Code

added TRENDNAN function -- Timo Stripf
[rrdtool-all.git] / program / doc / rrdgraph_rpn.pod
1 =head1 NAME
3 rrdgraph_rpn - About RPN Math in rrdtool graph
5 =head1 SYNOPSIS
7 I<RPN expression>:=I<vname>|I<operator>|I<value>[,I<RPN expression>]
9 =head1 DESCRIPTION
11 If you have ever used a traditional HP calculator you already know
12 B<RPN>. The idea behind B<RPN> is that you have a stack and push
13 your data onto this stack. Whenever you execute an operation, it
14 takes as many elements from the stack as needed. Pushing is done
15 implicitly, so whenever you specify a number or a variable, it gets
16 pushed onto the stack automatically.
18 At the end of the calculation there should be one and only one value left on
19 the stack.  This is the outcome of the function and this is what is put into
20 the I<vname>.  For B<CDEF> instructions, the stack is processed for each
21 data point on the graph. B<VDEF> instructions work on an entire data set in
22 one run. Note, that currently B<VDEF> instructions only support a limited
23 list of functions.
25 Example: C<VDEF:maximum=mydata,MAXIMUM>
27 This will set variable "maximum" which you now can use in the rest
28 of your RRD script.
30 Example: C<CDEF:mydatabits=mydata,8,*>
32 This means:  push variable I<mydata>, push the number 8, execute
33 the operator I<*>. The operator needs two elements and uses those
34 to return one value.  This value is then stored in I<mydatabits>.
35 As you may have guessed, this instruction means nothing more than
36 I<mydatabits = mydata * 8>.  The real power of B<RPN> lies in the
37 fact that it is always clear in which order to process the input.
38 For expressions like C<a = b + 3 * 5> you need to multiply 3 with
39 5 first before you add I<b> to get I<a>. However, with parentheses
40 you could change this order: C<a = (b + 3) * 5>. In B<RPN>, you
41 would do C<a = b, 3, +, 5, *> without the need for parentheses.
43 =head1 OPERATORS
45 =over 4
47 =item Boolean operators
49 B<LT, LE, GT, GE, EQ, NE>
51 Pop two elements from the stack, compare them for the selected condition
52 and return 1 for true or 0 for false. Comparing an I<unknown> or an
53 I<infinite> value will always result in 0 (false).
55 B<UN, ISINF>
57 Pop one element from the stack, compare this to I<unknown> respectively
58 to I<positive or negative infinity>. Returns 1 for true or 0 for false.
60 B<IF>
62 Pops three elements from the stack.  If the element popped last is 0
63 (false), the value popped first is pushed back onto the stack,
64 otherwise the value popped second is pushed back. This does, indeed,
65 mean that any value other than 0 is considered to be true.
67 Example: C<A,B,C,IF> should be read as C<if (A) then (B) else (C)>
69 Z<>
71 =item Comparing values
73 B<MIN, MAX>
75 Pops two elements from the stack and returns the smaller or larger,
76 respectively.  Note that I<infinite> is larger than anything else.
77 If one of the input numbers is I<unknown> then the result of the operation will be
78 I<unknown> too.
80 B<LIMIT>
82 Pops two elements from the stack and uses them to define a range.
83 Then it pops another element and if it falls inside the range, it
84 is pushed back. If not, an I<unknown> is pushed.
86 The range defined includes the two boundaries (so: a number equal
87 to one of the boundaries will be pushed back). If any of the three
88 numbers involved is either I<unknown> or I<infinite> this function
89 will always return an I<unknown>
91 Example: C<CDEF:a=alpha,0,100,LIMIT> will return I<unknown> if
92 alpha is lower than 0 or if it is higher than 100.
94 Z<>
96 =item Arithmetics
98 B<+, -, *, /, %>
100 Add, subtract, multiply, divide, modulo
102 B<SIN, COS, LOG, EXP, SQRT>
104 Sine and cosine (input in radians), log and exp (natural logarithm),
105 square root.
107 B<ATAN>
109 Arctangent (output in radians).
111 B<ATAN2>
113 Arctangent of y,x components (output in radians).
114 This pops one element from the stack, the x (cosine) component, and then
115 a second, which is the y (sine) component.
116 It then pushes the arctangent of their ratio, resolving the ambiguity between
117 quadrants.
119 Example: C<CDEF:angle=Y,X,ATAN2,RAD2DEG> will convert C<X,Y>
120 components into an angle in degrees.
122 B<FLOOR, CEIL>
124 Round down or up to the nearest integer.
126 B<DEG2RAD, RAD2DEG>
128 Convert angle in degrees to radians, or radians to degrees.
130 B<ABS>
132 Take the absolute value.
134 =item Set Operations
136 B<SORT, REV>
138 Pop one element from the stack.  This is the I<count> of items to be sorted
139 (or reversed).  The top I<count> of the remaining elements are then sorted
140 (or reversed) in place on the stack.
142 Example: C<CDEF:x=v1,v2,v3,v4,v5,v6,6,SORT,POP,5,REV,POP,+,+,+,4,/> will
143 compute the average of the values v1 to v6 after removing the smallest and
144 largest.
146 B<AVG>
148 Pop one element (I<count>) from the stack. Now pop I<count> elements and build the
149 average, ignoring all UNKNOWN values in the process.
151 Example: C<CDEF:x=a,b,c,d,4,AVG>
153 B<TREND, TRENDNAN>
155 Create a "sliding window" average of another data series.
157 Usage:
158 CDEF:smoothed=x,1800,TREND
160 This will create a half-hour (1800 second) sliding window average of x.  The
161 average is essentially computed as shown here:
163                  +---!---!---!---!---!---!---!---!--->
164                                                      now
165                        delay     t0
166                  <--------------->
167                          delay       t1
168                      <--------------->
169                               delay      t2
170                          <--------------->
173      Value at sample (t0) will be the average between (t0-delay) and (t0)
174      Value at sample (t1) will be the average between (t1-delay) and (t1)
175      Value at sample (t2) will be the average between (t2-delay) and (t2)
177 TRENDNAN is - in contrast to TREND - NAN-safe. If you use TREND and one 
178 source value is NAN the complete sliding window is affected. The TRENDNAN 
179 operation ignores all NAN-values in a sliding window and computes the 
180 average of the remaining values.
183 =item Special values
185 B<UNKN>
187 Pushes an unknown value on the stack
189 B<INF, NEGINF>
191 Pushes a positive or negative infinite value on the stack. When
192 such a value is graphed, it appears at the top or bottom of the
193 graph, no matter what the actual value on the y-axis is.
195 B<PREV>
197 Pushes an I<unknown> value if this is the first value of a data
198 set or otherwise the result of this B<CDEF> at the previous time
199 step. This allows you to do calculations across the data.  This
200 function cannot be used in B<VDEF> instructions.
202 B<PREV(vname)>
204 Pushes an I<unknown> value if this is the first value of a data
205 set or otherwise the result of the vname variable at the previous time
206 step. This allows you to do calculations across the data. This
207 function cannot be used in B<VDEF> instructions.
209 B<COUNT>
211 Pushes the number 1 if this is the first value of the data set, the
212 number 2 if it is the second, and so on. This special value allows
213 you to make calculations based on the position of the value within
214 the data set. This function cannot be used in B<VDEF> instructions.
216 =item Time
218 Time inside RRDtool is measured in seconds since the epoch. The
219 epoch is defined to be S<C<Thu Jan  1 00:00:00 UTC 1970>>.
221 B<NOW>
223 Pushes the current time on the stack.
225 B<TIME>
227 Pushes the time the currently processed value was taken at onto the stack.
229 B<LTIME>
231 Takes the time as defined by B<TIME>, applies the time zone offset
232 valid at that time including daylight saving time if your OS supports
233 it, and pushes the result on the stack.  There is an elaborate example
234 in the examples section below on how to use this.
236 =item Processing the stack directly
238 B<DUP, POP, EXC>
240 Duplicate the top element, remove the top element, exchange the two
241 top elements.
243 Z<>
245 =back
247 =head1 VARIABLES
249 These operators work only on B<VDEF> statements. Note that currently ONLY these work for B<VDEF>.
251 =over 4
253 =item MAXIMUM, MINIMUM, AVERAGE
255 Return the corresponding value, MAXIMUM and MINIMUM also return
256 the first occurrence of that value in the time component.
258 Example: C<VDEF:avg=mydata,AVERAGE>
260 =item LAST, FIRST
262 Return the last/first value including its time.  The time for
263 FIRST is actually the start of the corresponding interval, whereas
264 LAST returns the end of the corresponding interval.
266 Example: C<VDEF:first=mydata,FIRST>
268 =item TOTAL
270 Returns the rate from each defined time slot multiplied with the
271 step size.  This can, for instance, return total bytes transfered
272 when you have logged bytes per second. The time component returns
273 the number of seconds.
275 Example: C<VDEF:total=mydata,TOTAL>
277 =item PERCENT
279 This should follow a B<DEF> or B<CDEF> I<vname>. The I<vname> is popped,
280 another number is popped which is a certain percentage (0..100). The
281 data set is then sorted and the value returned is chosen such that
282 I<percentage> percent of the values is lower or equal than the result.
283 I<Unknown> values are considered lower than any finite number for this
284 purpose so if this operator returns an I<unknown> you have quite a lot
285 of them in your data.  B<Inf>inite numbers are lesser, or more, than the
286 finite numbers and are always more than the I<Unknown> numbers.
287 (NaN E<lt> -INF E<lt> finite values E<lt> INF)
289 Example: C<VDEF:perc95=mydata,95,PERCENT>
291 =item LSLSLOPE, LSLINT, LSLCORREL
293 Return the parameters for a B<L>east B<S>quares B<L>ine I<(y = mx +b)> 
294 which approximate the provided dataset.  LSLSLOPE is the slope I<(m)> of
295 the line related to the COUNT position of the data.  LSLINT is the 
296 y-intercept I<(b)>, which happens also to be the first data point on the 
297 graph. LSLCORREL is the Correlation Coefficient (also know as Pearson's 
298 Product Moment Correlation Coefficient).  It will range from 0 to +/-1 
299 and represents the quality of fit for the approximation.   
301 Example: C<VDEF:slope=mydata,LSLSLOPE>
303 =back
305 =head1 SEE ALSO
307 L<rrdgraph> gives an overview of how B<rrdtool graph> works.
308 L<rrdgraph_data> describes B<DEF>,B<CDEF> and B<VDEF> in detail.
309 L<rrdgraph_rpn> describes the B<RPN> language used in the B<?DEF> statements.
310 L<rrdgraph_graph> page describes all of the graph and print functions.
312 Make sure to read L<rrdgraph_examples> for tipsE<amp>tricks.
314 =head1 AUTHOR
316 Program by Tobias Oetiker E<lt>tobi@oetiker.chE<gt>
318 This manual page by Alex van den Bogaerdt E<lt>alex@ergens.op.het.netE<gt>