Code

0c13a36eb7d39be92743c2906412412b73ccf8f1
[git.git] / notes.c
1 #include "cache.h"
2 #include "notes.h"
3 #include "blob.h"
4 #include "tree.h"
5 #include "utf8.h"
6 #include "strbuf.h"
7 #include "tree-walk.h"
8 #include "string-list.h"
9 #include "refs.h"
11 /*
12  * Use a non-balancing simple 16-tree structure with struct int_node as
13  * internal nodes, and struct leaf_node as leaf nodes. Each int_node has a
14  * 16-array of pointers to its children.
15  * The bottom 2 bits of each pointer is used to identify the pointer type
16  * - ptr & 3 == 0 - NULL pointer, assert(ptr == NULL)
17  * - ptr & 3 == 1 - pointer to next internal node - cast to struct int_node *
18  * - ptr & 3 == 2 - pointer to note entry - cast to struct leaf_node *
19  * - ptr & 3 == 3 - pointer to subtree entry - cast to struct leaf_node *
20  *
21  * The root node is a statically allocated struct int_node.
22  */
23 struct int_node {
24         void *a[16];
25 };
27 /*
28  * Leaf nodes come in two variants, note entries and subtree entries,
29  * distinguished by the LSb of the leaf node pointer (see above).
30  * As a note entry, the key is the SHA1 of the referenced object, and the
31  * value is the SHA1 of the note object.
32  * As a subtree entry, the key is the prefix SHA1 (w/trailing NULs) of the
33  * referenced object, using the last byte of the key to store the length of
34  * the prefix. The value is the SHA1 of the tree object containing the notes
35  * subtree.
36  */
37 struct leaf_node {
38         unsigned char key_sha1[20];
39         unsigned char val_sha1[20];
40 };
42 /*
43  * A notes tree may contain entries that are not notes, and that do not follow
44  * the naming conventions of notes. There are typically none/few of these, but
45  * we still need to keep track of them. Keep a simple linked list sorted alpha-
46  * betically on the non-note path. The list is populated when parsing tree
47  * objects in load_subtree(), and the non-notes are correctly written back into
48  * the tree objects produced by write_notes_tree().
49  */
50 struct non_note {
51         struct non_note *next; /* grounded (last->next == NULL) */
52         char *path;
53         unsigned int mode;
54         unsigned char sha1[20];
55 };
57 #define PTR_TYPE_NULL     0
58 #define PTR_TYPE_INTERNAL 1
59 #define PTR_TYPE_NOTE     2
60 #define PTR_TYPE_SUBTREE  3
62 #define GET_PTR_TYPE(ptr)       ((uintptr_t) (ptr) & 3)
63 #define CLR_PTR_TYPE(ptr)       ((void *) ((uintptr_t) (ptr) & ~3))
64 #define SET_PTR_TYPE(ptr, type) ((void *) ((uintptr_t) (ptr) | (type)))
66 #define GET_NIBBLE(n, sha1) (((sha1[(n) >> 1]) >> ((~(n) & 0x01) << 2)) & 0x0f)
68 #define SUBTREE_SHA1_PREFIXCMP(key_sha1, subtree_sha1) \
69         (memcmp(key_sha1, subtree_sha1, subtree_sha1[19]))
71 struct notes_tree default_notes_tree;
73 static struct string_list display_notes_refs;
74 static struct notes_tree **display_notes_trees;
76 static void load_subtree(struct notes_tree *t, struct leaf_node *subtree,
77                 struct int_node *node, unsigned int n);
79 /*
80  * Search the tree until the appropriate location for the given key is found:
81  * 1. Start at the root node, with n = 0
82  * 2. If a[0] at the current level is a matching subtree entry, unpack that
83  *    subtree entry and remove it; restart search at the current level.
84  * 3. Use the nth nibble of the key as an index into a:
85  *    - If a[n] is an int_node, recurse from #2 into that node and increment n
86  *    - If a matching subtree entry, unpack that subtree entry (and remove it);
87  *      restart search at the current level.
88  *    - Otherwise, we have found one of the following:
89  *      - a subtree entry which does not match the key
90  *      - a note entry which may or may not match the key
91  *      - an unused leaf node (NULL)
92  *      In any case, set *tree and *n, and return pointer to the tree location.
93  */
94 static void **note_tree_search(struct notes_tree *t, struct int_node **tree,
95                 unsigned char *n, const unsigned char *key_sha1)
96 {
97         struct leaf_node *l;
98         unsigned char i;
99         void *p = (*tree)->a[0];
101         if (GET_PTR_TYPE(p) == PTR_TYPE_SUBTREE) {
102                 l = (struct leaf_node *) CLR_PTR_TYPE(p);
103                 if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_sha1)) {
104                         /* unpack tree and resume search */
105                         (*tree)->a[0] = NULL;
106                         load_subtree(t, l, *tree, *n);
107                         free(l);
108                         return note_tree_search(t, tree, n, key_sha1);
109                 }
110         }
112         i = GET_NIBBLE(*n, key_sha1);
113         p = (*tree)->a[i];
114         switch (GET_PTR_TYPE(p)) {
115         case PTR_TYPE_INTERNAL:
116                 *tree = CLR_PTR_TYPE(p);
117                 (*n)++;
118                 return note_tree_search(t, tree, n, key_sha1);
119         case PTR_TYPE_SUBTREE:
120                 l = (struct leaf_node *) CLR_PTR_TYPE(p);
121                 if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_sha1)) {
122                         /* unpack tree and resume search */
123                         (*tree)->a[i] = NULL;
124                         load_subtree(t, l, *tree, *n);
125                         free(l);
126                         return note_tree_search(t, tree, n, key_sha1);
127                 }
128                 /* fall through */
129         default:
130                 return &((*tree)->a[i]);
131         }
134 /*
135  * To find a leaf_node:
136  * Search to the tree location appropriate for the given key:
137  * If a note entry with matching key, return the note entry, else return NULL.
138  */
139 static struct leaf_node *note_tree_find(struct notes_tree *t,
140                 struct int_node *tree, unsigned char n,
141                 const unsigned char *key_sha1)
143         void **p = note_tree_search(t, &tree, &n, key_sha1);
144         if (GET_PTR_TYPE(*p) == PTR_TYPE_NOTE) {
145                 struct leaf_node *l = (struct leaf_node *) CLR_PTR_TYPE(*p);
146                 if (!hashcmp(key_sha1, l->key_sha1))
147                         return l;
148         }
149         return NULL;
152 /*
153  * How to consolidate an int_node:
154  * If there are > 1 non-NULL entries, give up and return non-zero.
155  * Otherwise replace the int_node at the given index in the given parent node
156  * with the only entry (or a NULL entry if no entries) from the given tree,
157  * and return 0.
158  */
159 static int note_tree_consolidate(struct int_node *tree,
160         struct int_node *parent, unsigned char index)
162         unsigned int i;
163         void *p = NULL;
165         assert(tree && parent);
166         assert(CLR_PTR_TYPE(parent->a[index]) == tree);
168         for (i = 0; i < 16; i++) {
169                 if (GET_PTR_TYPE(tree->a[i]) != PTR_TYPE_NULL) {
170                         if (p) /* more than one entry */
171                                 return -2;
172                         p = tree->a[i];
173                 }
174         }
176         /* replace tree with p in parent[index] */
177         parent->a[index] = p;
178         free(tree);
179         return 0;
182 /*
183  * To remove a leaf_node:
184  * Search to the tree location appropriate for the given leaf_node's key:
185  * - If location does not hold a matching entry, abort and do nothing.
186  * - Replace the matching leaf_node with a NULL entry (and free the leaf_node).
187  * - Consolidate int_nodes repeatedly, while walking up the tree towards root.
188  */
189 static void note_tree_remove(struct notes_tree *t, struct int_node *tree,
190                 unsigned char n, struct leaf_node *entry)
192         struct leaf_node *l;
193         struct int_node *parent_stack[20];
194         unsigned char i, j;
195         void **p = note_tree_search(t, &tree, &n, entry->key_sha1);
197         assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */
198         if (GET_PTR_TYPE(*p) != PTR_TYPE_NOTE)
199                 return; /* type mismatch, nothing to remove */
200         l = (struct leaf_node *) CLR_PTR_TYPE(*p);
201         if (hashcmp(l->key_sha1, entry->key_sha1))
202                 return; /* key mismatch, nothing to remove */
204         /* we have found a matching entry */
205         free(l);
206         *p = SET_PTR_TYPE(NULL, PTR_TYPE_NULL);
208         /* consolidate this tree level, and parent levels, if possible */
209         if (!n)
210                 return; /* cannot consolidate top level */
211         /* first, build stack of ancestors between root and current node */
212         parent_stack[0] = t->root;
213         for (i = 0; i < n; i++) {
214                 j = GET_NIBBLE(i, entry->key_sha1);
215                 parent_stack[i + 1] = CLR_PTR_TYPE(parent_stack[i]->a[j]);
216         }
217         assert(i == n && parent_stack[i] == tree);
218         /* next, unwind stack until note_tree_consolidate() is done */
219         while (i > 0 &&
220                !note_tree_consolidate(parent_stack[i], parent_stack[i - 1],
221                                       GET_NIBBLE(i - 1, entry->key_sha1)))
222                 i--;
225 /*
226  * To insert a leaf_node:
227  * Search to the tree location appropriate for the given leaf_node's key:
228  * - If location is unused (NULL), store the tweaked pointer directly there
229  * - If location holds a note entry that matches the note-to-be-inserted, then
230  *   combine the two notes (by calling the given combine_notes function).
231  * - If location holds a note entry that matches the subtree-to-be-inserted,
232  *   then unpack the subtree-to-be-inserted into the location.
233  * - If location holds a matching subtree entry, unpack the subtree at that
234  *   location, and restart the insert operation from that level.
235  * - Else, create a new int_node, holding both the node-at-location and the
236  *   node-to-be-inserted, and store the new int_node into the location.
237  */
238 static void note_tree_insert(struct notes_tree *t, struct int_node *tree,
239                 unsigned char n, struct leaf_node *entry, unsigned char type,
240                 combine_notes_fn combine_notes)
242         struct int_node *new_node;
243         struct leaf_node *l;
244         void **p = note_tree_search(t, &tree, &n, entry->key_sha1);
246         assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */
247         l = (struct leaf_node *) CLR_PTR_TYPE(*p);
248         switch (GET_PTR_TYPE(*p)) {
249         case PTR_TYPE_NULL:
250                 assert(!*p);
251                 if (is_null_sha1(entry->val_sha1))
252                         free(entry);
253                 else
254                         *p = SET_PTR_TYPE(entry, type);
255                 return;
256         case PTR_TYPE_NOTE:
257                 switch (type) {
258                 case PTR_TYPE_NOTE:
259                         if (!hashcmp(l->key_sha1, entry->key_sha1)) {
260                                 /* skip concatenation if l == entry */
261                                 if (!hashcmp(l->val_sha1, entry->val_sha1))
262                                         return;
264                                 if (combine_notes(l->val_sha1, entry->val_sha1))
265                                         die("failed to combine notes %s and %s"
266                                             " for object %s",
267                                             sha1_to_hex(l->val_sha1),
268                                             sha1_to_hex(entry->val_sha1),
269                                             sha1_to_hex(l->key_sha1));
271                                 if (is_null_sha1(l->val_sha1))
272                                         note_tree_remove(t, tree, n, entry);
273                                 free(entry);
274                                 return;
275                         }
276                         break;
277                 case PTR_TYPE_SUBTREE:
278                         if (!SUBTREE_SHA1_PREFIXCMP(l->key_sha1,
279                                                     entry->key_sha1)) {
280                                 /* unpack 'entry' */
281                                 load_subtree(t, entry, tree, n);
282                                 free(entry);
283                                 return;
284                         }
285                         break;
286                 }
287                 break;
288         case PTR_TYPE_SUBTREE:
289                 if (!SUBTREE_SHA1_PREFIXCMP(entry->key_sha1, l->key_sha1)) {
290                         /* unpack 'l' and restart insert */
291                         *p = NULL;
292                         load_subtree(t, l, tree, n);
293                         free(l);
294                         note_tree_insert(t, tree, n, entry, type,
295                                          combine_notes);
296                         return;
297                 }
298                 break;
299         }
301         /* non-matching leaf_node */
302         assert(GET_PTR_TYPE(*p) == PTR_TYPE_NOTE ||
303                GET_PTR_TYPE(*p) == PTR_TYPE_SUBTREE);
304         if (is_null_sha1(entry->val_sha1)) { /* skip insertion of empty note */
305                 free(entry);
306                 return;
307         }
308         new_node = (struct int_node *) xcalloc(sizeof(struct int_node), 1);
309         note_tree_insert(t, new_node, n + 1, l, GET_PTR_TYPE(*p),
310                          combine_notes);
311         *p = SET_PTR_TYPE(new_node, PTR_TYPE_INTERNAL);
312         note_tree_insert(t, new_node, n + 1, entry, type, combine_notes);
315 /* Free the entire notes data contained in the given tree */
316 static void note_tree_free(struct int_node *tree)
318         unsigned int i;
319         for (i = 0; i < 16; i++) {
320                 void *p = tree->a[i];
321                 switch (GET_PTR_TYPE(p)) {
322                 case PTR_TYPE_INTERNAL:
323                         note_tree_free(CLR_PTR_TYPE(p));
324                         /* fall through */
325                 case PTR_TYPE_NOTE:
326                 case PTR_TYPE_SUBTREE:
327                         free(CLR_PTR_TYPE(p));
328                 }
329         }
332 /*
333  * Convert a partial SHA1 hex string to the corresponding partial SHA1 value.
334  * - hex      - Partial SHA1 segment in ASCII hex format
335  * - hex_len  - Length of above segment. Must be multiple of 2 between 0 and 40
336  * - sha1     - Partial SHA1 value is written here
337  * - sha1_len - Max #bytes to store in sha1, Must be >= hex_len / 2, and < 20
338  * Returns -1 on error (invalid arguments or invalid SHA1 (not in hex format)).
339  * Otherwise, returns number of bytes written to sha1 (i.e. hex_len / 2).
340  * Pads sha1 with NULs up to sha1_len (not included in returned length).
341  */
342 static int get_sha1_hex_segment(const char *hex, unsigned int hex_len,
343                 unsigned char *sha1, unsigned int sha1_len)
345         unsigned int i, len = hex_len >> 1;
346         if (hex_len % 2 != 0 || len > sha1_len)
347                 return -1;
348         for (i = 0; i < len; i++) {
349                 unsigned int val = (hexval(hex[0]) << 4) | hexval(hex[1]);
350                 if (val & ~0xff)
351                         return -1;
352                 *sha1++ = val;
353                 hex += 2;
354         }
355         for (; i < sha1_len; i++)
356                 *sha1++ = 0;
357         return len;
360 static int non_note_cmp(const struct non_note *a, const struct non_note *b)
362         return strcmp(a->path, b->path);
365 static void add_non_note(struct notes_tree *t, const char *path,
366                 unsigned int mode, const unsigned char *sha1)
368         struct non_note *p = t->prev_non_note, *n;
369         n = (struct non_note *) xmalloc(sizeof(struct non_note));
370         n->next = NULL;
371         n->path = xstrdup(path);
372         n->mode = mode;
373         hashcpy(n->sha1, sha1);
374         t->prev_non_note = n;
376         if (!t->first_non_note) {
377                 t->first_non_note = n;
378                 return;
379         }
381         if (non_note_cmp(p, n) < 0)
382                 ; /* do nothing  */
383         else if (non_note_cmp(t->first_non_note, n) <= 0)
384                 p = t->first_non_note;
385         else {
386                 /* n sorts before t->first_non_note */
387                 n->next = t->first_non_note;
388                 t->first_non_note = n;
389                 return;
390         }
392         /* n sorts equal or after p */
393         while (p->next && non_note_cmp(p->next, n) <= 0)
394                 p = p->next;
396         if (non_note_cmp(p, n) == 0) { /* n ~= p; overwrite p with n */
397                 assert(strcmp(p->path, n->path) == 0);
398                 p->mode = n->mode;
399                 hashcpy(p->sha1, n->sha1);
400                 free(n);
401                 t->prev_non_note = p;
402                 return;
403         }
405         /* n sorts between p and p->next */
406         n->next = p->next;
407         p->next = n;
410 static void load_subtree(struct notes_tree *t, struct leaf_node *subtree,
411                 struct int_node *node, unsigned int n)
413         unsigned char object_sha1[20];
414         unsigned int prefix_len;
415         void *buf;
416         struct tree_desc desc;
417         struct name_entry entry;
418         int len, path_len;
419         unsigned char type;
420         struct leaf_node *l;
422         buf = fill_tree_descriptor(&desc, subtree->val_sha1);
423         if (!buf)
424                 die("Could not read %s for notes-index",
425                      sha1_to_hex(subtree->val_sha1));
427         prefix_len = subtree->key_sha1[19];
428         assert(prefix_len * 2 >= n);
429         memcpy(object_sha1, subtree->key_sha1, prefix_len);
430         while (tree_entry(&desc, &entry)) {
431                 path_len = strlen(entry.path);
432                 len = get_sha1_hex_segment(entry.path, path_len,
433                                 object_sha1 + prefix_len, 20 - prefix_len);
434                 if (len < 0)
435                         goto handle_non_note; /* entry.path is not a SHA1 */
436                 len += prefix_len;
438                 /*
439                  * If object SHA1 is complete (len == 20), assume note object
440                  * If object SHA1 is incomplete (len < 20), and current
441                  * component consists of 2 hex chars, assume note subtree
442                  */
443                 if (len <= 20) {
444                         type = PTR_TYPE_NOTE;
445                         l = (struct leaf_node *)
446                                 xcalloc(sizeof(struct leaf_node), 1);
447                         hashcpy(l->key_sha1, object_sha1);
448                         hashcpy(l->val_sha1, entry.sha1);
449                         if (len < 20) {
450                                 if (!S_ISDIR(entry.mode) || path_len != 2)
451                                         goto handle_non_note; /* not subtree */
452                                 l->key_sha1[19] = (unsigned char) len;
453                                 type = PTR_TYPE_SUBTREE;
454                         }
455                         note_tree_insert(t, node, n, l, type,
456                                          combine_notes_concatenate);
457                 }
458                 continue;
460 handle_non_note:
461                 /*
462                  * Determine full path for this non-note entry:
463                  * The filename is already found in entry.path, but the
464                  * directory part of the path must be deduced from the subtree
465                  * containing this entry. We assume here that the overall notes
466                  * tree follows a strict byte-based progressive fanout
467                  * structure (i.e. using 2/38, 2/2/36, etc. fanouts, and not
468                  * e.g. 4/36 fanout). This means that if a non-note is found at
469                  * path "dead/beef", the following code will register it as
470                  * being found on "de/ad/beef".
471                  * On the other hand, if you use such non-obvious non-note
472                  * paths in the middle of a notes tree, you deserve what's
473                  * coming to you ;). Note that for non-notes that are not
474                  * SHA1-like at the top level, there will be no problems.
475                  *
476                  * To conclude, it is strongly advised to make sure non-notes
477                  * have at least one non-hex character in the top-level path
478                  * component.
479                  */
480                 {
481                         char non_note_path[PATH_MAX];
482                         char *p = non_note_path;
483                         const char *q = sha1_to_hex(subtree->key_sha1);
484                         int i;
485                         for (i = 0; i < prefix_len; i++) {
486                                 *p++ = *q++;
487                                 *p++ = *q++;
488                                 *p++ = '/';
489                         }
490                         strcpy(p, entry.path);
491                         add_non_note(t, non_note_path, entry.mode, entry.sha1);
492                 }
493         }
494         free(buf);
497 /*
498  * Determine optimal on-disk fanout for this part of the notes tree
499  *
500  * Given a (sub)tree and the level in the internal tree structure, determine
501  * whether or not the given existing fanout should be expanded for this
502  * (sub)tree.
503  *
504  * Values of the 'fanout' variable:
505  * - 0: No fanout (all notes are stored directly in the root notes tree)
506  * - 1: 2/38 fanout
507  * - 2: 2/2/36 fanout
508  * - 3: 2/2/2/34 fanout
509  * etc.
510  */
511 static unsigned char determine_fanout(struct int_node *tree, unsigned char n,
512                 unsigned char fanout)
514         /*
515          * The following is a simple heuristic that works well in practice:
516          * For each even-numbered 16-tree level (remember that each on-disk
517          * fanout level corresponds to _two_ 16-tree levels), peek at all 16
518          * entries at that tree level. If all of them are either int_nodes or
519          * subtree entries, then there are likely plenty of notes below this
520          * level, so we return an incremented fanout.
521          */
522         unsigned int i;
523         if ((n % 2) || (n > 2 * fanout))
524                 return fanout;
525         for (i = 0; i < 16; i++) {
526                 switch (GET_PTR_TYPE(tree->a[i])) {
527                 case PTR_TYPE_SUBTREE:
528                 case PTR_TYPE_INTERNAL:
529                         continue;
530                 default:
531                         return fanout;
532                 }
533         }
534         return fanout + 1;
537 static void construct_path_with_fanout(const unsigned char *sha1,
538                 unsigned char fanout, char *path)
540         unsigned int i = 0, j = 0;
541         const char *hex_sha1 = sha1_to_hex(sha1);
542         assert(fanout < 20);
543         while (fanout) {
544                 path[i++] = hex_sha1[j++];
545                 path[i++] = hex_sha1[j++];
546                 path[i++] = '/';
547                 fanout--;
548         }
549         strcpy(path + i, hex_sha1 + j);
552 static int for_each_note_helper(struct notes_tree *t, struct int_node *tree,
553                 unsigned char n, unsigned char fanout, int flags,
554                 each_note_fn fn, void *cb_data)
556         unsigned int i;
557         void *p;
558         int ret = 0;
559         struct leaf_node *l;
560         static char path[40 + 19 + 1];  /* hex SHA1 + 19 * '/' + NUL */
562         fanout = determine_fanout(tree, n, fanout);
563         for (i = 0; i < 16; i++) {
564 redo:
565                 p = tree->a[i];
566                 switch (GET_PTR_TYPE(p)) {
567                 case PTR_TYPE_INTERNAL:
568                         /* recurse into int_node */
569                         ret = for_each_note_helper(t, CLR_PTR_TYPE(p), n + 1,
570                                 fanout, flags, fn, cb_data);
571                         break;
572                 case PTR_TYPE_SUBTREE:
573                         l = (struct leaf_node *) CLR_PTR_TYPE(p);
574                         /*
575                          * Subtree entries in the note tree represent parts of
576                          * the note tree that have not yet been explored. There
577                          * is a direct relationship between subtree entries at
578                          * level 'n' in the tree, and the 'fanout' variable:
579                          * Subtree entries at level 'n <= 2 * fanout' should be
580                          * preserved, since they correspond exactly to a fanout
581                          * directory in the on-disk structure. However, subtree
582                          * entries at level 'n > 2 * fanout' should NOT be
583                          * preserved, but rather consolidated into the above
584                          * notes tree level. We achieve this by unconditionally
585                          * unpacking subtree entries that exist below the
586                          * threshold level at 'n = 2 * fanout'.
587                          */
588                         if (n <= 2 * fanout &&
589                             flags & FOR_EACH_NOTE_YIELD_SUBTREES) {
590                                 /* invoke callback with subtree */
591                                 unsigned int path_len =
592                                         l->key_sha1[19] * 2 + fanout;
593                                 assert(path_len < 40 + 19);
594                                 construct_path_with_fanout(l->key_sha1, fanout,
595                                                            path);
596                                 /* Create trailing slash, if needed */
597                                 if (path[path_len - 1] != '/')
598                                         path[path_len++] = '/';
599                                 path[path_len] = '\0';
600                                 ret = fn(l->key_sha1, l->val_sha1, path,
601                                          cb_data);
602                         }
603                         if (n > fanout * 2 ||
604                             !(flags & FOR_EACH_NOTE_DONT_UNPACK_SUBTREES)) {
605                                 /* unpack subtree and resume traversal */
606                                 tree->a[i] = NULL;
607                                 load_subtree(t, l, tree, n);
608                                 free(l);
609                                 goto redo;
610                         }
611                         break;
612                 case PTR_TYPE_NOTE:
613                         l = (struct leaf_node *) CLR_PTR_TYPE(p);
614                         construct_path_with_fanout(l->key_sha1, fanout, path);
615                         ret = fn(l->key_sha1, l->val_sha1, path, cb_data);
616                         break;
617                 }
618                 if (ret)
619                         return ret;
620         }
621         return 0;
624 struct tree_write_stack {
625         struct tree_write_stack *next;
626         struct strbuf buf;
627         char path[2]; /* path to subtree in next, if any */
628 };
630 static inline int matches_tree_write_stack(struct tree_write_stack *tws,
631                 const char *full_path)
633         return  full_path[0] == tws->path[0] &&
634                 full_path[1] == tws->path[1] &&
635                 full_path[2] == '/';
638 static void write_tree_entry(struct strbuf *buf, unsigned int mode,
639                 const char *path, unsigned int path_len, const
640                 unsigned char *sha1)
642         strbuf_addf(buf, "%o %.*s%c", mode, path_len, path, '\0');
643         strbuf_add(buf, sha1, 20);
646 static void tree_write_stack_init_subtree(struct tree_write_stack *tws,
647                 const char *path)
649         struct tree_write_stack *n;
650         assert(!tws->next);
651         assert(tws->path[0] == '\0' && tws->path[1] == '\0');
652         n = (struct tree_write_stack *)
653                 xmalloc(sizeof(struct tree_write_stack));
654         n->next = NULL;
655         strbuf_init(&n->buf, 256 * (32 + 40)); /* assume 256 entries per tree */
656         n->path[0] = n->path[1] = '\0';
657         tws->next = n;
658         tws->path[0] = path[0];
659         tws->path[1] = path[1];
662 static int tree_write_stack_finish_subtree(struct tree_write_stack *tws)
664         int ret;
665         struct tree_write_stack *n = tws->next;
666         unsigned char s[20];
667         if (n) {
668                 ret = tree_write_stack_finish_subtree(n);
669                 if (ret)
670                         return ret;
671                 ret = write_sha1_file(n->buf.buf, n->buf.len, tree_type, s);
672                 if (ret)
673                         return ret;
674                 strbuf_release(&n->buf);
675                 free(n);
676                 tws->next = NULL;
677                 write_tree_entry(&tws->buf, 040000, tws->path, 2, s);
678                 tws->path[0] = tws->path[1] = '\0';
679         }
680         return 0;
683 static int write_each_note_helper(struct tree_write_stack *tws,
684                 const char *path, unsigned int mode,
685                 const unsigned char *sha1)
687         size_t path_len = strlen(path);
688         unsigned int n = 0;
689         int ret;
691         /* Determine common part of tree write stack */
692         while (tws && 3 * n < path_len &&
693                matches_tree_write_stack(tws, path + 3 * n)) {
694                 n++;
695                 tws = tws->next;
696         }
698         /* tws point to last matching tree_write_stack entry */
699         ret = tree_write_stack_finish_subtree(tws);
700         if (ret)
701                 return ret;
703         /* Start subtrees needed to satisfy path */
704         while (3 * n + 2 < path_len && path[3 * n + 2] == '/') {
705                 tree_write_stack_init_subtree(tws, path + 3 * n);
706                 n++;
707                 tws = tws->next;
708         }
710         /* There should be no more directory components in the given path */
711         assert(memchr(path + 3 * n, '/', path_len - (3 * n)) == NULL);
713         /* Finally add given entry to the current tree object */
714         write_tree_entry(&tws->buf, mode, path + 3 * n, path_len - (3 * n),
715                          sha1);
717         return 0;
720 struct write_each_note_data {
721         struct tree_write_stack *root;
722         struct non_note *next_non_note;
723 };
725 static int write_each_non_note_until(const char *note_path,
726                 struct write_each_note_data *d)
728         struct non_note *n = d->next_non_note;
729         int cmp = 0, ret;
730         while (n && (!note_path || (cmp = strcmp(n->path, note_path)) <= 0)) {
731                 if (note_path && cmp == 0)
732                         ; /* do nothing, prefer note to non-note */
733                 else {
734                         ret = write_each_note_helper(d->root, n->path, n->mode,
735                                                      n->sha1);
736                         if (ret)
737                                 return ret;
738                 }
739                 n = n->next;
740         }
741         d->next_non_note = n;
742         return 0;
745 static int write_each_note(const unsigned char *object_sha1,
746                 const unsigned char *note_sha1, char *note_path,
747                 void *cb_data)
749         struct write_each_note_data *d =
750                 (struct write_each_note_data *) cb_data;
751         size_t note_path_len = strlen(note_path);
752         unsigned int mode = 0100644;
754         if (note_path[note_path_len - 1] == '/') {
755                 /* subtree entry */
756                 note_path_len--;
757                 note_path[note_path_len] = '\0';
758                 mode = 040000;
759         }
760         assert(note_path_len <= 40 + 19);
762         /* Weave non-note entries into note entries */
763         return  write_each_non_note_until(note_path, d) ||
764                 write_each_note_helper(d->root, note_path, mode, note_sha1);
767 struct note_delete_list {
768         struct note_delete_list *next;
769         const unsigned char *sha1;
770 };
772 static int prune_notes_helper(const unsigned char *object_sha1,
773                 const unsigned char *note_sha1, char *note_path,
774                 void *cb_data)
776         struct note_delete_list **l = (struct note_delete_list **) cb_data;
777         struct note_delete_list *n;
779         if (has_sha1_file(object_sha1))
780                 return 0; /* nothing to do for this note */
782         /* failed to find object => prune this note */
783         n = (struct note_delete_list *) xmalloc(sizeof(*n));
784         n->next = *l;
785         n->sha1 = object_sha1;
786         *l = n;
787         return 0;
790 int combine_notes_concatenate(unsigned char *cur_sha1,
791                 const unsigned char *new_sha1)
793         char *cur_msg = NULL, *new_msg = NULL, *buf;
794         unsigned long cur_len, new_len, buf_len;
795         enum object_type cur_type, new_type;
796         int ret;
798         /* read in both note blob objects */
799         if (!is_null_sha1(new_sha1))
800                 new_msg = read_sha1_file(new_sha1, &new_type, &new_len);
801         if (!new_msg || !new_len || new_type != OBJ_BLOB) {
802                 free(new_msg);
803                 return 0;
804         }
805         if (!is_null_sha1(cur_sha1))
806                 cur_msg = read_sha1_file(cur_sha1, &cur_type, &cur_len);
807         if (!cur_msg || !cur_len || cur_type != OBJ_BLOB) {
808                 free(cur_msg);
809                 free(new_msg);
810                 hashcpy(cur_sha1, new_sha1);
811                 return 0;
812         }
814         /* we will separate the notes by a newline anyway */
815         if (cur_msg[cur_len - 1] == '\n')
816                 cur_len--;
818         /* concatenate cur_msg and new_msg into buf */
819         buf_len = cur_len + 1 + new_len;
820         buf = (char *) xmalloc(buf_len);
821         memcpy(buf, cur_msg, cur_len);
822         buf[cur_len] = '\n';
823         memcpy(buf + cur_len + 1, new_msg, new_len);
824         free(cur_msg);
825         free(new_msg);
827         /* create a new blob object from buf */
828         ret = write_sha1_file(buf, buf_len, blob_type, cur_sha1);
829         free(buf);
830         return ret;
833 int combine_notes_overwrite(unsigned char *cur_sha1,
834                 const unsigned char *new_sha1)
836         hashcpy(cur_sha1, new_sha1);
837         return 0;
840 int combine_notes_ignore(unsigned char *cur_sha1,
841                 const unsigned char *new_sha1)
843         return 0;
846 static int string_list_add_one_ref(const char *path, const unsigned char *sha1,
847                                    int flag, void *cb)
849         struct string_list *refs = cb;
850         if (!unsorted_string_list_has_string(refs, path))
851                 string_list_append(refs, path);
852         return 0;
855 void string_list_add_refs_by_glob(struct string_list *list, const char *glob)
857         if (has_glob_specials(glob)) {
858                 for_each_glob_ref(string_list_add_one_ref, glob, list);
859         } else {
860                 unsigned char sha1[20];
861                 if (get_sha1(glob, sha1))
862                         warning("notes ref %s is invalid", glob);
863                 if (!unsorted_string_list_has_string(list, glob))
864                         string_list_append(list, glob);
865         }
868 void string_list_add_refs_from_colon_sep(struct string_list *list,
869                                          const char *globs)
871         struct strbuf globbuf = STRBUF_INIT;
872         struct strbuf **split;
873         int i;
875         strbuf_addstr(&globbuf, globs);
876         split = strbuf_split(&globbuf, ':');
878         for (i = 0; split[i]; i++) {
879                 if (!split[i]->len)
880                         continue;
881                 if (split[i]->buf[split[i]->len-1] == ':')
882                         strbuf_setlen(split[i], split[i]->len-1);
883                 string_list_add_refs_by_glob(list, split[i]->buf);
884         }
886         strbuf_list_free(split);
887         strbuf_release(&globbuf);
890 static int string_list_add_refs_from_list(struct string_list_item *item,
891                                           void *cb)
893         struct string_list *list = cb;
894         string_list_add_refs_by_glob(list, item->string);
895         return 0;
898 static int notes_display_config(const char *k, const char *v, void *cb)
900         int *load_refs = cb;
902         if (*load_refs && !strcmp(k, "notes.displayref")) {
903                 if (!v)
904                         config_error_nonbool(k);
905                 string_list_add_refs_by_glob(&display_notes_refs, v);
906         }
908         return 0;
911 const char *default_notes_ref(void)
913         const char *notes_ref = NULL;
914         if (!notes_ref)
915                 notes_ref = getenv(GIT_NOTES_REF_ENVIRONMENT);
916         if (!notes_ref)
917                 notes_ref = notes_ref_name; /* value of core.notesRef config */
918         if (!notes_ref)
919                 notes_ref = GIT_NOTES_DEFAULT_REF;
920         return notes_ref;
923 void init_notes(struct notes_tree *t, const char *notes_ref,
924                 combine_notes_fn combine_notes, int flags)
926         unsigned char sha1[20], object_sha1[20];
927         unsigned mode;
928         struct leaf_node root_tree;
930         if (!t)
931                 t = &default_notes_tree;
932         assert(!t->initialized);
934         if (!notes_ref)
935                 notes_ref = default_notes_ref();
937         if (!combine_notes)
938                 combine_notes = combine_notes_concatenate;
940         t->root = (struct int_node *) xcalloc(sizeof(struct int_node), 1);
941         t->first_non_note = NULL;
942         t->prev_non_note = NULL;
943         t->ref = notes_ref ? xstrdup(notes_ref) : NULL;
944         t->combine_notes = combine_notes;
945         t->initialized = 1;
946         t->dirty = 0;
948         if (flags & NOTES_INIT_EMPTY || !notes_ref ||
949             read_ref(notes_ref, object_sha1))
950                 return;
951         if (get_tree_entry(object_sha1, "", sha1, &mode))
952                 die("Failed to read notes tree referenced by %s (%s)",
953                     notes_ref, sha1_to_hex(object_sha1));
955         hashclr(root_tree.key_sha1);
956         hashcpy(root_tree.val_sha1, sha1);
957         load_subtree(t, &root_tree, t->root, 0);
960 struct load_notes_cb_data {
961         int counter;
962         struct notes_tree **trees;
963 };
965 static int load_one_display_note_ref(struct string_list_item *item,
966                                      void *cb_data)
968         struct load_notes_cb_data *c = cb_data;
969         struct notes_tree *t = xcalloc(1, sizeof(struct notes_tree));
970         init_notes(t, item->string, combine_notes_ignore, 0);
971         c->trees[c->counter++] = t;
972         return 0;
975 struct notes_tree **load_notes_trees(struct string_list *refs)
977         struct notes_tree **trees;
978         struct load_notes_cb_data cb_data;
979         trees = xmalloc((refs->nr+1) * sizeof(struct notes_tree *));
980         cb_data.counter = 0;
981         cb_data.trees = trees;
982         for_each_string_list(refs, load_one_display_note_ref, &cb_data);
983         trees[cb_data.counter] = NULL;
984         return trees;
987 void init_display_notes(struct display_notes_opt *opt)
989         char *display_ref_env;
990         int load_config_refs = 0;
991         display_notes_refs.strdup_strings = 1;
993         assert(!display_notes_trees);
995         if (!opt || !opt->suppress_default_notes) {
996                 string_list_append(&display_notes_refs, default_notes_ref());
997                 display_ref_env = getenv(GIT_NOTES_DISPLAY_REF_ENVIRONMENT);
998                 if (display_ref_env) {
999                         string_list_add_refs_from_colon_sep(&display_notes_refs,
1000                                                             display_ref_env);
1001                         load_config_refs = 0;
1002                 } else
1003                         load_config_refs = 1;
1004         }
1006         git_config(notes_display_config, &load_config_refs);
1008         if (opt && opt->extra_notes_refs)
1009                 for_each_string_list(opt->extra_notes_refs,
1010                                      string_list_add_refs_from_list,
1011                                      &display_notes_refs);
1013         display_notes_trees = load_notes_trees(&display_notes_refs);
1014         string_list_clear(&display_notes_refs, 0);
1017 void add_note(struct notes_tree *t, const unsigned char *object_sha1,
1018                 const unsigned char *note_sha1, combine_notes_fn combine_notes)
1020         struct leaf_node *l;
1022         if (!t)
1023                 t = &default_notes_tree;
1024         assert(t->initialized);
1025         t->dirty = 1;
1026         if (!combine_notes)
1027                 combine_notes = t->combine_notes;
1028         l = (struct leaf_node *) xmalloc(sizeof(struct leaf_node));
1029         hashcpy(l->key_sha1, object_sha1);
1030         hashcpy(l->val_sha1, note_sha1);
1031         note_tree_insert(t, t->root, 0, l, PTR_TYPE_NOTE, combine_notes);
1034 void remove_note(struct notes_tree *t, const unsigned char *object_sha1)
1036         struct leaf_node l;
1038         if (!t)
1039                 t = &default_notes_tree;
1040         assert(t->initialized);
1041         t->dirty = 1;
1042         hashcpy(l.key_sha1, object_sha1);
1043         hashclr(l.val_sha1);
1044         note_tree_remove(t, t->root, 0, &l);
1047 const unsigned char *get_note(struct notes_tree *t,
1048                 const unsigned char *object_sha1)
1050         struct leaf_node *found;
1052         if (!t)
1053                 t = &default_notes_tree;
1054         assert(t->initialized);
1055         found = note_tree_find(t, t->root, 0, object_sha1);
1056         return found ? found->val_sha1 : NULL;
1059 int for_each_note(struct notes_tree *t, int flags, each_note_fn fn,
1060                 void *cb_data)
1062         if (!t)
1063                 t = &default_notes_tree;
1064         assert(t->initialized);
1065         return for_each_note_helper(t, t->root, 0, 0, flags, fn, cb_data);
1068 int write_notes_tree(struct notes_tree *t, unsigned char *result)
1070         struct tree_write_stack root;
1071         struct write_each_note_data cb_data;
1072         int ret;
1074         if (!t)
1075                 t = &default_notes_tree;
1076         assert(t->initialized);
1078         /* Prepare for traversal of current notes tree */
1079         root.next = NULL; /* last forward entry in list is grounded */
1080         strbuf_init(&root.buf, 256 * (32 + 40)); /* assume 256 entries */
1081         root.path[0] = root.path[1] = '\0';
1082         cb_data.root = &root;
1083         cb_data.next_non_note = t->first_non_note;
1085         /* Write tree objects representing current notes tree */
1086         ret = for_each_note(t, FOR_EACH_NOTE_DONT_UNPACK_SUBTREES |
1087                                 FOR_EACH_NOTE_YIELD_SUBTREES,
1088                         write_each_note, &cb_data) ||
1089                 write_each_non_note_until(NULL, &cb_data) ||
1090                 tree_write_stack_finish_subtree(&root) ||
1091                 write_sha1_file(root.buf.buf, root.buf.len, tree_type, result);
1092         strbuf_release(&root.buf);
1093         return ret;
1096 void prune_notes(struct notes_tree *t, int flags)
1098         struct note_delete_list *l = NULL;
1100         if (!t)
1101                 t = &default_notes_tree;
1102         assert(t->initialized);
1104         for_each_note(t, 0, prune_notes_helper, &l);
1106         while (l) {
1107                 if (flags & NOTES_PRUNE_VERBOSE)
1108                         printf("%s\n", sha1_to_hex(l->sha1));
1109                 if (!(flags & NOTES_PRUNE_DRYRUN))
1110                         remove_note(t, l->sha1);
1111                 l = l->next;
1112         }
1115 void free_notes(struct notes_tree *t)
1117         if (!t)
1118                 t = &default_notes_tree;
1119         if (t->root)
1120                 note_tree_free(t->root);
1121         free(t->root);
1122         while (t->first_non_note) {
1123                 t->prev_non_note = t->first_non_note->next;
1124                 free(t->first_non_note->path);
1125                 free(t->first_non_note);
1126                 t->first_non_note = t->prev_non_note;
1127         }
1128         free(t->ref);
1129         memset(t, 0, sizeof(struct notes_tree));
1132 void format_note(struct notes_tree *t, const unsigned char *object_sha1,
1133                 struct strbuf *sb, const char *output_encoding, int flags)
1135         static const char utf8[] = "utf-8";
1136         const unsigned char *sha1;
1137         char *msg, *msg_p;
1138         unsigned long linelen, msglen;
1139         enum object_type type;
1141         if (!t)
1142                 t = &default_notes_tree;
1143         if (!t->initialized)
1144                 init_notes(t, NULL, NULL, 0);
1146         sha1 = get_note(t, object_sha1);
1147         if (!sha1)
1148                 return;
1150         if (!(msg = read_sha1_file(sha1, &type, &msglen)) || !msglen ||
1151                         type != OBJ_BLOB) {
1152                 free(msg);
1153                 return;
1154         }
1156         if (output_encoding && *output_encoding &&
1157                         strcmp(utf8, output_encoding)) {
1158                 char *reencoded = reencode_string(msg, output_encoding, utf8);
1159                 if (reencoded) {
1160                         free(msg);
1161                         msg = reencoded;
1162                         msglen = strlen(msg);
1163                 }
1164         }
1166         /* we will end the annotation by a newline anyway */
1167         if (msglen && msg[msglen - 1] == '\n')
1168                 msglen--;
1170         if (flags & NOTES_SHOW_HEADER) {
1171                 const char *ref = t->ref;
1172                 if (!ref || !strcmp(ref, GIT_NOTES_DEFAULT_REF)) {
1173                         strbuf_addstr(sb, "\nNotes:\n");
1174                 } else {
1175                         if (!prefixcmp(ref, "refs/"))
1176                                 ref += 5;
1177                         if (!prefixcmp(ref, "notes/"))
1178                                 ref += 6;
1179                         strbuf_addf(sb, "\nNotes (%s):\n", ref);
1180                 }
1181         }
1183         for (msg_p = msg; msg_p < msg + msglen; msg_p += linelen + 1) {
1184                 linelen = strchrnul(msg_p, '\n') - msg_p;
1186                 if (flags & NOTES_INDENT)
1187                         strbuf_addstr(sb, "    ");
1188                 strbuf_add(sb, msg_p, linelen);
1189                 strbuf_addch(sb, '\n');
1190         }
1192         free(msg);
1195 void format_display_notes(const unsigned char *object_sha1,
1196                           struct strbuf *sb, const char *output_encoding, int flags)
1198         int i;
1199         assert(display_notes_trees);
1200         for (i = 0; display_notes_trees[i]; i++)
1201                 format_note(display_notes_trees[i], object_sha1, sb,
1202                             output_encoding, flags);
1205 int copy_note(struct notes_tree *t,
1206               const unsigned char *from_obj, const unsigned char *to_obj,
1207               int force, combine_notes_fn combine_fn)
1209         const unsigned char *note = get_note(t, from_obj);
1210         const unsigned char *existing_note = get_note(t, to_obj);
1212         if (!force && existing_note)
1213                 return 1;
1215         if (note)
1216                 add_note(t, to_obj, note, combine_fn);
1217         else if (existing_note)
1218                 add_note(t, to_obj, null_sha1, combine_fn);
1220         return 0;