Code

Refactor notes concatenation into a flexible interface for combining notes
[git.git] / notes.c
1 #include "cache.h"
2 #include "notes.h"
3 #include "blob.h"
4 #include "tree.h"
5 #include "utf8.h"
6 #include "strbuf.h"
7 #include "tree-walk.h"
9 /*
10  * Use a non-balancing simple 16-tree structure with struct int_node as
11  * internal nodes, and struct leaf_node as leaf nodes. Each int_node has a
12  * 16-array of pointers to its children.
13  * The bottom 2 bits of each pointer is used to identify the pointer type
14  * - ptr & 3 == 0 - NULL pointer, assert(ptr == NULL)
15  * - ptr & 3 == 1 - pointer to next internal node - cast to struct int_node *
16  * - ptr & 3 == 2 - pointer to note entry - cast to struct leaf_node *
17  * - ptr & 3 == 3 - pointer to subtree entry - cast to struct leaf_node *
18  *
19  * The root node is a statically allocated struct int_node.
20  */
21 struct int_node {
22         void *a[16];
23 };
25 /*
26  * Leaf nodes come in two variants, note entries and subtree entries,
27  * distinguished by the LSb of the leaf node pointer (see above).
28  * As a note entry, the key is the SHA1 of the referenced object, and the
29  * value is the SHA1 of the note object.
30  * As a subtree entry, the key is the prefix SHA1 (w/trailing NULs) of the
31  * referenced object, using the last byte of the key to store the length of
32  * the prefix. The value is the SHA1 of the tree object containing the notes
33  * subtree.
34  */
35 struct leaf_node {
36         unsigned char key_sha1[20];
37         unsigned char val_sha1[20];
38 };
40 #define PTR_TYPE_NULL     0
41 #define PTR_TYPE_INTERNAL 1
42 #define PTR_TYPE_NOTE     2
43 #define PTR_TYPE_SUBTREE  3
45 #define GET_PTR_TYPE(ptr)       ((uintptr_t) (ptr) & 3)
46 #define CLR_PTR_TYPE(ptr)       ((void *) ((uintptr_t) (ptr) & ~3))
47 #define SET_PTR_TYPE(ptr, type) ((void *) ((uintptr_t) (ptr) | (type)))
49 #define GET_NIBBLE(n, sha1) (((sha1[(n) >> 1]) >> ((~(n) & 0x01) << 2)) & 0x0f)
51 #define SUBTREE_SHA1_PREFIXCMP(key_sha1, subtree_sha1) \
52         (memcmp(key_sha1, subtree_sha1, subtree_sha1[19]))
54 struct notes_tree default_notes_tree;
56 static void load_subtree(struct leaf_node *subtree, struct int_node *node,
57                 unsigned int n);
59 /*
60  * Search the tree until the appropriate location for the given key is found:
61  * 1. Start at the root node, with n = 0
62  * 2. If a[0] at the current level is a matching subtree entry, unpack that
63  *    subtree entry and remove it; restart search at the current level.
64  * 3. Use the nth nibble of the key as an index into a:
65  *    - If a[n] is an int_node, recurse from #2 into that node and increment n
66  *    - If a matching subtree entry, unpack that subtree entry (and remove it);
67  *      restart search at the current level.
68  *    - Otherwise, we have found one of the following:
69  *      - a subtree entry which does not match the key
70  *      - a note entry which may or may not match the key
71  *      - an unused leaf node (NULL)
72  *      In any case, set *tree and *n, and return pointer to the tree location.
73  */
74 static void **note_tree_search(struct int_node **tree,
75                 unsigned char *n, const unsigned char *key_sha1)
76 {
77         struct leaf_node *l;
78         unsigned char i;
79         void *p = (*tree)->a[0];
81         if (GET_PTR_TYPE(p) == PTR_TYPE_SUBTREE) {
82                 l = (struct leaf_node *) CLR_PTR_TYPE(p);
83                 if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_sha1)) {
84                         /* unpack tree and resume search */
85                         (*tree)->a[0] = NULL;
86                         load_subtree(l, *tree, *n);
87                         free(l);
88                         return note_tree_search(tree, n, key_sha1);
89                 }
90         }
92         i = GET_NIBBLE(*n, key_sha1);
93         p = (*tree)->a[i];
94         switch (GET_PTR_TYPE(p)) {
95         case PTR_TYPE_INTERNAL:
96                 *tree = CLR_PTR_TYPE(p);
97                 (*n)++;
98                 return note_tree_search(tree, n, key_sha1);
99         case PTR_TYPE_SUBTREE:
100                 l = (struct leaf_node *) CLR_PTR_TYPE(p);
101                 if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_sha1)) {
102                         /* unpack tree and resume search */
103                         (*tree)->a[i] = NULL;
104                         load_subtree(l, *tree, *n);
105                         free(l);
106                         return note_tree_search(tree, n, key_sha1);
107                 }
108                 /* fall through */
109         default:
110                 return &((*tree)->a[i]);
111         }
114 /*
115  * To find a leaf_node:
116  * Search to the tree location appropriate for the given key:
117  * If a note entry with matching key, return the note entry, else return NULL.
118  */
119 static struct leaf_node *note_tree_find(struct int_node *tree, unsigned char n,
120                 const unsigned char *key_sha1)
122         void **p = note_tree_search(&tree, &n, key_sha1);
123         if (GET_PTR_TYPE(*p) == PTR_TYPE_NOTE) {
124                 struct leaf_node *l = (struct leaf_node *) CLR_PTR_TYPE(*p);
125                 if (!hashcmp(key_sha1, l->key_sha1))
126                         return l;
127         }
128         return NULL;
131 /*
132  * To insert a leaf_node:
133  * Search to the tree location appropriate for the given leaf_node's key:
134  * - If location is unused (NULL), store the tweaked pointer directly there
135  * - If location holds a note entry that matches the note-to-be-inserted, then
136  *   combine the two notes (by calling the given combine_notes function).
137  * - If location holds a note entry that matches the subtree-to-be-inserted,
138  *   then unpack the subtree-to-be-inserted into the location.
139  * - If location holds a matching subtree entry, unpack the subtree at that
140  *   location, and restart the insert operation from that level.
141  * - Else, create a new int_node, holding both the node-at-location and the
142  *   node-to-be-inserted, and store the new int_node into the location.
143  */
144 static void note_tree_insert(struct int_node *tree, unsigned char n,
145                 struct leaf_node *entry, unsigned char type,
146                 combine_notes_fn combine_notes)
148         struct int_node *new_node;
149         struct leaf_node *l;
150         void **p = note_tree_search(&tree, &n, entry->key_sha1);
152         assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */
153         l = (struct leaf_node *) CLR_PTR_TYPE(*p);
154         switch (GET_PTR_TYPE(*p)) {
155         case PTR_TYPE_NULL:
156                 assert(!*p);
157                 *p = SET_PTR_TYPE(entry, type);
158                 return;
159         case PTR_TYPE_NOTE:
160                 switch (type) {
161                 case PTR_TYPE_NOTE:
162                         if (!hashcmp(l->key_sha1, entry->key_sha1)) {
163                                 /* skip concatenation if l == entry */
164                                 if (!hashcmp(l->val_sha1, entry->val_sha1))
165                                         return;
167                                 if (combine_notes(l->val_sha1, entry->val_sha1))
168                                         die("failed to combine notes %s and %s"
169                                             " for object %s",
170                                             sha1_to_hex(l->val_sha1),
171                                             sha1_to_hex(entry->val_sha1),
172                                             sha1_to_hex(l->key_sha1));
173                                 free(entry);
174                                 return;
175                         }
176                         break;
177                 case PTR_TYPE_SUBTREE:
178                         if (!SUBTREE_SHA1_PREFIXCMP(l->key_sha1,
179                                                     entry->key_sha1)) {
180                                 /* unpack 'entry' */
181                                 load_subtree(entry, tree, n);
182                                 free(entry);
183                                 return;
184                         }
185                         break;
186                 }
187                 break;
188         case PTR_TYPE_SUBTREE:
189                 if (!SUBTREE_SHA1_PREFIXCMP(entry->key_sha1, l->key_sha1)) {
190                         /* unpack 'l' and restart insert */
191                         *p = NULL;
192                         load_subtree(l, tree, n);
193                         free(l);
194                         note_tree_insert(tree, n, entry, type, combine_notes);
195                         return;
196                 }
197                 break;
198         }
200         /* non-matching leaf_node */
201         assert(GET_PTR_TYPE(*p) == PTR_TYPE_NOTE ||
202                GET_PTR_TYPE(*p) == PTR_TYPE_SUBTREE);
203         new_node = (struct int_node *) xcalloc(sizeof(struct int_node), 1);
204         note_tree_insert(new_node, n + 1, l, GET_PTR_TYPE(*p), combine_notes);
205         *p = SET_PTR_TYPE(new_node, PTR_TYPE_INTERNAL);
206         note_tree_insert(new_node, n + 1, entry, type, combine_notes);
209 /*
210  * How to consolidate an int_node:
211  * If there are > 1 non-NULL entries, give up and return non-zero.
212  * Otherwise replace the int_node at the given index in the given parent node
213  * with the only entry (or a NULL entry if no entries) from the given tree,
214  * and return 0.
215  */
216 static int note_tree_consolidate(struct int_node *tree,
217         struct int_node *parent, unsigned char index)
219         unsigned int i;
220         void *p = NULL;
222         assert(tree && parent);
223         assert(CLR_PTR_TYPE(parent->a[index]) == tree);
225         for (i = 0; i < 16; i++) {
226                 if (GET_PTR_TYPE(tree->a[i]) != PTR_TYPE_NULL) {
227                         if (p) /* more than one entry */
228                                 return -2;
229                         p = tree->a[i];
230                 }
231         }
233         /* replace tree with p in parent[index] */
234         parent->a[index] = p;
235         free(tree);
236         return 0;
239 /*
240  * To remove a leaf_node:
241  * Search to the tree location appropriate for the given leaf_node's key:
242  * - If location does not hold a matching entry, abort and do nothing.
243  * - Replace the matching leaf_node with a NULL entry (and free the leaf_node).
244  * - Consolidate int_nodes repeatedly, while walking up the tree towards root.
245  */
246 static void note_tree_remove(struct notes_tree *t, struct int_node *tree,
247                 unsigned char n, struct leaf_node *entry)
249         struct leaf_node *l;
250         struct int_node *parent_stack[20];
251         unsigned char i, j;
252         void **p = note_tree_search(&tree, &n, entry->key_sha1);
254         assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */
255         if (GET_PTR_TYPE(*p) != PTR_TYPE_NOTE)
256                 return; /* type mismatch, nothing to remove */
257         l = (struct leaf_node *) CLR_PTR_TYPE(*p);
258         if (hashcmp(l->key_sha1, entry->key_sha1))
259                 return; /* key mismatch, nothing to remove */
261         /* we have found a matching entry */
262         free(l);
263         *p = SET_PTR_TYPE(NULL, PTR_TYPE_NULL);
265         /* consolidate this tree level, and parent levels, if possible */
266         if (!n)
267                 return; /* cannot consolidate top level */
268         /* first, build stack of ancestors between root and current node */
269         parent_stack[0] = t->root;
270         for (i = 0; i < n; i++) {
271                 j = GET_NIBBLE(i, entry->key_sha1);
272                 parent_stack[i + 1] = CLR_PTR_TYPE(parent_stack[i]->a[j]);
273         }
274         assert(i == n && parent_stack[i] == tree);
275         /* next, unwind stack until note_tree_consolidate() is done */
276         while (i > 0 &&
277                !note_tree_consolidate(parent_stack[i], parent_stack[i - 1],
278                                       GET_NIBBLE(i - 1, entry->key_sha1)))
279                 i--;
282 /* Free the entire notes data contained in the given tree */
283 static void note_tree_free(struct int_node *tree)
285         unsigned int i;
286         for (i = 0; i < 16; i++) {
287                 void *p = tree->a[i];
288                 switch (GET_PTR_TYPE(p)) {
289                 case PTR_TYPE_INTERNAL:
290                         note_tree_free(CLR_PTR_TYPE(p));
291                         /* fall through */
292                 case PTR_TYPE_NOTE:
293                 case PTR_TYPE_SUBTREE:
294                         free(CLR_PTR_TYPE(p));
295                 }
296         }
299 /*
300  * Convert a partial SHA1 hex string to the corresponding partial SHA1 value.
301  * - hex      - Partial SHA1 segment in ASCII hex format
302  * - hex_len  - Length of above segment. Must be multiple of 2 between 0 and 40
303  * - sha1     - Partial SHA1 value is written here
304  * - sha1_len - Max #bytes to store in sha1, Must be >= hex_len / 2, and < 20
305  * Returns -1 on error (invalid arguments or invalid SHA1 (not in hex format)).
306  * Otherwise, returns number of bytes written to sha1 (i.e. hex_len / 2).
307  * Pads sha1 with NULs up to sha1_len (not included in returned length).
308  */
309 static int get_sha1_hex_segment(const char *hex, unsigned int hex_len,
310                 unsigned char *sha1, unsigned int sha1_len)
312         unsigned int i, len = hex_len >> 1;
313         if (hex_len % 2 != 0 || len > sha1_len)
314                 return -1;
315         for (i = 0; i < len; i++) {
316                 unsigned int val = (hexval(hex[0]) << 4) | hexval(hex[1]);
317                 if (val & ~0xff)
318                         return -1;
319                 *sha1++ = val;
320                 hex += 2;
321         }
322         for (; i < sha1_len; i++)
323                 *sha1++ = 0;
324         return len;
327 static void load_subtree(struct leaf_node *subtree, struct int_node *node,
328                 unsigned int n)
330         unsigned char object_sha1[20];
331         unsigned int prefix_len;
332         void *buf;
333         struct tree_desc desc;
334         struct name_entry entry;
336         buf = fill_tree_descriptor(&desc, subtree->val_sha1);
337         if (!buf)
338                 die("Could not read %s for notes-index",
339                      sha1_to_hex(subtree->val_sha1));
341         prefix_len = subtree->key_sha1[19];
342         assert(prefix_len * 2 >= n);
343         memcpy(object_sha1, subtree->key_sha1, prefix_len);
344         while (tree_entry(&desc, &entry)) {
345                 int len = get_sha1_hex_segment(entry.path, strlen(entry.path),
346                                 object_sha1 + prefix_len, 20 - prefix_len);
347                 if (len < 0)
348                         continue; /* entry.path is not a SHA1 sum. Skip */
349                 len += prefix_len;
351                 /*
352                  * If object SHA1 is complete (len == 20), assume note object
353                  * If object SHA1 is incomplete (len < 20), assume note subtree
354                  */
355                 if (len <= 20) {
356                         unsigned char type = PTR_TYPE_NOTE;
357                         struct leaf_node *l = (struct leaf_node *)
358                                 xcalloc(sizeof(struct leaf_node), 1);
359                         hashcpy(l->key_sha1, object_sha1);
360                         hashcpy(l->val_sha1, entry.sha1);
361                         if (len < 20) {
362                                 if (!S_ISDIR(entry.mode))
363                                         continue; /* entry cannot be subtree */
364                                 l->key_sha1[19] = (unsigned char) len;
365                                 type = PTR_TYPE_SUBTREE;
366                         }
367                         note_tree_insert(node, n, l, type,
368                                          combine_notes_concatenate);
369                 }
370         }
371         free(buf);
374 /*
375  * Determine optimal on-disk fanout for this part of the notes tree
376  *
377  * Given a (sub)tree and the level in the internal tree structure, determine
378  * whether or not the given existing fanout should be expanded for this
379  * (sub)tree.
380  *
381  * Values of the 'fanout' variable:
382  * - 0: No fanout (all notes are stored directly in the root notes tree)
383  * - 1: 2/38 fanout
384  * - 2: 2/2/36 fanout
385  * - 3: 2/2/2/34 fanout
386  * etc.
387  */
388 static unsigned char determine_fanout(struct int_node *tree, unsigned char n,
389                 unsigned char fanout)
391         /*
392          * The following is a simple heuristic that works well in practice:
393          * For each even-numbered 16-tree level (remember that each on-disk
394          * fanout level corresponds to _two_ 16-tree levels), peek at all 16
395          * entries at that tree level. If all of them are either int_nodes or
396          * subtree entries, then there are likely plenty of notes below this
397          * level, so we return an incremented fanout.
398          */
399         unsigned int i;
400         if ((n % 2) || (n > 2 * fanout))
401                 return fanout;
402         for (i = 0; i < 16; i++) {
403                 switch (GET_PTR_TYPE(tree->a[i])) {
404                 case PTR_TYPE_SUBTREE:
405                 case PTR_TYPE_INTERNAL:
406                         continue;
407                 default:
408                         return fanout;
409                 }
410         }
411         return fanout + 1;
414 static void construct_path_with_fanout(const unsigned char *sha1,
415                 unsigned char fanout, char *path)
417         unsigned int i = 0, j = 0;
418         const char *hex_sha1 = sha1_to_hex(sha1);
419         assert(fanout < 20);
420         while (fanout) {
421                 path[i++] = hex_sha1[j++];
422                 path[i++] = hex_sha1[j++];
423                 path[i++] = '/';
424                 fanout--;
425         }
426         strcpy(path + i, hex_sha1 + j);
429 static int for_each_note_helper(struct int_node *tree, unsigned char n,
430                 unsigned char fanout, int flags, each_note_fn fn,
431                 void *cb_data)
433         unsigned int i;
434         void *p;
435         int ret = 0;
436         struct leaf_node *l;
437         static char path[40 + 19 + 1];  /* hex SHA1 + 19 * '/' + NUL */
439         fanout = determine_fanout(tree, n, fanout);
440         for (i = 0; i < 16; i++) {
441 redo:
442                 p = tree->a[i];
443                 switch (GET_PTR_TYPE(p)) {
444                 case PTR_TYPE_INTERNAL:
445                         /* recurse into int_node */
446                         ret = for_each_note_helper(CLR_PTR_TYPE(p), n + 1,
447                                 fanout, flags, fn, cb_data);
448                         break;
449                 case PTR_TYPE_SUBTREE:
450                         l = (struct leaf_node *) CLR_PTR_TYPE(p);
451                         /*
452                          * Subtree entries in the note tree represent parts of
453                          * the note tree that have not yet been explored. There
454                          * is a direct relationship between subtree entries at
455                          * level 'n' in the tree, and the 'fanout' variable:
456                          * Subtree entries at level 'n <= 2 * fanout' should be
457                          * preserved, since they correspond exactly to a fanout
458                          * directory in the on-disk structure. However, subtree
459                          * entries at level 'n > 2 * fanout' should NOT be
460                          * preserved, but rather consolidated into the above
461                          * notes tree level. We achieve this by unconditionally
462                          * unpacking subtree entries that exist below the
463                          * threshold level at 'n = 2 * fanout'.
464                          */
465                         if (n <= 2 * fanout &&
466                             flags & FOR_EACH_NOTE_YIELD_SUBTREES) {
467                                 /* invoke callback with subtree */
468                                 unsigned int path_len =
469                                         l->key_sha1[19] * 2 + fanout;
470                                 assert(path_len < 40 + 19);
471                                 construct_path_with_fanout(l->key_sha1, fanout,
472                                                            path);
473                                 /* Create trailing slash, if needed */
474                                 if (path[path_len - 1] != '/')
475                                         path[path_len++] = '/';
476                                 path[path_len] = '\0';
477                                 ret = fn(l->key_sha1, l->val_sha1, path,
478                                          cb_data);
479                         }
480                         if (n > fanout * 2 ||
481                             !(flags & FOR_EACH_NOTE_DONT_UNPACK_SUBTREES)) {
482                                 /* unpack subtree and resume traversal */
483                                 tree->a[i] = NULL;
484                                 load_subtree(l, tree, n);
485                                 free(l);
486                                 goto redo;
487                         }
488                         break;
489                 case PTR_TYPE_NOTE:
490                         l = (struct leaf_node *) CLR_PTR_TYPE(p);
491                         construct_path_with_fanout(l->key_sha1, fanout, path);
492                         ret = fn(l->key_sha1, l->val_sha1, path, cb_data);
493                         break;
494                 }
495                 if (ret)
496                         return ret;
497         }
498         return 0;
501 struct tree_write_stack {
502         struct tree_write_stack *next;
503         struct strbuf buf;
504         char path[2]; /* path to subtree in next, if any */
505 };
507 static inline int matches_tree_write_stack(struct tree_write_stack *tws,
508                 const char *full_path)
510         return  full_path[0] == tws->path[0] &&
511                 full_path[1] == tws->path[1] &&
512                 full_path[2] == '/';
515 static void write_tree_entry(struct strbuf *buf, unsigned int mode,
516                 const char *path, unsigned int path_len, const
517                 unsigned char *sha1)
519                 strbuf_addf(buf, "%06o %.*s%c", mode, path_len, path, '\0');
520                 strbuf_add(buf, sha1, 20);
523 static void tree_write_stack_init_subtree(struct tree_write_stack *tws,
524                 const char *path)
526         struct tree_write_stack *n;
527         assert(!tws->next);
528         assert(tws->path[0] == '\0' && tws->path[1] == '\0');
529         n = (struct tree_write_stack *)
530                 xmalloc(sizeof(struct tree_write_stack));
531         n->next = NULL;
532         strbuf_init(&n->buf, 256 * (32 + 40)); /* assume 256 entries per tree */
533         n->path[0] = n->path[1] = '\0';
534         tws->next = n;
535         tws->path[0] = path[0];
536         tws->path[1] = path[1];
539 static int tree_write_stack_finish_subtree(struct tree_write_stack *tws)
541         int ret;
542         struct tree_write_stack *n = tws->next;
543         unsigned char s[20];
544         if (n) {
545                 ret = tree_write_stack_finish_subtree(n);
546                 if (ret)
547                         return ret;
548                 ret = write_sha1_file(n->buf.buf, n->buf.len, tree_type, s);
549                 if (ret)
550                         return ret;
551                 strbuf_release(&n->buf);
552                 free(n);
553                 tws->next = NULL;
554                 write_tree_entry(&tws->buf, 040000, tws->path, 2, s);
555                 tws->path[0] = tws->path[1] = '\0';
556         }
557         return 0;
560 static int write_each_note_helper(struct tree_write_stack *tws,
561                 const char *path, unsigned int mode,
562                 const unsigned char *sha1)
564         size_t path_len = strlen(path);
565         unsigned int n = 0;
566         int ret;
568         /* Determine common part of tree write stack */
569         while (tws && 3 * n < path_len &&
570                matches_tree_write_stack(tws, path + 3 * n)) {
571                 n++;
572                 tws = tws->next;
573         }
575         /* tws point to last matching tree_write_stack entry */
576         ret = tree_write_stack_finish_subtree(tws);
577         if (ret)
578                 return ret;
580         /* Start subtrees needed to satisfy path */
581         while (3 * n + 2 < path_len && path[3 * n + 2] == '/') {
582                 tree_write_stack_init_subtree(tws, path + 3 * n);
583                 n++;
584                 tws = tws->next;
585         }
587         /* There should be no more directory components in the given path */
588         assert(memchr(path + 3 * n, '/', path_len - (3 * n)) == NULL);
590         /* Finally add given entry to the current tree object */
591         write_tree_entry(&tws->buf, mode, path + 3 * n, path_len - (3 * n),
592                          sha1);
594         return 0;
597 struct write_each_note_data {
598         struct tree_write_stack *root;
599 };
601 static int write_each_note(const unsigned char *object_sha1,
602                 const unsigned char *note_sha1, char *note_path,
603                 void *cb_data)
605         struct write_each_note_data *d =
606                 (struct write_each_note_data *) cb_data;
607         size_t note_path_len = strlen(note_path);
608         unsigned int mode = 0100644;
610         if (note_path[note_path_len - 1] == '/') {
611                 /* subtree entry */
612                 note_path_len--;
613                 note_path[note_path_len] = '\0';
614                 mode = 040000;
615         }
616         assert(note_path_len <= 40 + 19);
618         return write_each_note_helper(d->root, note_path, mode, note_sha1);
621 int combine_notes_concatenate(unsigned char *cur_sha1,
622                 const unsigned char *new_sha1)
624         char *cur_msg = NULL, *new_msg = NULL, *buf;
625         unsigned long cur_len, new_len, buf_len;
626         enum object_type cur_type, new_type;
627         int ret;
629         /* read in both note blob objects */
630         if (!is_null_sha1(new_sha1))
631                 new_msg = read_sha1_file(new_sha1, &new_type, &new_len);
632         if (!new_msg || !new_len || new_type != OBJ_BLOB) {
633                 free(new_msg);
634                 return 0;
635         }
636         if (!is_null_sha1(cur_sha1))
637                 cur_msg = read_sha1_file(cur_sha1, &cur_type, &cur_len);
638         if (!cur_msg || !cur_len || cur_type != OBJ_BLOB) {
639                 free(cur_msg);
640                 free(new_msg);
641                 hashcpy(cur_sha1, new_sha1);
642                 return 0;
643         }
645         /* we will separate the notes by a newline anyway */
646         if (cur_msg[cur_len - 1] == '\n')
647                 cur_len--;
649         /* concatenate cur_msg and new_msg into buf */
650         buf_len = cur_len + 1 + new_len;
651         buf = (char *) xmalloc(buf_len);
652         memcpy(buf, cur_msg, cur_len);
653         buf[cur_len] = '\n';
654         memcpy(buf + cur_len + 1, new_msg, new_len);
655         free(cur_msg);
656         free(new_msg);
658         /* create a new blob object from buf */
659         ret = write_sha1_file(buf, buf_len, blob_type, cur_sha1);
660         free(buf);
661         return ret;
664 int combine_notes_overwrite(unsigned char *cur_sha1,
665                 const unsigned char *new_sha1)
667         hashcpy(cur_sha1, new_sha1);
668         return 0;
671 int combine_notes_ignore(unsigned char *cur_sha1,
672                 const unsigned char *new_sha1)
674         return 0;
677 void init_notes(struct notes_tree *t, const char *notes_ref,
678                 combine_notes_fn combine_notes, int flags)
680         unsigned char sha1[20], object_sha1[20];
681         unsigned mode;
682         struct leaf_node root_tree;
684         if (!t)
685                 t = &default_notes_tree;
686         assert(!t->initialized);
688         if (!notes_ref)
689                 notes_ref = getenv(GIT_NOTES_REF_ENVIRONMENT);
690         if (!notes_ref)
691                 notes_ref = notes_ref_name; /* value of core.notesRef config */
692         if (!notes_ref)
693                 notes_ref = GIT_NOTES_DEFAULT_REF;
695         if (!combine_notes)
696                 combine_notes = combine_notes_concatenate;
698         t->root = (struct int_node *) xcalloc(sizeof(struct int_node), 1);
699         t->ref = notes_ref ? xstrdup(notes_ref) : NULL;
700         t->combine_notes = combine_notes;
701         t->initialized = 1;
703         if (flags & NOTES_INIT_EMPTY || !notes_ref ||
704             read_ref(notes_ref, object_sha1))
705                 return;
706         if (get_tree_entry(object_sha1, "", sha1, &mode))
707                 die("Failed to read notes tree referenced by %s (%s)",
708                     notes_ref, object_sha1);
710         hashclr(root_tree.key_sha1);
711         hashcpy(root_tree.val_sha1, sha1);
712         load_subtree(&root_tree, t->root, 0);
715 void add_note(struct notes_tree *t, const unsigned char *object_sha1,
716                 const unsigned char *note_sha1, combine_notes_fn combine_notes)
718         struct leaf_node *l;
720         if (!t)
721                 t = &default_notes_tree;
722         assert(t->initialized);
723         if (!combine_notes)
724                 combine_notes = t->combine_notes;
725         l = (struct leaf_node *) xmalloc(sizeof(struct leaf_node));
726         hashcpy(l->key_sha1, object_sha1);
727         hashcpy(l->val_sha1, note_sha1);
728         note_tree_insert(t->root, 0, l, PTR_TYPE_NOTE, combine_notes);
731 void remove_note(struct notes_tree *t, const unsigned char *object_sha1)
733         struct leaf_node l;
735         if (!t)
736                 t = &default_notes_tree;
737         assert(t->initialized);
738         hashcpy(l.key_sha1, object_sha1);
739         hashclr(l.val_sha1);
740         return note_tree_remove(t, t->root, 0, &l);
743 const unsigned char *get_note(struct notes_tree *t,
744                 const unsigned char *object_sha1)
746         struct leaf_node *found;
748         if (!t)
749                 t = &default_notes_tree;
750         assert(t->initialized);
751         found = note_tree_find(t->root, 0, object_sha1);
752         return found ? found->val_sha1 : NULL;
755 int for_each_note(struct notes_tree *t, int flags, each_note_fn fn,
756                 void *cb_data)
758         if (!t)
759                 t = &default_notes_tree;
760         assert(t->initialized);
761         return for_each_note_helper(t->root, 0, 0, flags, fn, cb_data);
764 int write_notes_tree(struct notes_tree *t, unsigned char *result)
766         struct tree_write_stack root;
767         struct write_each_note_data cb_data;
768         int ret;
770         if (!t)
771                 t = &default_notes_tree;
772         assert(t->initialized);
774         /* Prepare for traversal of current notes tree */
775         root.next = NULL; /* last forward entry in list is grounded */
776         strbuf_init(&root.buf, 256 * (32 + 40)); /* assume 256 entries */
777         root.path[0] = root.path[1] = '\0';
778         cb_data.root = &root;
780         /* Write tree objects representing current notes tree */
781         ret = for_each_note(t, FOR_EACH_NOTE_DONT_UNPACK_SUBTREES |
782                                 FOR_EACH_NOTE_YIELD_SUBTREES,
783                         write_each_note, &cb_data) ||
784                 tree_write_stack_finish_subtree(&root) ||
785                 write_sha1_file(root.buf.buf, root.buf.len, tree_type, result);
786         strbuf_release(&root.buf);
787         return ret;
790 void free_notes(struct notes_tree *t)
792         if (!t)
793                 t = &default_notes_tree;
794         if (t->root)
795                 note_tree_free(t->root);
796         free(t->root);
797         free(t->ref);
798         memset(t, 0, sizeof(struct notes_tree));
801 void format_note(struct notes_tree *t, const unsigned char *object_sha1,
802                 struct strbuf *sb, const char *output_encoding, int flags)
804         static const char utf8[] = "utf-8";
805         const unsigned char *sha1;
806         char *msg, *msg_p;
807         unsigned long linelen, msglen;
808         enum object_type type;
810         if (!t)
811                 t = &default_notes_tree;
812         if (!t->initialized)
813                 init_notes(t, NULL, NULL, 0);
815         sha1 = get_note(t, object_sha1);
816         if (!sha1)
817                 return;
819         if (!(msg = read_sha1_file(sha1, &type, &msglen)) || !msglen ||
820                         type != OBJ_BLOB) {
821                 free(msg);
822                 return;
823         }
825         if (output_encoding && *output_encoding &&
826                         strcmp(utf8, output_encoding)) {
827                 char *reencoded = reencode_string(msg, output_encoding, utf8);
828                 if (reencoded) {
829                         free(msg);
830                         msg = reencoded;
831                         msglen = strlen(msg);
832                 }
833         }
835         /* we will end the annotation by a newline anyway */
836         if (msglen && msg[msglen - 1] == '\n')
837                 msglen--;
839         if (flags & NOTES_SHOW_HEADER)
840                 strbuf_addstr(sb, "\nNotes:\n");
842         for (msg_p = msg; msg_p < msg + msglen; msg_p += linelen + 1) {
843                 linelen = strchrnul(msg_p, '\n') - msg_p;
845                 if (flags & NOTES_INDENT)
846                         strbuf_addstr(sb, "    ");
847                 strbuf_add(sb, msg_p, linelen);
848                 strbuf_addch(sb, '\n');
849         }
851         free(msg);