1,2] = (2*u2 - u1*u2 - u1)*u1/u2/u2 - solmatrix[1,3] = u1*u1/u2 - solmatrix[2,2] = (1 - u2)**2/(1 - u1) - solmatrix[2,3] = (2*u2 - u1*u2 - u1)*(1 - u2)/(1 - u1)/(1 - u1) - solmatrix[2,4] = ((u2 - u1)/(1 - u1))**2 - solmatrix[3,5] = 1 - solmatrix[4,0] = u2 - solmatrix[4,1] = -u1 - u2 - solmatrix[4,2] = u1 - solmatrix[5,3] = 1 - u2 - solmatrix[5,4] = u1 + u2 - 2 - solmatrix[5,5] = 1 - u1 - xctrl = solve(solmatrix, xfit) - yctrl = solve(solmatrix, yfit) - self.dxf_add(" 0\nSPLINE\n 5\n%x\n100\nAcDbEntity\n 8\n0\n100\nAcDbSpline\n" % self.handle) + if (abs(csp[0][0] - self.csp_old[3][0]) > .0001 + or abs(csp[0][1] - self.csp_old[3][1]) > .0001 + or abs((csp[1][1]-csp[0][1])*(self.csp_old[3][0]-self.csp_old[2][0]) - (csp[1][0]-csp[0][0])*(self.csp_old[3][1]-self.csp_old[2][1])) > .001): + self.ROBO_output() # terminate current spline + self.xfit = array([csp[0][0]], float) # initiallize new spline + self.yfit = array([csp[0][1]], float) + self.d = array([0], float) + self.color_ROBO = self.color + self.layer_ROBO = self.layer + self.xfit = concatenate((self.xfit, zeros((3)))) # append to current spline + self.yfit = concatenate((self.yfit, zeros((3)))) + self.d = concatenate((self.d, zeros((3)))) + for i in range(1, 4): + j = len(self.d) + i - 4 + self.xfit[j] = get_fit(i/3.0, csp, 0) + self.yfit[j] = get_fit(i/3.0, csp, 1) + self.d[j] = self.d[j-1] + pointdistance((self.xfit[j-1],self.yfit[j-1]),(self.xfit[j],self.yfit[j])) + self.csp_old = csp + def ROBO_output(self): + if len(self.d) == 1: + return + fits = len(self.d) + ctrls = fits + 2 + knots = ctrls + 4 + self.xfit = concatenate((self.xfit, zeros((2)))) # pad with 2 endpoint constraints + self.yfit = concatenate((self.yfit, zeros((2)))) # pad with 2 endpoint constraints + self.d = concatenate((self.d, zeros((6)))) # pad with 3 duplicates at each end + self.d[fits+2] = self.d[fits+1] = self.d[fits] = self.d[fits-1] + solmatrix = zeros((ctrls,ctrls), dtype=float) + for i in range(fits): + solmatrix[i,i] = get_matrix(self.d, i, i) + solmatrix[i,i+1] = get_matrix(self.d, i, i+1) + solmatrix[i,i+2] = get_matrix(self.d, i, i+2) + solmatrix[fits, 0] = self.d[2]/self.d[fits-1] # curvature at start = 0 + solmatrix[fits, 1] = -(self.d[1] + self.d[2])/self.d[fits-1] + solmatrix[fits, 2] = self.d[1]/self.d[fits-1] + solmatrix[fits+1, fits-1] = (self.d[fits-1] - self.d[fits-2])/self.d[fits-1] # curvature at end = 0 + solmatrix[fits+1, fits] = (self.d[fits-3] + self.d[fits-2] - 2*self.d[fits-1])/self.d[fits-1] + solmatrix[fits+1, fits+1] = (self.d[fits-1] - self.d[fits-3])/self.d[fits-1] + xctrl = solve(solmatrix, self.xfit) + yctrl = solve(solmatrix, self.yfit) + self.handle += 1 + self.dxf_add(" 0\nSPLINE\n 5\n%x\n100\nAcDbEntity\n 8\n%s\n 62\n%d\n100\nAcDbSpline\n" % (self.handle, self.layer_ROBO, self.color_ROBO)) self.dxf_add(" 70\n0\n 71\n3\n 72\n%d\n 73\n%d\n 74\n%d\n" % (knots, ctrls, fits)) - for i in range(4): - self.dxf_add(" 40\n0\n") - self.dxf_add(" 40\n%f\n" % u1) - self.dxf_add(" 40\n%f\n" % u2) - for i in range(4): - self.dxf_add(" 40\n1\n") - for i in range(6): + for i in range(knots): + self.dxf_add(" 40\n%f\n" % self.d[i-3]) + for i in range(ctrls): self.dxf_add(" 10\n%f\n 20\n%f\n 30\n0.0\n" % (xctrl[i],yctrl[i])) - for i in range(4): - self.dxf_add(" 11\n%f\n 21\n%f\n 31\n0.0\n" % (xfit[i],yfit[i])) + for i in range(fits): + self.dxf_add(" 11\n%f\n 21\n%f\n 31\n0.0\n" % (self.xfit[i],self.yfit[i])) + + def process_path(self, node, mat): + rgb = (0,0,0) + style = node.get('style') + if style: + style = simplestyle.parseStyle(style) + if style.has_key('stroke'): + if style['stroke'] and style['stroke'] != 'none': + rgb = simplestyle.parseColor(style['stroke']) + hsl = coloreffect.ColorEffect.rgb_to_hsl(coloreffect.ColorEffect(),rgb[0]/255.0,rgb[1]/255.0,rgb[2]/255.0) + self.color = 7 # default is black + if hsl[2]: + self.color = 1 + (int(6*hsl[0] + 0.5) % 6) # use 6 hues + if node.tag == inkex.addNS('path','svg'): + d = node.get('d') + if not d: + return + p = cubicsuperpath.parsePath(d) + elif node.tag == inkex.addNS('rect','svg'): + x = float(node.get('x')) + y = float(node.get('y')) + width = float(node.get('width')) + height = float(node.get('height')) + p = [[[x, y],[x, y],[x, y]]] + p.append([[x + width, y],[x + width, y],[x + width, y]]) + p.append([[x + width, y + height],[x + width, y + height],[x + width, y + height]]) + p.append([[x, y + height],[x, y + height],[x, y + height]]) + p.append([[x, y],[x, y],[x, y]]) + p = [p] + else: + return + trans = node.get('transform') + if trans: + mat = simpletransform.composeTransform(mat, simpletransform.parseTransform(trans)) + simpletransform.applyTransformToPath(mat, p) + for sub in p: + for i in range(len(sub)-1): + s = sub[i] + e = sub[i+1] + if s[1] == s[2] and e[0] == e[1]: + if (self.options.POLY == 'true'): + self.LWPOLY_line([s[1],e[1]]) + else: + self.dxf_line([s[1],e[1]]) + elif (self.options.ROBO == 'true'): + self.ROBO_spline([s[1],s[2],e[0],e[1]]) + else: + self.dxf_spline([s[1],s[2],e[0],e[1]]) + + def process_group(self, group): + if group.get(inkex.addNS('groupmode', 'inkscape')) == 'layer': + layer = group.get(inkex.addNS('label', 'inkscape')) + layer = layer.replace(' ', '_') + if layer in self.layers: + self.layer = layer + trans = group.get('transform') + if trans: + self.groupmat.append(simpletransform.composeTransform(self.groupmat[-1], simpletransform.parseTransform(trans))) + for node in group: + if node.tag == inkex.addNS('g','svg'): + self.process_group(node) + else: + self.process_path(node, self.groupmat[-1]) + if trans: + self.groupmat.pop() def effect(self): #References: Minimum Requirements for Creating a DXF File of a 3D Model By Paul Bourke @@ -114,29 +226,28 @@ class MyEffect(inkex.Effect): # The NURBS Book By Les Piegl and Wayne Tiller (Springer, 1995) self.dxf_add("999\nDXF created by Inkscape\n") self.dxf_add(dxf_templates.r14_header) + for node in self.document.getroot().xpath('//svg:g', namespaces=inkex.NSS): + if node.get(inkex.addNS('groupmode', 'inkscape')) == 'layer': + layer = node.get(inkex.addNS('label', 'inkscape')) + layer = layer.replace(' ', '_') + if layer and not layer in self.layers: + self.layers.append(layer) + self.dxf_add(" 2\nLAYER\n 5\n2\n100\nAcDbSymbolTable\n 70\n%s\n" % len(self.layers)) + for i in range(len(self.layers)): + self.dxf_add(" 0\nLAYER\n 5\n%x\n100\nAcDbSymbolTableRecord\n100\nAcDbLayerTableRecord\n 2\n%s\n 70\n0\n 6\nCONTINUOUS\n" % (i + 80, self.layers[i])) + self.dxf_add(dxf_templates.r14_style) - scale = 25.4/90.0 + scale = eval(self.options.units) + if not scale: + scale = 25.4/90 h = inkex.unittouu(self.document.getroot().xpath('@height', namespaces=inkex.NSS)[0]) - path = '//svg:path' - for node in self.document.getroot().xpath(path, namespaces=inkex.NSS): - d = node.get('d') - sim = simplepath.parsePath(d) - simplepath.scalePath(sim,scale,-scale) - simplepath.translatePath(sim,0,h*scale) - p = cubicsuperpath.CubicSuperPath(sim) - for sub in p: - for i in range(len(sub)-1): - # generate unique handle for DXF ENTITY - self.handle += 1 - s = sub[i] - e = sub[i+1] - if s[1] == s[2] and e[0] == e[1]: - self.dxf_line([s[1],e[1]]) - elif (self.options.ROBO == 'true'): - self.ROBO_spline([s[1],s[2],e[0],e[1]]) - else: - self.dxf_spline([s[1],s[2],e[0],e[1]]) - + self.groupmat = [[[scale, 0.0, 0.0], [0.0, -scale, h*scale]]] + doc = self.document.getroot() + self.process_group(doc) + if self.options.ROBO == 'true': + self.ROBO_output() + if self.options.POLY == 'true': + self.LWPOLY_output() self.dxf_add(dxf_templates.r14_footer) if __name__ == '__main__': @@ -144,4 +255,4 @@ if __name__ == '__main__': e.affect() -# vim: expandtab shiftwidth=4 tabstop=8 softtabstop=4 encoding=utf-8 textwidth=99 +# vim: expandtab shiftwidth=4 tabstop=8 softtabstop=4 fileencoding=utf-8 textwidth=99